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COMPUTATIONAL BOTTLENECKS FOR PHYSICAL AMPLITUDES

* Integration-by-parts (IBP) reduction of thousands of Feynman
integrals to a basis of linearly independent master integrals (typically
tens). This is implemented in a certain number of computational tools
(kira, finite-flow,...).

e Efficiently evaluate the master integrals (M) in the physical phase-
Space region.



Example basis of master integrals
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Differential equations

Integration-by-parts allow to write a linear differential equations
system in closed form w.r.t. the basis of master.
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Program

e Differential equations system

* Boundary conditions

* analytical

e Solution —

» Semi-analytical

* Generalized one dimension power series expansion method

* A phenomenology application: di-photon production



Strategy (1/3)

* A set of master integrals, at a given order of £, admit a solution in the vicinity of a point x;
(regular or singular) of the form E z k(x —x;)"**log/ (x — x;), w € Q.
k=0
j=0

* The radius of convergence of the series is determined by the nearest singularity to x;. In our
example it is the distance from x; = 9, which is the only singular point.

* We know the value of the master integrals at the starting point x,. = 0:
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Strategy (2/3)

* Let’s suppose we want to transport the solution until x.,,; = 11. Frobenius + variation of
constants allow us to express the solution in terms of power series around x;,. = O:
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* Let’s evaluate it at x,,,4 = 11: f3(2)(11) = 4.758 which is wrong!

* Let’s find the solution around the singular point x;, = 9.

* We have to match the new expansion with the previous one. Let’s choice the matching point to
be xp, = 4.5.

* We have to evaluate log(x,. — 9). Feynman prescription on kinematical variables and masses
helps us:

log (x},, —9) = log (9 —x;,.) + iw



Strategy (3/3)

* The solution expanded around the singularity is:
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* Now we get the correct result f3(2)(11) = 2.71007 ... + 1.11531... i
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Code implementation

: : - ?
* DiffExp arXiv:2006.05510 (M. Hidding, 2020) . ' .
Segmentation strategies: ‘; }‘ ’
i i+1
* Dynamic: x;,1 = x; + riyf, 1
r; is the distance of the nearest singularity to x;, and y{S = min {<|S(n;i)(j(k) )T_|>", (1,7, k)}.
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e SeaSyde arXiv:2205.03345 (T. Armadillo, R. Bonciani, S. Devoto, N. Rana, A. Vicini, 2022)

* Expansion in the x complex plane
* Allows evaluations for complex values of the kinematical invariants

 AMFlow arXiv:2201.11669 (X. Liu, Y. Ma, 2022)

* Uses auxiliary mass flow to numerically evaluate Feynman integrals without any input
It is a very powerful tool to determine boundary conditions



https://arxiv.org/abs/2006.05510
https://arxiv.org/abs/2205.03345
https://arxiv.org/abs/2201.11669

A phenomenology application (di-photon production)
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Conclusions

* Generalized power series is a semi-analytical method to find solution to D.E.
* It can provide an arbitrary number of significant digits as far as we wait long enough

* High accurate numerical evaluation of Scattering Amplitudes

It can be improved (parallelization)

It has two intrinsic limits: 1) solution only along a countour (interpolation)

2) | have to solve D.E. many times (wait time)

There is a more foundamental problem: topologies that we are not able to reduce



Thank you!



	Diapositiva numero 1
	COMPUTATIONAL BOTTLENECKS FOR PHYSICAL AMPLITUDES
	Example basis of master integrals
	Differential equations
	Program
	Strategy (1/3)
	Strategy (2/3)
	Strategy (3/3)
	Code implementation
	A phenomenology application (di-photon production)
	Diapositiva numero 11
	Conclusions
	Thank you!

