STRONG HIGGS PRODUCTION AT CLIC

Andrea Thamm

CERN and École Polytechnique Fédérale de Lausanne

IX Jornadas LC

Valencia, 19 December 2012

In collaboration with R. Contino, C. Grojean, D. Pappadopulo, R. Rattazzi to appear soon and also based on arXiv:1202.5940

OUTLINE

- MOTIVATION
 - For a Strongly Coupled Sector
 - For the ILC and CLIC
- PHENOMENOLOGY
 - WW scattering: probing a
 - Double Higgs Production: probing b and d_3
 - Triple Higgs Production: probing the coset space
- 3 Conclusion and Outlook

PERTURBATIVE UNITARITY VIOLATION IN THE SM

• Scattering of longitudinally polarized W in terms of NG bosons $\Sigma = e^{\frac{i}{\nu}\sigma^a\chi^a}$ (reduces to W and Z mass term in unitary gauge)

$$\mathcal{L} = rac{v^2}{4} \mathrm{Tr} \left[\left(D_\mu \Sigma
ight)^\dagger \left(D^\mu \Sigma
ight)
ight]$$

Amplitude grows with energy

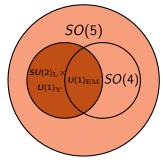
$$\mathcal{A}(V_L^+V_L^-\to V_L^+V_L^-)\sim \frac{s+t}{v^2}$$

• Perturbative unitarity violated at $4\pi v \sim 3$ TeV \Rightarrow expect new degrees of freedom

For a Strongly Coupled Sector

HIGGS AS A COMPOSITE NAMBU-GOLDSTONE-BOSON

Weak Dynamics: Higgs Boson


Strong Dynamics: Non-perturbative Interactions

Interpolation: Strongly interacting light Higgs

[Giudice, Grojean, Pomarol, Rattazzi 07]

- Higgs bound state of strongly interacting sector
- Minimal Coset: SO(5)/SO(4)
 ⇒ 4 NG-bosons
 3 eaten, 1 Higgs
- Breaking scale f

Anomalous Higgs Couplings

• Higgs potential at one-loop in weak gauge coupling \Rightarrow $\langle H \rangle = v$ controlled by small explicit breaking of SO(5)

$$\begin{split} \mathcal{L} &= \frac{1}{2} (\partial_{\mu} h)^2 - V(h) + \left(m_W^2 W_{\mu}^+ W^{\mu-} + \frac{m_Z^2}{2} Z_{\mu} Z^{\mu} \right) \left[1 + 2 a \frac{h}{v} + b \frac{h^2}{v^2} + b_3 \frac{h^3}{v^3} + \ldots \right] \\ &V(h) = \frac{1}{2} m_h^2 h^2 + d_3 \left(\frac{m_h^2}{2v} \right) h^3 + \ldots \end{split}$$

• Couplings in terms of $\xi = \frac{v^2}{f^2} = \frac{\text{weak scale}^2}{\text{strong scale}^2}$

$$a = \sqrt{1-\xi}$$
 $b = 1-2\xi$ $b_3 = -\frac{4}{3}\xi\sqrt{1-\xi}$ $d_3 = \sqrt{1-\xi}$

• SM: $\xi = 0 \Rightarrow a = b = d_3 = 1, b_3 = 0$

Motivation

HIGGS PRECISION MEASUREMENTS

- Elementary or composite Higgs?
 - If $\sigma(W^+W^- \to hh)$ grows with s measure deviations from a=b=1: δ_{hh} lower bound on strong coupling: $g_{\rho} > \sqrt{\delta_{hh}} \frac{E}{V}$
- In *SU*(2) doublet?
 - Measure precise relation between a and b in single and double Higgs production: $2a^2 b = 1$
- NG-boson?
 - Triple Higgs production: suppressed if NG-boson due to $\pi \to -\pi$ symmetry

FOR THE ILC AND CLIC

THE ILC AND CLIC

	International Linear Collider ILC	Compact Linear Collider CLIC	
Collisions	e ⁺ e [−] linear collider		
\sqrt{s} [TeV]	0.5	3 and 5	
Luminosity $[cm^{-2}s^{-1}]$	$2 imes 10^{34}$	0.8×10^{35}	
Site length [km]	31	33	

Assume negligible SM background, full Higgs reconstruction

WW SCATTERING AT CLIC

Scattering of longitudinal components:

$$\mathcal{A}(V_L^+V_L^- o V_L^+V_L^-) \sim (s+t)/v^2$$

- Process: $e^+e^- \rightarrow W^+W^-\nu\bar{\nu}$
- p_T-cut to optimize analysis
- Statistical relative error $\Delta \xi/\xi$

\sqrt{s}	ξ				
[TeV]	0.01	0.05	0.1	0.7	
0.5	32	7	4	0.47	
3	8.0	1.3	0.51	0.02	
5	1.19	0.39	0.34	0.006	

for $L = 1 \, \text{ab}^{-1}$, $m_h = 125 \, \text{GeV}$

• LHC with 14 TeV, 300 fb $^{-1}$: sensitive to $\xi \ge 0.5$ [Contino, Grojean, Moretti, Piccinini, Rattazzi '10]

Double Higgs Production at the LHC

• Directly sensitive to ξ

$$A(V_L V_L \to hh) = \frac{s}{v^2} (b - a^2) + \frac{(3ad_3 - 2a^2) m_h^2}{4M_W^2} + \cdots$$

- Extremely challenging due to large QCD background in $pp \rightarrow hhjj$ [Contino, Grojean, Moretti, Piccinini, Rattazzi '10]
- Visible signal only for $\xi \sim 1$
- No sensitivity to quadratic, b, and trilinear, d_3 , coupling

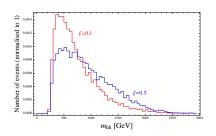
DOUBLE HIGGS PRODUCTION AT THE ILC

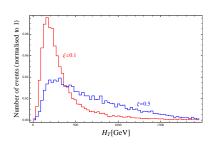
- Relevant process: Higgsstrahlung $e^+e^- \rightarrow Zhh$
- Define

$$\delta_b \equiv 1 - \frac{b}{a^2}, \qquad \delta_{d_3} \equiv 1 - \frac{d_3}{a}.$$

• Statistical errors $(\Delta \delta_b, \Delta \delta_{d3})$

δ_{b}	δ_{d_3}			
ОБ	0	0.1	0.5	
0.01	(0.28, 0.48)	(0.29, 0.49)	(0.30, 0.53)	
0.05	(0.29, 0.49)	(0.29, 0.50)	(0.32, 0.56)	
0.1	(0.29, 0.49)	(0.30, 0.51)	(0.33, 0.57)	
0.5	(0.34, 0.58)	(0.36, 0.61)	(0.40, 0.70)	


for $\sqrt{s}=500$ GeV, $L=1\,\mathrm{ab^{-1}}$, $m_h=125$ GeV


• Sensitive to large values of δ_h only

Double Higgs Production: probing b and d_3

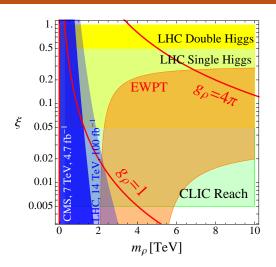
DOUBLE HIGGS PRODUCTION AT CLIC

- Dominant process: $e^+e^- \rightarrow W^+W^-\nu\bar{\nu} \rightarrow hh\nu\bar{\nu}$
- Cut on m_{hh} and H_T to disentangle b and d_3
- Distributions for $\sqrt{s}=3$ TeV, $m_h=125$ GeV

Double Higgs Production: probing b and d_3

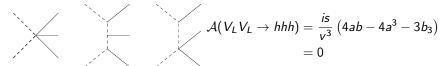
Double Higgs Production at CLIC

• Statistical errors $(\Delta \delta_b, \Delta \delta_{d3})$


δ_b	δ_{d_3}			
OB	0	0.1	0.5	
0.01	(0.01, 0.06)	(0.01, 0.06)	(0.009, 0.05)	
0.05	(0.098, 0.06)	(0.008, 0.05)	(0.007, 0.04)	
0.1	(0.008, 0.06)	(0.007, 0.05)	(0.007, 0.04)	
0.5	(0.006, 0.04)	(0.006, 0.04)	(0.006, 0.04)	

for
$$\sqrt{s}=3$$
 TeV, $L=1\,\mathrm{ab}^{-1}$, $m_h=125$ GeV

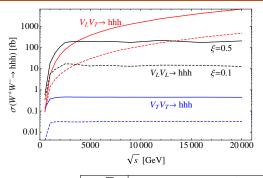
- Sensitive to b with 1-2 % precision
- Sensitive to d₃ with 10 % precision
 - \Rightarrow sensitive to ξ up to 0.01
 - ⇒ sensitive to compositeness scale up to 30 TeV


Double Higgs Production: probing b and d_3

SUMMARY: CONSTRAINTS AND PROSPECTS

DISCRETE SYMMETRY IN SYMMETRIC COSET MODEL

- Symmetric coset \Rightarrow discrete symmetry between NG bosons: $\pi^{\hat{a}} \rightarrow -\pi^{\hat{a}}$
- Process with odd number of NG-bosons forbidden
- WW scattering:



• Distinct feature to distinguish symmetric and asymmetric coset

Polarisation	Amplitude for NG-boson SILH		
LL ightarrow hhh	g^2v/f^2	E^2v/f^4	

Triple Higgs Production: Probing the Coset space

TRIPLE HIGGS PRODUCTION AT CLIC

- Higgs as NGB: $V_L V_T \rightarrow hhh$ dominates
- Effective SILH: $V_LV_L \rightarrow hhh$ dominates

\sqrt{s}			ξ		
[TeV]	0	0.05	0.1	0.2	0.24
NGB	0.32	0.46	0.71	1.47	1.82
SILH	0.32	0.71	0.87	7.56	16.27

CONCLUSION AND OUTLOOK

- CLIC unique machine to probe strong and composite nature of the Higgs
 - Precision measurements
 - WW-scattering: sensitive to a
 - Double Higgs production: sensitive to anomalous couplings b and d₃
 - \Rightarrow compositeness scale up to 30 TeV
 - Triple Higgs production: distinguish between Higgs as a NGB and SILH
 - ⇒ insight into underlying dynamics