
Geant4 Kernel
- part 2

Makoto Asai
SLAC National Accelerator Laboratory
June 17, 2021

Contents

• Selecting physics models

• Primary particle generator

• Scoring and sensitive detector

Geant4 Kernel - part 2 2

Geant4 Physics & Applications

W
at

er

M
ol

ec
ul

e
Si

ze

HEP Applications
 High Energy Physics has been the first domain to use Geant4 in production, with
the BaBar experiment. LHC experiments have been using Geant4 in detector
design and are using it in physics analysis. Geant4 is also the simulation engine
choice of the next generation of electron machines.

The CMS detector

Responding to the simulation needs of the LHC era, with the Higgs boson
hunting, had been the initial motivation of the creation of the proto-Geant4
project, RD44, in 1994.

Projectile de Broglie l(fm)

Projectile Kinetic
Energy (GeV)

Geant4 Electromagnetic Physics
 The electromagnetic physics covers interactions of gammas, muons and
electrons, and ionisation of all charged particles. A “standard” package offers an
implementation suited for applications disregarding effects below a few ~10 keV,
and a “low energy” one provides approaches (Livermore, Penelope) for more
accurate modeling of atomic shell effects allowing simulation down to ~250 eV. A
very low extension, Geant4-DNA, includes particle-molecule effects for an energy
limit of ~10 eV. The same approach is developed for silicon.

Geant4 Hadronic Physics
 Hadronic interactions involve three main regimes : high energy, with string
models (Quark Gluon String [QGS], Fritiof [FTF]), intermediate energy, with intra-
nuclear cascade models (Bertini [BERT], Binary [BIC]), and low energy, with
precompound, Fermi break-up, fission/evaporation, capture at rest models and
radioactive decays. From 20 MeV down to thermal energy neutrons are handled
by means of cross-section databases, with the High Precision [HP] package.

Medical Applications
 Medical Applications interest in Monte Carlo is the accuracy capability in
complex structures. Geant4 is used for radio-, proto- & carbo-therapy medical
research fields. It is used also in optimization of brachytherapy devices,
radioprotection and nuclear imaging. Large users communities exist in US, Europe
and Japan. CPU performance boost allowed by Geant4 MT or by GPU prototype
versions open the possibility for routine usage in treatment planning.

Simulation of water chemical species migration
accounting for electrical mutual interaction after a 50
MeV proton irradiation. Post irradiation chemical
attacks amount for ~60% of total damages on DNA.

DNA geometry model simulated : 46
chromosomes, 332k chromatine pieces,
30 millions nucleosomes, 6 billions base
pairs…

M
. D

os
 S

an
to

s,
 C

. V
ill

ag
ra

sa
, I

. C
la

ira
nd

, S
. I

nc
er

ti,

N
IM

 B
 2

98
 (2

01
3)

 4
7-

54

DNA Scale Level Simulation
 Project initiated by the ESA, in view of manned mission to Mars: it is a bottom-
up approach of dosimetry. Physics processes are extended down to a few eV,
based on particle – molecule cross-sections. The approach is applied also to
silicon, for accurate simulation of Single Upset Events.

The ATLAS detector

Planetocosmics : a simulation tool for planetary
scale particle transport. The red curve is a proton
trajectory in the Earth magnetic field. Irradiation
level around a planet, at ground level, and with
related activated isotopes can then be predicted.

The recent Higgs boson discovery

1 ps

1 ms
1 mm

(a) The simulation energy resolution (in %) in two sampling calorimeters compared with one
standard deviation measurement (ZEUS calorimeter : E. Bernardi E et al., NIM A, 262, 229-242,
(1987); G. D'Agostini et al., NIM A, 274, 134, (1989))).

(b) Comparison of Geant4 energy loss models with ALICE test-beam data (D. Antonchyk et al.,
NIM A, 565, 551-560 (2006); P. Christiansen et al., Int. J. Mod. Phys. E, 16, 2457-2462 (2007)).

(c) Comparison of angular distribution width (Data/MC in %) for various materials after traversing
various material thicknesses, data from electron scattering benchmark (C. Ross et al., Med.
Phys., 35, 4121, 2008).

Secondary production range threshold (mm)

(a) (b) (c)

ADC Log(thickness/X0)

Intermediate Energy
Nucleon

dominating
behavior

Low Energy
Nucleus

dominating
behavior

High Energy
Quark/gluon
dominating

behavior

l

l

l

Incident p in Cu/LAr sandwich simplified ATLAS
hadronic endcap calorimeter

Examples of models combinations
in “physics lists”

Neutron simulation down to thermal energies:

U
ra

ni
um

 N
uc

le
us

 S
ize

Geant4 can use the same neutron data library than
MCNPX. Verification spectra of MCNP and Geant4 output
of outgoing neutrons produced in neutron collision.

N
uc

le
on

 S
ize

Proton beam line, range shifter and dose
deposit simulations at HIBMC (Japan). The
proton energy is 150 MeV. (T.Aso IEEE NSS
2007 N60-1)

DICOM geometry and
dose visualisation with
« gMocrem » tool:
http://geant4.kek.jp/gMocren/

Space Applications
 Applications of Geant4 in space cover planetary scale simulation for soil level
media activation studies, soil composition through X-ray re-emission, space ship
simulation for radioprotection and electronic single event upset predictions,
electronic chip scale simulation for accurate understanding of single event upset
generation. It includes also underground, ground level or satellite cosmic ray
experiments simulation.

Very Low Energy
Atomic and molecular
structures dominating

XMM-Newton X-ray telescope, launched in 1999

Radiation effects on its instruments were
modeled with Geant4 prior to its launch.

Geant4 prediction for single
upset rate is more accurate
than standard software.

Co
ur

te
sy

 o
f R

.R
ee

d
(V

an
de

rb
ilt

 U
.)

l

A Monte Carlo toolkit for passage of particles through matter

• Geant4 offers

– Electromagnetic processes

– Hadronic and nuclear processes

– Photon/lepton-hadron processes

– Optical photon processes

– Decay processes

– Shower parameterization

– Event biasing techniques

– And you can plug-in more

• Geant4 provides sets of alternative physics models
so that the user can freely choose appropriate
models according to the type of his/her application.

– For example, some models are more accurate
than others at a sacrifice of speed.

Physics models in Geant4

Geant4 Kernel - part 2 3

User classes
• main()

– Geant4 does not provide main().
Note : classes written in red are mandatory.

• Initialization classes
– Use G4RunManager::SetUserInitialization() to define.
– Invoked at the initialization

• G4VUserDetectorConstruction
• G4VUserPhysicsList
• G4VUserActionInitialization

• Action classes
– Instantiated in G4VUserActionInitialization.
– Invoked during an event loop

• G4VUserPrimaryGeneratorAction
• G4UserRunAction
• G4UserEventAction
• G4UserStackingAction
• G4UserTrackingAction
• G4UserSteppingAction

Geant4 Kernel - part 2 4

Select physics processes

• Geant4 does not have any default particles or processes.

– Even for the particle transportation, you have to define it explicitly.

• Derive your own concrete class from G4VUserPhysicsList abstract
base class.

– Define all necessary particles

– Define all necessary processes and assign them to proper particles

– Define cut-off ranges applied to the world (and each region)

• Primarily, the user’s task is choosing a “pre-packaged” physics list, that
combines physics processes and models that are relevant to a typical
application use-cases.
– If “pre-packaged” physics lists do not meet your needs, you may

add or alternate some processes/models.
– If you are brave enough, you may implement your physics list.

Geant4 Kernel - part 2 5

https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/index.html

Geant4 Kernel - part 2 6

https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/html/index.html

Geant4 Kernel - part 2 7

Most-recommended physics lists

• FTFP_BERT
– Recommended for most of the use-cases
– “Reference” to be used as the starting point

• QBBC
– Recommended for medical and space engineering use-cases

• Shielding
– Recommended for radiation shielding and deep-underground experiments

Geant4 Kernel - part 2 8

#include ”QBBC.hh”
int main(int argc,char** argv)
{
auto* runManager =
G4RunManagerFactory::CreateRunManager(G4RunManagerType::Default);

runManager->SetUserInitialization(new B1DetectorConstruction());

runManager->SetUserInitialization(new QBBC);

EM physics options

• EM Option 0 is by default used by all physics lists recommended in the previous slide.
• EM Option 1 (_EMV)

– Faster than Option 0 with relatively low accuracy
• EM Option 4 (_EMZ)

– Most accurate, with additional CPU cost
• EM GS (_GS)

– Same as Option 0 except Goutsmit-Sounderson multiple-scattering mode (more
accurate)

• EM SS (_SS)
– No multiple-scattering, only single-scattering is used.
– Only for low-energy applications

• EM Liv (_LIV)
– Livermore EM physics models are used where applicable

• EM DNA (_DNA)
– For DNA physics/chemistry

Geant4 Kernel - part 2 9

Applying EM physics options

• Use G4PhysListFactory and specify the EM option name appended to your choice of the
reference physics list.

Geant4 Kernel - part 2 10

#include ”G4PhysListFactory.hh”
int main(int argc,char** argv)
{
auto* runManager = new G4MTRunManager();

runManager->SetUserInitialization(new B1DetectorConstruction());

G4PhysListFactory factory;
auto* physList = factory.GetReferencePhysicsList(”FTFP_BERT_EMZ”);
runManager->SetUserInitialization(physList);

Adding further extensions

• Further extensions can be added to the physics list/
– Optical photon generation (e.g. Cherenkov)
– Optical photon transport processes
– Artificial track killer (e.g. neutron killer)
– Event biasing

Geant4 Kernel - part 2 11

#include ”G4PhysListFactory.hh”
#include ”G4NeutronTrackingCut.hh”
int main(int argc,char** argv)
{
auto* runManager = new G4MTRunManager();
runManager->SetUserInitialization(new B1DetectorConstruction());

G4PhysListFactory factory;
auto* physList = factory.GetReferencePhysicsList(”FTFP_BERT_EMZ”);
auto* neutronKiller = new G4NeutronTrackingCut();
neutronKiller->SetTimeLimit(100.*CLHEP::s);
physList->RegisterPhysics(neutronKiller);
runManager->SetUserInitialization(physList);

Primary vertex and Primary particle

User classes
• main()

– Geant4 does not provide main().
Note : classes written in red are mandatory.

• Initialization classes
– Use G4RunManager::SetUserInitialization() to define.
– Invoked at the initialization

• G4VUserDetectorConstruction
• G4VUserPhysicsList
• G4VUserActionInitialization

• Action classes
– Instantiated in G4VUserActionInitialization.
– Invoked during an event loop

• G4VUserPrimaryGeneratorAction
• G4UserRunAction
• G4UserEventAction
• G4UserStackingAction
• G4UserTrackingAction
• G4UserSteppingAction

Geant4 Kernel - part 2 13

Primary vertex and primary particle

• Primary particle means particle with which you start an event.
– E.g. particles made by the primary p-p collision, an alpha particle emitted from

radioactive material, a gamma-ray from treatment head, etc.
– Then Geant4 tracks these primary particles in your geometry with physics

interactions and generates secondaries, detector responses and/or scores.
• Primary vertex has position and time. Primary particle has a particle ID, momentum and

optionally polarization. One or more primary particles may be associated with a
primary vertex. One event may have one or more primary vertices.

• Generation of primary vertex/particle is one of the user-mandatory tasks.
G4VUserPrimaryGeneratorAction is the abstract base class to control the generation.
– Actual generation should be delegated to G4VPrimaryGenerator class. Several

concrete implementations, e.g. G4ParticleGun, G4GeneralParticleSource, are
provided.

Geant4 Kernel - part 2 14

G4PrimaryVertex objects
= {position, time}

G4PrimaryParticle objects
= {PDG, momentum,

polarization…}

G4VUserPrimaryGeneratorAction
• This class is one of mandatory user classes to control the generation of primaries.

– This class itself should NOT generate primaries but invoke
GeneratePrimaryVertex() method of primary generator(s) to make primaries.

• Constructor
– Instantiate primary generator(s)
– Set default values to it(them)

• GeneratePrimaries() method
– Invoked at the beginning of each event.
– Randomize particle-by-particle value(s)
– Set these values to primary generator(s)

• Never use hard-coded UI commands
– Invoke GeneratePrimaryVertex() method of primary generator(s)

• Your concrete class of G4VUserPrimaryGeneratorAction must be instantiated in the
Build() method of your G4VUserActionInitialization

Geant4 Kernel - part 2 15

G4VUserPrimaryGeneratorAction
MyPrimaryGeneratorAction::MyPrimaryGeneratorAction()
{

G4int n_particle = 1;
fparticleGun = new G4ParticleGun(n_particle);

// default particle kinematic
G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
G4ParticleDefinition* particle = particleTable->FindParticle("gamma");
fparticleGun->SetParticleDefinition(particle);
fparticleGun->SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));
fparticleGun->SetParticleEnergy(100.*MeV);
fparticleGun->SetParticlePosition(G4ThreeVector(0.,0.,-50*cm));

}
void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
{

fparticleGun->SetParticleMomentum(G4RandomDirection());
fparticleGun->GeneratePrimaryVertex(anEvent);

}

Geant4 Kernel - part 2 16

Co
ns

tru
ct

or
 :

In
vo

ke
d

on
ly

 o
nc

e
In

vo
ke

d
on

ce

pe
r e

ac
h

ev
en

t

Built-in primary particle generators

G4ParticleGun
• Concrete implementations of G4VPrimaryGenerator

– A good example for experiment-specific primary generator implementation
• It shoots one primary particle of a certain energy from a certain point at a certain

time to a certain direction.
– Various set methods are available
– Intercoms commands are also available for setting initial values

• One of most frequently asked questions is :
I want “particle shotgun”, “particle machinegun”, etc.

• Instead of implementing such a fancy weapon, in your implementation of
UserPrimaryGeneratorAction, you can
– Shoot random numbers in arbitrary distribution

– Use set methods of G4ParticleGun
– Use G4ParticleGun as many times as you want
– Use any other primary generators as many times as you want to make

overlapping events

Geant4 Kernel - part 2 18

What to do and where to do

• In the constructor of your UserPrimaryGeneratorAction
– Instantiate G4ParticleGun
– Set default values by set methods of G4ParticleGun

• Particle type, kinetic energy, position and direction
• In your macro file or from your interactive terminal session

– Set values for a run
• Particle type, kinetic energy, position and direction

• In the GeneratePrimaries() method of your UserPrimaryGeneratorAction
– Shoot random number(s) and prepare track-by-track or event-by-event

values
• Kinetic energy, position and direction

– Use set methods of G4ParticleGun to set such values
– Then invoke GeneratePrimaryVertex() method of G4ParticleGun
– If you need more than one primary tracks per event, loop over randomization

and GeneratePrimaryVertex().

• examples/basic/B5/src/B5PrimaryGeneratorAction.cc is a good example to start
with.

Geant4 Kernel - part 2 19

G4VUserPrimaryGeneratorAction
void T01PrimaryGeneratorAction::

GeneratePrimaries(G4Event* anEvent)
{ G4ParticleDefinition* particle;
G4int i = (int)(5.*G4UniformRand());
switch(i)
{ case 0: particle = positron; break; ... }
particleGun->SetParticleDefinition(particle);
G4double pp =
momentum+(G4UniformRand()-0.5)*sigmaMomentum;

G4double mass = particle->GetPDGMass();
G4double Ekin = sqrt(pp*pp+mass*mass)-mass;
particleGun->SetParticleEnergy(Ekin);
G4double angle = (G4UniformRand()-0.5)*sigmaAngle;
particleGun->SetParticleMomentumDirection

(G4ThreeVector(sin(angle),0.,cos(angle)));
particleGun->GeneratePrimaryVertex(anEvent);

}

• You can repeat this for generating more than one primary particles.

Geant4 Kernel - part 2 20

Interfaces to HEPEvt and HepMC

• Concrete implementations of G4VPrimaryGenerator

– A good example for experiment-specific primary generator implementation

• G4HEPEvtInterface

– Suitable to /HEPEVT/ common block, which many of (FORTRAN) HEP

physics generators are compliant to.

– ASCII file input

• G4HepMCInterface

– An interface to HepMC class, which a few new (C++) HEP physics

generators are compliant to.

– ASCII file input or direct linking to a generator through HepMC.

Geant4 Kernel - part 2 21

G4GeneralParticleSource

• A concrete implementation of G4VPrimaryGenerator
– Suitable especially to space applications

MyPrimaryGeneratorAction::

MyPrimaryGeneratorAction()

{ generator = new G4GeneralParticleSource; }

void MyPrimaryGeneratorAction::

GeneratePrimaries(G4Event* anEvent)

{ generator->GeneratePrimaryVertex(anEvent); }

• Detailed description
Section 2.7 of Application Developer’s Guide

Geant4 Kernel - part 2 22

http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch02s07.html

Example commands of General Particle Source

Geant4 Kernel - part 2 23

two beams in a generator
#
beam #1
default intensity is 1 now change to 5.
/gps/source/intensity 5.
#
/gps/particle proton
/gps/pos/type Beam
#
the incident surface is in the y-z plane
/gps/pos/rot1 0 1 0
/gps/pos/rot2 0 0 1
#
the beam spot is centered at the origin and is of
1d gaussian shape with a 1 mm central plateau
/gps/pos/shape Circle
/gps/pos/centre 0. 0. 0. mm
/gps/pos/radius 1. mm
/gps/pos/sigma_r .2 mm
#
the beam is travelling along the X_axis with
5 degrees dispersion
/gps/ang/rot1 0 0 1
/gps/ang/rot2 0 1 0
/gps/ang/type beam1d
/gps/ang/sigma_r 5. deg
#
the beam energy is in gaussian profile
centered at 400 MeV
/gps/ene/type Gauss
/gps/ene/mono 400 MeV
/gps/ene/sigma 50. MeV

(macro continuation…)

beam #2
2x the instensity of beam #1
/gps/source/add 10.
#
this is a electron beam
/gps/particle e-
/gps/pos/type Beam
it beam spot is of 2d gaussian profile
with a 1x2 mm2 central plateau
it is in the x-y plane centred at the orgin
/gps/pos/centre 0. 0. 0. mm
/gps/pos/halfx 0.5 mm
/gps/pos/halfy 1. mm
/gps/pos/sigma_x 0.1 mm
the spread in y direction is stronger
/gps/pos/sigma_y 0.2 mm
#
#the beam is travelling along -Z_axis
/gps/ang/type beam2d
/gps/ang/sigma_x 2. deg
/gps/ang/sigma_y 1. deg
gaussian energy profile
/gps/ene/type Gauss
/gps/ene/mono 600 MeV
/gps/ene/sigma 50. MeV

Retrieving information from Geant4

Extract useful information

• Given geometry, physics and primary track generation, Geant4 does proper
physics simulation “silently”.
– You have to do something to extract information useful to you.

• There are three ways:
– Built-in scoring commands

• Most commonly-used physics quantities are available.
– Use scorers in the tracking volume

• Create scores for each event
• Create own Run class to accumulate scores

– Assign G4VSensitiveDetector to a volume to generate “hit”.
• Use user hooks (G4UserEventAction, G4UserRunAction) to get event /

run summary
• You may also use user hooks (G4UserTrackingAction, G4UserSteppingAction,

etc.)
– You have full access to almost all information
– Straight-forward, but do-it-yourself

Geant4 Kernel - part 2 25

Command-based scoring

Command-based scoring

• Command-based scoring functionality offers the built-in scoring mesh and various
scorers for commonly-used physics quantities such as dose, flux, etc.
– Due to small performance overhead, it does not come by default.

• To use this functionality, access to the G4ScoringManager pointer after the
instantiation of G4(MT)RunManager in your main().

#include “G4ScoringManager.hh”
int main()
{
auto* runManager = new G4MTRunManager;
auto* scoringManager = G4ScoringManager::GetScoringManager();
…

• All of the UI commands of this functionality are in /score/ directory.
• /examples/extended/runAndEvent/RE03

Geant4 Kernel - part 2 27

Command-based scorers

Geant4 Kernel - part 2 28

Define a scoring mesh
• To define a scoring mesh, the user has to specify the followings.

1. Shape and name of the 3D scoring mesh.
• Currently, box and cylinder are available.

2. Size of the scoring mesh.
• Mesh size must be specified as "half width" similar to the arguments of

G4Box / G4Tubs.
3. Number of bins for each axes.

• Note that too many bins causes immense memory consumption.
4. Specify position and rotation of the mesh.

• If not specified, the mesh is positioned at the center of the world volume
without rotation.

define scoring mesh
/score/create/boxMesh boxMesh_1
/score/mesh/boxSize 100. 100. 100. cm
/score/mesh/nBin 30 30 30
/score/mesh/translate/xyz 0. 0. 100. cm

• The mesh geometry can be completely independent to the real material geometry.

Geant4 Kernel - part 2 29

Scoring quantities
• A mesh may have arbitrary number of scorers. Each scorer scores one physics

quantity.
– energyDeposit * Energy deposit scorer.
– cellCharge * Cell charge scorer.
– cellFlux * Cell flux scorer.
– passageCellFlux * Passage cell flux scorer
– doseDeposit * Dose deposit scorer.
– nOfStep * Number of step scorer.
– nOfSecondary * Number of secondary scorer.
– trackLength * Track length scorer.
– passageCellCurrent * Passage cell current scorer.
– passageTrackLength * Passage track length scorer.
– flatSurfaceCurrent * Flat surface current Scorer.
– flatSurfaceFlux * Flat surface flux scorer.
– nOfCollision * Number of collision scorer.
– population * Population scorer.
– nOfTrack * Number of track scorer.
– nOfTerminatedTrack * Number of terminated tracks scorer.

Geant4 Kernel - part 2 30
/score/quantity/xxxxx <scorer_name> <unit>

Filter
• Each scorer may take a filter.

– charged * Charged particle filter.
– neutral * Neutral particle filter.
– kineticEnergy * Kinetic energy filter.

/score/filter/kineticEnergy <fname> <eLow> <eHigh> <unit>
– particle * Particle filter.

/score/filter/particle <fname> <p1> … <pn>
– particleWithKineticEnergy * Particle with kinetic energy filter.

/score/filter/ParticleWithKineticEnergy
<fname> <eLow> <eHigh> <unit> <p1> … <pn>

/score/quantity/energyDeposit eDep MeV
/score/quantity/nOfStep nOfStepGamma
/score/filter/particle gammaFilter gamma
/score/quantity/nOfStep nOfStepEMinus
/score/filter/particle eMinusFilter e-
/score/quantity/nOfStep nOfStepEPlus
/score/filter/particle ePlusFilter e+
/score/close

Geant4 Kernel - part 2 31

Close the mesh when defining scorers is done.

Same primitive scorers
with different filters
may be defined.

Drawing a score

• Projection

/score/drawProjection <mesh_name> <scorer_name> <color_map>

• Slice

/score/drawColumn <mesh_name> <scorer_name> <plane> <column>

<color_map>

• Color map

– By default, linear and log-scale color maps are available.

– Minimum and maximum values can be defined by

/score/colorMap/setMinMax command. Otherwise, min and max values are

taken from the current score.

Geant4 Kernel - part 2 32

Write scores to a file

• Single score
/score/dumpQuantityToFile <mesh_name> <scorer_name> <file_name>

• All scores
/score/dumpAllQuantitiesToFile <mesh_name> <file_name>

• By default, values are written in CSV.
• By creating a concrete class derived from G4VScoreWriter base class, the user

can define his own file format.
– Example in /examples/extended/runAndEvent/RE03
– User’s score writer class should be registered to G4ScoringManager.

Geant4 Kernel - part 2 33

Define scorers to the tracking
volume

Class diagram

Geant4 Kernel - part 2 35

G4LogicalVolume

G4VSensitiveDetector

G4MultiFunctionalDetector
userSensitiveDetector

G4Event

G4HCofThisEvent

G4VHitsCollection
G4THitsCollection

G4THitsMap

userHitsCollection
or userHitsMap

G4VHit

userHit

G4VPrimitiveSensitivity

Concrete class provided by G4
Abstract base class provided by G4
Template class provided by G4

User’s class

G4PSDoseScorer hits map

has

kind of

G4PSDoseScorer hits mapG4PSDoseScorer hits mapG4PSDoseScorer hits mapG4PSDoseScorer hits map

0..1

n

1

n

n

n

n

1

example…

MyDetectorConstruction::ConstructSDandField()
{

G4MultiFunctionalDetector* myScorer = new G4MultiFunctionalDetector(“myCellScorer”);
G4VPrimitiveSensitivity* totalSurfFlux = new G4PSFlatSurfaceFlux(“TotalSurfFlux”);
myScorer->Register(totalSurfFlux);
G4VPrimitiveSensitivity* protonSufFlux = new G4PSFlatSurfaceFlux(“ProtonSurfFlux”);
G4VSDFilter* protonFilter = new G4SDParticleFilter(“protonFilter”);
protonFilter->Add(“proton”);
protonSurfFlux->SetFilter(protonFilter);
myScorer->Register(protonSurfFlux);

G4SDManager::GetSDMpointer()->AddNewDetector(myScorer);
SetSensitiveDetector(“myLogVol”,myScorer);

}

Geant4 Kernel - part 2 36

Accumulate scores for a run

Class diagram

Geant4 Kernel - part 2 38

G4LogicalVolume

G4VSensitiveDetector

G4MultiFunctionalDetector
userSensitiveDetector

G4Event

G4HCofThisEvent

G4VHitsCollection
G4THitsCollection

G4THitsMap

userHitsCollection
or userHitsMap

G4VHit

userHit

G4VPrimitiveSensitivity

Concrete class provided by G4
Abstract base class provided by G4
Template class provided by G4

User’s class

G4PSDoseScorer hits map

has

kind of

G4PSDoseScorer hits mapG4PSDoseScorer hits mapG4PSDoseScorer hits mapG4PSDoseScorer hits map

0..1

n

1

n

n

n

n

1

Score == G4THitsMap<G4double>

• At the end of successful event, G4Event has a vector of G4THitsMap as the
scores.

• Create your own Run class derived from G4Run, and implement two methods.
• RecordEvent(const G4Event*) method is invoked in the worker thread at the end

of each event. You can get all output of the event so that you can accumulate
the sum of an event to a variable for entire run.

• Merge(const G4Run*) method of the run object in the master thread is invoked
with the pointer to the thread-local run object when an event loop of that thread
is over. You should merge thread-local scores to global scores.

• Your run class object should be instantiated in GenerateRun() method of your
UserRunAction.
– This UserRunAction must be instantiated both for master and worker threads.

Geant4 Kernel - part 2 39

Customized run class

#include “G4Run.hh”
#include “G4Event.hh”
#include “G4THitsMap.hh”
Class MyRun : public G4Run
{
public:
MyRun();
virtual ~MyRun();
virtual void RecordEvent(const G4Event*);
virtual void Merge(const G4Run*);

private:
G4int nEvent;
G4int totalSurfFluxID, protonSurfFluxID, totalDoseID;
G4THitsMap<G4double> totalSurfFlux;
G4THitsMap<G4double> protonSurfFlux;
G4THitsMap<G4double> totalDose;

public:
… access methods …

};

Geant4 Kernel - part 2 40

Implement how you accumulate
event data

Implement how you merge
thread-local scores

Customized run class

MyRun::MyRun()

{

G4SDManager* SDM = G4SDManager::GetSDMpointer();

totalSurfFluxID = SDM->GetCollectionID("myCellScorer/TotalSurfFlux");

protonSurfFluxID = SDM->GetCollectionID("myCellScorer/ProtonSurfFlux");

totalDoseID = SDM->GetCollectionID("myCellScorer/TotalDose");

}

Geant4 Kernel - part 2 41

name of G4MultiFunctionalDetector
object

name of G4VPrimitiveSensitivity object

Customized run class

void MyRun::RecordEvent(const G4Event* evt)
{
G4HCofThisEvent* HCE = evt->GetHCofThisEvent();
G4THitsMap<G4double>* eventTotalSurfFlux

= (G4THitsMap<G4double>*)(HCE->GetHC(totalSurfFluxID));
G4THitsMap<G4double>* eventProtonSurfFlux

= (G4THitsMap<G4double>*)(HCE->GetHC(protonSurfFluxID));
G4THitsMap<G4double>* eventTotalDose

= (G4THitsMap<G4double>*)(HCE->GetHC(totalDoseID));
totalSurfFlux += *eventTotalSurfFlux;
protonSurfFlux += *eventProtonSurfFlux;
totalDose += *eventTotalDose;

G4Run::RecordEvent(evt);
}

Geant4 Kernel - part 2 42

No need of loops.
+= operator is provided !

Don’t forget to invoke base class
method!

Customized run class

void MyRun::Merge(const G4Run* run)
{
const MyRun* localRun = static_cast<const MyRun*>(run);

totalSurfFlux += *(localRun . totalSurfFlux);
protonSurfFlux += *(localRun . protonSurfFlux);
totalDose += *(localRun . totalDose);

G4Run::Merge(run);
}

Geant4 Kernel - part 2 43

No need of loops.
+= operator is provided !

Don’t forget to invoke base class
method!

Cast !

RunAction with customized run

G4Run* MyRunAction::GenerateRun()
{ return (new MyRun()); }
void MyRunAction::EndOfRunAction(const G4Run* aRun)
{

const MyRun* theRun = static_cast<const MyRun*>(aRun);

if(IsMaster())
{

// … analyze / record / print-out your run summary
// MyRun object has everything you need …

}
}
• As you have seen, to accumulate event data, you do NOT need

– Event / tracking / stepping action classes
• All you need are your Run and RunAction classes.

Geant4 Kernel - part 2 44

IsMaster() returns true for the RunAction
object assigned to the master thread. (also
returns true for sequential mode)

Sensitive detector vs. primitive scorer
Sensitive detector
• You have to implement your own

detector and hit classes.
• One hit class can contain many

quantities. A hit can be made for
each individual step, or accumulate
quantities.

• Basically one hits collection is made
per one detector.

• Hits collection is relatively compact.

Primitive scorer
• Many scorers are provided by

Geant4. You can add your own.
• Each scorer accumulates one

quantity for an event.

• G4MultiFunctionalDetector creates
many collections (maps), i.e. one
collection per one scorer.

• Keys of maps are redundant for
scorers of same volume.

Geant4 Kernel - part 2 45

I would suggest to :
4 Use primitive scorers

4 if you are not interested in recording each individual step but accumulating
some physics quantities for an event or a run, and

4 if you do not have to have too many scorers.
4 Otherwise, consider implementing your own sensitive detector.

Basic structure of
detector sensitivity

Sensitive detector
• A G4VSensitiveDetector object can be assigned to G4LogicalVolume.

• In case a step takes place in a logical volume that has a G4VSensitiveDetector
object, this G4VSensitiveDetector is invoked with the current G4Step object.
– You can implement your own sensitive detector classes, or use scorer

classes provided by Geant4.

Geant4 Kernel - part 2 47

Stepping
Manager

Physics
Process

Particle
Change

Step Track Logical
Volume

Sensitive
Detector

GetPhysicalInteractionLength

SelectShortest

DoIt Fill

Update

Update

IsSensitive

GenerateHits

Defining a sensitive detector
• Basic strategy

In your ConstructSDandField() method
G4VSensetiveDetector* pSensetivePart

= new MyDetector(“/mydet”);

G4SDManager::GetSDMpointer()
->AddNewDetector(pSensetivePart);

SetSensitiveDetector(“myLogicalVolume”,pSensetivePart);

• Each detector object must have a unique name.
– Some logical volumes can share one detector object.
– More than one detector objects can be made from one detector class with

different detector name.
– One logical volume cannot have more than one detector objects. But, one

detector object can generate more than one kinds of hits.

• e.g. a double-sided silicon micro-strip detector can generate hits for each
side separately.

Geant4 Kernel - part 2 48

Class diagram

Geant4 Kernel - part 2 49

G4LogicalVolume

G4VSensitiveDetector

G4MultiFunctionalDetector
userSensitiveDetector

G4Event

G4HCofThisEvent

G4VHitsCollection
G4THitsCollection

G4THitsMap

userHitsCollection
or userHitsMap

G4VHit

userHit

G4VPrimitiveSensitivity

Concrete class provided by G4
Abstract base class provided by G4
Template class provided by G4

User’s class

G4PSDoseScorer hits map

has

kind of

G4PSDoseScorer hits mapG4PSDoseScorer hits mapG4PSDoseScorer hits mapG4PSDoseScorer hits map

0..1

n

1

n

n

n

n

1

Hits collection, hits map

• G4VHitsCollection is the common abstract base class of both G4THitsCollection
and G4THitsMap.

• G4THitsCollection is a template vector class to store pointers of objects of one
concrete hit class type.
– A hit class (deliverable of G4VHit abstract base class) should have its own

identifier (e.g. cell ID).
– In other words, G4THitsCollection requires you to implement your hit class.

• G4THitsMap is a template map class so that it stores keys (typically cell ID, i.e.
copy number of the volume) with pointers of objects of one type.
– Objects may not be those of hit class.

• All of currently provided scorer classes use G4THitsMap with simple
double.

– Since G4THitsMap is a template, it can be used by your sensitive detector
class to store hits.

Geant4 Kernel - part 2 50

Sensitive detector and hit

Sensitive detector and Hit

• Each Logical Volume can have a pointer to a sensitive detector.

– Then this volume becomes sensitive.

• Hit is a snapshot of the physical interaction of a track or an accumulation of

interactions of tracks in the sensitive region of your detector.

• A sensitive detector creates hit(s) using the information given in G4Step

object. The user has to provide his/her own implementation of the detector

response.

• Hit objects, which are still the user’s class objects, are collected in a G4Event

object at the end of an event.

Geant4 Kernel - part 2 52

Hit class
• Hit is a user-defined class derived from G4VHit.

• You can store various types information by implementing your own concrete Hit class.
For example:
– Position and time of the step
– Momentum and energy of the track
– Energy deposition of the step

– Geometrical information
– or any combination of above

• Hit objects of a concrete hit class must be stored in a dedicated collection which is
instantiated from G4THitsCollection template class.

• The collection will be associated to a G4Event object via G4HCofThisEvent.
• Hits collections are accessible

– through G4Event at the end of event.
• to be used for analyzing an event

– through G4SDManager during processing an event.
• to be used for event filtering. Geant4 Kernel - part 2 53

Implementation of Hit class
#include "G4VHit.hh"
#include "G4Allocator.hh"
class MyHit : public G4VHit
{
public:

MyHit(some_arguments);
inline void*operator new(size_t);
inline void operator delete(void *aHit);
virtual ~MyHit();
virtual void Draw();
virtual void Print();

private:
// some data members

public:
// some set/get methods

};

#include “G4THitsCollection.hh”
typedef G4THitsCollection<MyHit> MyHitsCollection;

Geant4 Kernel - part 2 54

G4Allocator

• Instantiation / deletion of an object is a heavy operation.
– It may cause a performance concern, in particular for objects that are

frequently instantiated / deleted.
• E.g. hit, trajectory and trajectory point classes

• G4Allocator is provided to ease such a problem.
– It allocates a chunk of memory space for objects of a certain class.

• Please note that G4Allocator works only for a concrete class.
– It works only for “final” class.
– Do NOT use G4Allocator for abstract base class.

• G4Allocator must be thread-local. Also, objects instantiated by G4Allocator must
be deleted within the same thread.
– Such objects may be referred by other threads.

Geant4 Kernel - part 2 55

Use of G4Allocator

MyHit.hh
#include "G4VHit.hh"
#include "G4Allocator.hh"
class MyHit : public G4VHit
{

public:
MyHit(some_arguments);
inline void*operator new(size_t);
inline void operator delete(void *aHit);

. . .
};
extern G4ThreadLocal G4Allocator<MyHit>* MyHitAllocator;
inline void* MyHit::operator new(size_t)
{

if (!MyHitAllocator)
MyHitAllocator = new G4Allocator<MyHit>;

return (void*)MyHitAllocator->MallocSingle();
}
inline void MyHit::operator delete(void* aHit)
{ MyHitAllocator->FreeSingle((MyHit*)aHit); }

MyHit.cc
#include ”MyHit.hh"
G4ThreadLocal G4Allocator<MyHit>* MyHitAllocator = 0;

Geant4 Kernel - part 2 56

Sensitive Detector class
• Sensitive detector is a user-defined class derived from G4VSensitiveDetector.

#include "G4VSensitiveDetector.hh"
#include "MyHit.hh"
class G4Step;
class G4HCofThisEvent;
class MyDetector : public G4VSensitiveDetector
{
public:

MyDetector(G4String name);
virtual ~MyDetector();
virtual void Initialize(G4HCofThisEvent*HCE);
virtual G4bool ProcessHits(G4Step*aStep,

G4TouchableHistory*ROhist);
virtual void EndOfEvent(G4HCofThisEvent*HCE);

private:
MyHitsCollection * hitsCollection;
G4int collectionID;

};
Geant4 Kernel - part 2 57

Sensitive detector

• A tracker detector typically generates a hit for every single step of every single
(charged) track.
– A tracker hit typically contains

• Position and time
• Energy deposition of the step
• Track ID

• A calorimeter detector typically generates a hit for every cell, and accumulates
energy deposition in each cell for all steps of all tracks.
– A calorimeter hit typically contains

• Sum of deposited energy
• Cell ID

• You can instantiate more than one objects for one sensitive detector class. Each
object should have its unique detector name.
– For example, each of two sets of detectors can have their dedicated

sensitive detector objects. But, the functionalities of them are exactly the
same to each other so that they can share the same class. See
examples/basic/B5 as an example.

Geant4 Kernel - part 2 58

Step

• Step has two points and also “delta” information of a particle (energy loss on the

step, time-of-flight spent by the step, etc.).

• Each point knows the volume (and material). In case a step is limited by a

volume boundary, the end point physically stands on the boundary, and it

logically belongs to the next volume.

• Note that you must get the volume information from the “PreStepPoint”.

Geant4 Kernel - part 2 59

Pre-step point
Post-step point

Step

Boundary

Implementation of Sensitive Detector - 1
MyDetector::MyDetector(G4String detector_name)

:G4VSensitiveDetector(detector_name),
collectionID(-1)

{
collectionName.insert(“collection_name");

}

• In the constructor, define the name of the hits collection which is handled by this
sensitive detector

• In case your sensitive detector generates more than one kinds of hits (e.g.
anode and cathode hits separately), define all collection names.

Geant4 Kernel - part 2 60

Implementation of Sensitive Detector - 2
void MyDetector::Initialize(G4HCofThisEvent*HCE)
{
if(collectionID<0) collectionID = GetCollectionID(0);
hitsCollection = new MyHitsCollection

(SensitiveDetectorName,collectionName[0]);
HCE->AddHitsCollection(collectionID,hitsCollection);

}

• Initialize() method is invoked at the beginning of each event.
• Get the unique ID number for this collection.

– GetCollectionID() is a heavy operation. It should not be used for every events.
– GetCollectionID() is available after this sensitive detector object is constructed

and registered to G4SDManager. Thus, this method cannot be invoked in the
constructor of this detector class.

• Instantiate hits collection(s) and attach it/them to G4HCofThisEvent object given
in the argument.

• In case of calorimeter-type detector, you may also want to instantiate hits for all
calorimeter cells with zero energy depositions, and insert them to the collection.

Geant4 Kernel - part 2 61

Implementation of Sensitive Detector - 3
G4bool MyDetector::ProcessHits
(G4Step*aStep,G4TouchableHistory*ROhist)

{
MyHit* aHit = new MyHit();
...
// some set methods
...
hitsCollection->insert(aHit);
return true;

}

• This ProcessHits() method is invoked for every steps in the volume(s) where this
sensitive detector is assigned.

• In this method, generate a hit corresponding to the current step (for tracking
detector), or accumulate the energy deposition of the current step to the existing
hit object where the current step belongs to (for calorimeter detector).

• Don’t forget to collect geometry information (e.g. copy number) from
“PreStepPoint”.

• Currently, returning boolean value is not used.
Geant4 Kernel - part 2 62

Implementation of Sensitive Detector - 4
void MyDetector::EndOfEvent(G4HCofThisEvent*HCE)

{;}

• This method is invoked at the end of processing an event.
– It is invoked even if the event is aborted.

– It is invoked before UserEndOfEventAction.

Geant4 Kernel - part 2 63

