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The Standard Model of Particle Physics

* The SM of particle physics has been instrumental 1n accurately
predicting properties of the fundamental particles including 1ts
Masses and Couplings to other fundamental particles

* The most recent 1s being the discovery of the Higgs Boson
at the LHC which lead to 2013 Nobel Prize to Peter Higgs
and Francois Englert

* However, the SM 1s not the ultimate theory; 1t has limitations...
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What to do? Experiment = Theory

The Large Hadron Collider Thumb rule for a theoretical physicist

Experiment <@l  Theory

v v

Outcome Predictions

L-' Compare ‘J

* One approach: study beyond the SM to explain the New Physics

% Other approach: precision study within the SM
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Precision Era of Particle Physics

* Observable of interest Lo Perturbative

O — P Z pRC C’{ contributions

/=0

Coupling
Co : Leading Order (LO)
(1 : Next-to-LO (NLO)
(5 : Next-to-NLO (NNLO)

* Perturbative QCD:

R — (g — — :
S AT Strong coupling
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Asymptotic Freedom Saves Us!

* Strong coupling runs: large values at low energies and small values at high energies

Confinement

as(Q)

0.22
0.12

A

non-perturbative
(long distance)

perturbative
(short distance)

Aqcp
~~ 200 MeV

my Mz Q

>

They can’t be treated as independent states

Asymptotic Freedom

Quarks and gluons
behave as free particles
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Parton Model: Short Range and Long Range

* For a generic production process

h1 (pl) + ho (pg) > F({Qz}) + X\/additional radiation

c(z1pr) + &wap2) = F(qg= ) _q:)|quq” = M*= @

Uy TN
ha(p2) »fz(ivz)4gv

A

X Ohy,hy = Z/d$1d$2fi(371)fj(
1,J

Long distance

T2)0;; + O (

Short distance

AqQcp

Q

)

\

07



Fixed Order Perturbation Theory

7 Py q| 2 7 Pla |2
k Q
—~ . + . + . + g +
Y Y Y Y pa
q P2 4q q P2 4q
tree virtual real emission
—
~ 01
* real emission: pg — 0 soft gluon —> soft divergence F
infrared
p3||p1 or ps||lp2  collinear —’ collinear divergence

* virtwal: soft div

k||p1 or k|lpo  collinear div
k — oo ultraviolet div
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Divergent Terms Cancel !

---------------------------------------------------------------------------------------------------- -
6=60 + w061 + a6 + 0O(ad)
q Py |2 q Pla 12
k Q
~ o + i -+ i + AN Lo
v Y v v D3
q P2’ 4 q P2\ ¢ Identified partons
tree virtual real emission ‘
~ 00 ~ by ~ 57 ' ' '
—_ Collinear divergence remains!
~ 01 ¢
* real emission: p3 — 0 soft gluon === soft divergence Renormalise bare PDFs and FFs
| infrared
ps||p1 or ps||p2  collinear » collinear divergence
*virtual: g soft div Cancels: KLLN Theorem |
k||p1 or k|lp. = collinear div
k— oo ultraviolet div «———UV renormalisation




Computations of Jet Observables

* Jet cross section up to NNLO:

s — L0 L JNLO | _NNLO

_|_

1
_—
=
Q

oy

. L.O ) NNLO  Non-trivial 1n d-dimensions

* The algorithms that are used to calculate more differential cross sections can be broadly divided
into two types:

1. Phase space slicing method

2. Subtraction method
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Example: Phase Space Slicing Method

* Let’s consider the integral of the form
eal type contribution

V1rtua1 type contribution

- . Observable: © —> ()(Soft/collinear)

— lim { AT e P(x)+ dz F(x) — F(O)}

I = liH(l)
—
DR like parameter«~ j

e—( T 5 T €
O du L dx 1
~ lim ¢ F(0) [ —x° —zF(x) — —F(0)
e—0 0 T ) £ €

=F(0)1n5+/1 d—xF( )
o

Smaller ) —> Less dependence on ()
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Example: Subtraction Method

* Consider again the integral from the previous slide

I = lim { O o ‘F(x) — 1F(O)}

~ti { [ e (o) - O - @) [ L - )]
-/ 1%[F<x>—F<o>]

* It1s advantageous to phase space slicing method
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Application: Computation of Jet Cross Section

* For a generic observable

* We want to find a local counter term such that

doNLO — |doB — doi +do? + do"

it cancels all the divergences coming from the virtual Feynman diagrams

oNEO = [daR — dO'A] —|—/ do —|-/ do"
m+1 m+1 m

Not easy always!

in particular, the master formula will look like




QCD Factorisation 1n the Soft Limit

* For a generic scattering amplitude having a soft gluon of momentum q

(c| MO (g, {p})) = gsuie(a) IV (9) MO ({p})) +

where

JHO) (q) = ZT

At the squared amplitude level

MO (g, {p})]* = —8malup’ Z Sij(@) | M ({p})I?

1,7=1

M {2 = (MO )T - T;| MO ({p}))
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QCD Factorisation 1n the Collinear Limit

* Double parton collinear limait at the tree level
Splitting matrix

Reduced ME

p1||p2

2 jM' [ IMOp)| =8B, o DM (B, {5D))

At the squared amplitude level PO (p1, po; P) = Sp T (p1, po; P)SPp? (p1, pa; P)
(0) ? 1 pl0) : -
MOUp)| = (M{pHIPO (o1, p2; P) M({2))

Splitting kernel
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LO Splitting Kernels

* Leading order collinear splitting kernels are

Pl = Cp

pP1 ﬁngL=CF

A Py =Tr
" ﬁngg‘L=2CA

-1+Z2 (1 )- p2
e(l — 2
12 I Féééc
1+ (1 —2)? - P > > p1
€zl q—>qg+tg
2
1 22(1 — 2) | N
l1—€¢
1 —
© ° z2(1—2) P
1—2 o g—=g+g
D2

* Note that the splittings kernels depend only on the momenta and quantum numbers of partons
those took part in the collinear splitting process.
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Future Outlook

We need to go hand-in-hand with the experiment 1.e. we need very precise theory predictions

Higher order perturbative predictions are non-trivial both analytically and numerically due to
presence of divergences

For efficient automation, one not only needs to find counter terms but also needs to integrate them
analytically over unresolved (soft and collinear) phase space to cancel divergences coming from
the virtual diagrams (Loop-Tree-Duality can help us here!)

Since the divergences are of IR origin, the study of Soft and Collinear factorisation of QCD matrix
elements to higher orders can help

Collinear splitting kernels 1n general can depend on quantum numbers of non-collinear partons,
which poses additional difficulties
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Thank You!



