

Generalized Power Series: a semi-analytical technique for multi-loop Scattering Amplitudes

IFIC Valencia

27/04/2023

Federico Ripani

PhD

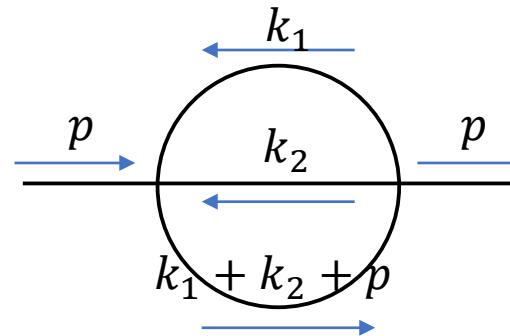
U. Roma Sapienza

Supervisor: R. Bonciani

COMPUTATIONAL BOTTLENECKS FOR PHYSICAL AMPLITUDES

- Integration-by-parts (**IBP**) reduction of thousands of Feynman integrals to a basis of linearly independent **master integrals** (typically tens). This is implemented in a certain number of computational tools (kira, finite-flow,...).
- Efficiently evaluate the master integrals (**MI**) in the physical phase-space region.

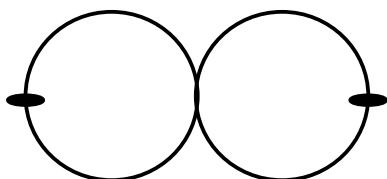
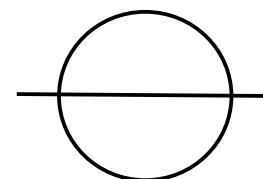
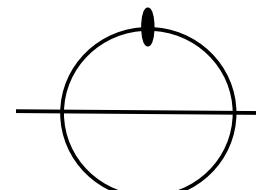
Example basis of master integrals



$$\mathcal{J}_{\nu_1, \nu_2, \nu_3, \nu_4, \nu_5} = (m^2)^{\nu-d} \int \mathcal{D}^d k_1 \mathcal{D}^d k_2 \frac{N_1^{-\nu_1} N_2^{-\nu_2}}{[k_1^2 - m^2]^{\nu_3} [k_2^2 - m^2]^{\nu_4} [(k_1 + k_2 + p)^2 - m^2]^{\nu_5}}$$

$$\vec{f} = \epsilon^2 \begin{pmatrix} \mathcal{J}_{0,0,2,2,0} \\ \mathcal{J}_{0,0,1,1,1} \\ \mathcal{J}_{0,0,2,1,1} \end{pmatrix}$$

$$\mathcal{D}^d k_i = \frac{d^d k_i}{i\pi^{\frac{d}{2}} \Gamma(1+\epsilon)}$$



Differential equations

Integration-by-parts allow to write a linear differential equations system in closed form w.r.t. the basis of master.

$$\frac{\partial \vec{f}(\vec{x}, \epsilon)}{\partial x_j} = A_j(\vec{x}, \epsilon) \vec{f}(\vec{x}, \epsilon)$$

$$A(x, \epsilon) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & -\frac{2\epsilon-1}{x} & -\frac{3}{x} \\ -\frac{2}{(x-9)(x-1)} & -\frac{(2\epsilon-1)(3\epsilon-2)(x-3)}{(x-9)(x-1)x} & -\frac{\epsilon x^2 + 10\epsilon x - 27\epsilon - 10x + 18}{(x-9)(x-1)x} \end{pmatrix} \quad x = \frac{p^2}{m^2}$$

Program

- Differential equations system
- Boundary conditions
- Solution
 - analytical
 - Semi-analytical
- **Generalized one dimension power series expansion method**
- A phenomenology application: di-photon production

Strategy (1/3)

- A set of master integrals, at a given order of ε , admit a solution in the vicinity of a point x_i (regular or singular) of the form $\sum_{j=0}^p \sum_{k=0}^{\infty} \vec{C}_{jk} (x - x_i)^{w+k} \log^j (x - x_i)$, $w \in \mathbb{Q}$.
- The radius of convergence of the series is determined by the nearest singularity to x_i . In our example it is the distance from $x_s = 9$, which is the only singular point.
- We know the value of the master integrals at the starting point $x_{bc} = 0$:

$$\vec{f}(0, \epsilon) = \begin{pmatrix} 1 \\ \frac{3}{2} \\ \frac{1}{2} \end{pmatrix} + \epsilon \begin{pmatrix} 0 \\ \frac{9}{2} \\ \frac{1}{2} \end{pmatrix} + \epsilon^2 \begin{pmatrix} 0 \\ \frac{21}{2} + \frac{3\sqrt{3}i}{2} [\text{Li}_2(l_+) - \text{Li}_2(l_-)] \\ \frac{1}{2} + \frac{\sqrt{3}i}{2} [\text{Li}_2(l_+) - \text{Li}_2(l_-)] \end{pmatrix} + \dots, \quad l_{\pm} = \frac{-1 \pm i\sqrt{3}}{2}$$

Strategy (2/3)

- Let's suppose we want to transport the solution until $x_{end} = 11$. **Frobenius + variation of constants** allow us to express the solution in terms of **power series** around $x_{bc} = 0$:

$$f_3(x, \epsilon) = \frac{1}{2} + \frac{\epsilon}{2} + \epsilon^2 (-0.67195362 + 0.16666667x + 0.00501349x^2 + 0.00025591x^3 + 0.00001628x^4 + \dots) + \dots$$

- Let's evaluate it at $x_{end} = 11$: $f_3^{(2)}(11) = 4.758$ which is wrong!
- Let's find the solution around the singular point $x_s = 9$.
- We have to match the new expansion with the previous one. Let's choice the matching point to be $x'_{bc} = 4.5$.
- We have to evaluate $\log(x'_{bc} - 9)$. Feynman prescription on kinematical variables and masses helps us:

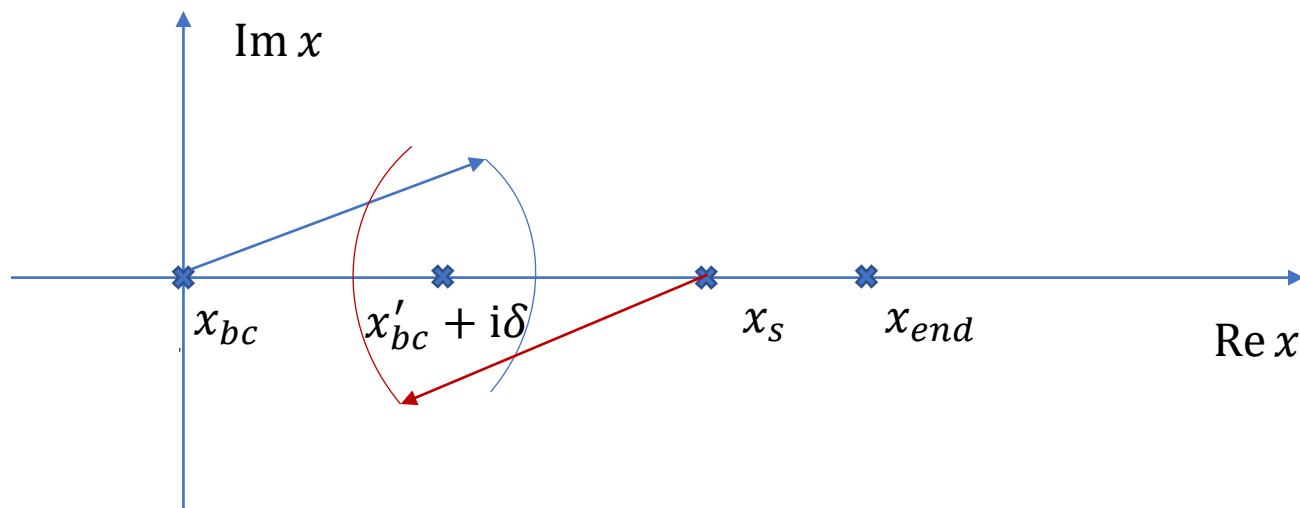
$$\log(x'_{bc} - 9) = \log(9 - x'_{bc}) + i\pi$$

Strategy (3/3)

- The solution expanded around the singularity is:

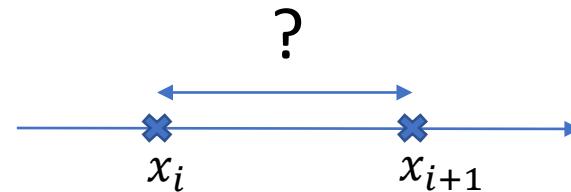
$$f_3(x, \epsilon) = \frac{1}{2} + \frac{\epsilon}{2} + \epsilon^2 \left[(-0.463213 - 3.141593i) + (0.580281 + 0.633135i)(x - 9) + \right. \\ \left. - (0.035561 + 0.043968i)(x - 9)^2 + (0.002850 + 0.003664i)(x - 9)^3 + \dots \right. \\ \left. + \log(x - 9) \left(1 - 0.201533(x - 9) + 0.013995(x - 9)^2 - 0.001166(x - 9)^3 + \dots \right) \right] + \dots$$

- Now we get the correct result $f_3^{(2)}(11) = 2.71007 \dots + 1.11531 \dots i$



Code implementation

- DiffExp [arXiv:2006.05510](https://arxiv.org/abs/2006.05510) (M. Hidding, 2020)
Segmentation strategies:



• **Dynamic:** $x_{i+1} = x_i + r_i y_i^\delta$,
 r_i is the distance of the nearest singularity to x_i , and $y_i^\delta = \min \left\{ \left(\frac{\delta}{|S^{(n;i)}(A_{x,lj}^{(k)})r_i|} \right)^{\frac{1}{n}}, (l, j, k) \right\}$.

• **Predivision:** $x_{i+1} = x'_{bc} + \frac{s}{k}$ $x'_{bc} = x_i + \frac{r_i}{k}$
 \tilde{x}_L : left singularity \tilde{x}_R : right singularity $s = \begin{cases} \frac{k(x'_{bc} - \tilde{x}_L)}{k-1}, & x'_{bc} < \frac{\tilde{x}_L(1+k) + \tilde{x}_R(k-1)}{2k} \\ \frac{k(\tilde{x}_R - x'_{bc})}{k+1}, & x'_{bc} > \frac{\tilde{x}_L(1+k) + \tilde{x}_R(k-1)}{2k} \end{cases}$

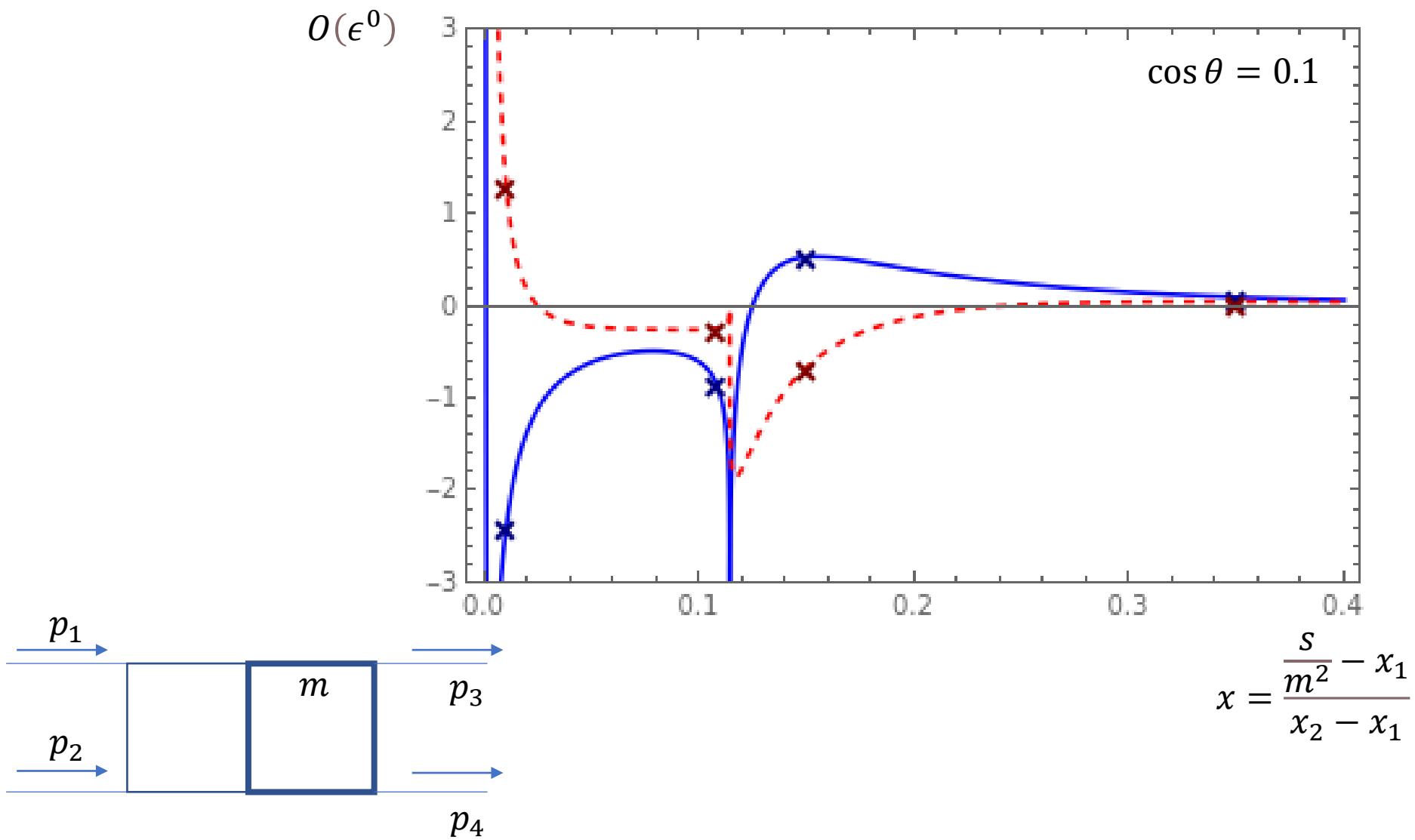
- SeaSyde [arXiv:2205.03345](https://arxiv.org/abs/2205.03345) (T. Armadillo, R. Bonciani, S. Devoto, N. Rana, A. Vicini, 2022)
 - Expansion in the x complex plane
 - Allows evaluations for complex values of the kinematical invariants
- AMFlow [arXiv:2201.11669](https://arxiv.org/abs/2201.11669) (X. Liu, Y. Ma, 2022)
 - Uses auxiliary mass flow to numerically evaluate Feynman integrals without any input
 - It is a very powerful tool to determine boundary conditions

A phenomenology application (di-photon production)

$$\frac{|\mathcal{A}_{q\bar{q},\gamma\gamma}^{(\text{fin})}|^2}{|\mathcal{A}_{q\bar{q},\gamma\gamma}^{(0)}|^2} = 1 + \left(\frac{\alpha_S}{\pi}\right) \mathcal{H}_{\gamma\gamma}^{(1)} + \left(\frac{\alpha_S}{\pi}\right)^2 \left(\mathcal{H}_{\gamma\gamma}^{(2;5\text{f})} + \mathcal{H}_{\gamma\gamma}^{(2;\text{top})}\right) + \dots$$

Topology	# master	D.E. system	start point	region covered	# points	ExpansionOrder	# digits	Time
Planar	32	$\epsilon \text{d log}$	$s = t = 0$	$52\text{GeV} \leq \sqrt{s} \leq 619\text{GeV}$ $-0.99 \leq \cos\theta \leq 0.99$	816	50	25	$\sim 25\text{min}$
Non-planar	36	$\epsilon \text{d log}$ +2 elliptic sectors	$s = t = 0$	$52\text{GeV} \leq \sqrt{s} \leq 619\text{GeV}$ $-0.99 \leq \cos\theta \leq 0.99$	816	50	18	$\sim 3\text{h}$

M. Becchetti, R. Bonciani, L. Cieri, F. Coro, F. Ripani



$$x = \frac{\frac{s}{m^2} - x_1}{x_2 - x_1}$$

$$x_1 = \frac{1}{100}$$

$$x_2 = 35$$

Conclusions

- Generalized power series is a semi-analytical method to find solution to D.E.
- It can provide an arbitrary number of significant digits as far as we wait long enough
- High accurate numerical evaluation of Scattering Amplitudes
- It can be improved (parallelization)
- It has two intrinsic limits: 1) solution only along a countour (interpolation)
 - 2) I have to solve D.E. many times (wait time)
- There is a more foundamental problem: topologies that we are not able to reduce

Thank you!