Geant4 Kernel
- part 2

Makoto Asai
SLAC National Accelerator Laboratory
June 17, 2021

b l ‘ h NATI O NAL S. DEPARTMENT OF

ACCELERATOR

QHHV LABORATORY Office of Science

Contents

Selecting physics models
Primary particle generator

Scoring and sensitive detector

o1 h NATIONAL

Norﬂ\eusfern
o) SLAC H%e @TRIUMF R

ColLIGE OF COMPUTER SCIENCE

Projectile Kinetic
Energy (GeV)

o Geant4 Physics & Applications| |
@ 104 ; ' :
Losa A Monte Carlo toolkit for passage of particles through matter

HEP Applications

High Energy Physics has been the first domain to use Geantd in production, with
the BaBar experiment. LHC experiments have been lusing Geantd in detector
design and are using it in physics analyss. Geantd is blso the simulation engine

of the next generation of electron machin

' - .
Geant4 Hadrgnic Physics
P Hadronic mtwamdm involve three mair regimes : high energy, with string
models (Quark mum String [OA;S] Fritiof [F‘(r) intermediate energy, with intra-
nuclear cascade mnps\r (Bertini [BERT], l‘m y [BIC]), and low rgy, with
precompound, Fermi; break-up, fi
radioactive decays. Ffom 20 Me

/w by means
1
INFN High Energy :
Quark/gluon
_dominating |
behavior 1
'
|
]
]
'
)
'

apture at rest models and |
neutrons are handled FL
ion [HP] package ' The ATLAS detector

ncident in CofLAr sandwich smplfied ATLAS
hadronic endeap clormeter

L

AN

e e
Examples of models combinations

AN
Intermediate Energy
Nucleon
dominating.
behavior » Responding to the simulation needs of the LHC era, with the Higgs boson
. hunting, had been the initial motivation of the (reatm}v of the proto-Geantd
project, RD44, in 1994, '
'

!
'
'
'
|
\

Low Energy Space Applicatibns

Nucleus plications of Geant4 in space cover planetary
0 - dominating media activation studies, soil composition through
- \ nulation for radioprotection and electronic sing
;i ceiavicl N\ electronic ¢ imulation for accurate understanding of single e
N2P3 A neration. It includes also underground, ground level or sats

eriments simulation.

u e neutron dta lvary than
i e e e

4PN :

GRsat
! 0
implementation suited for applications disregarding effects BeeRee Very Low Energ
S | and a “low energy” (Livermore, Penelupe) for more, { y
PARIS urate modeli simulation down tt . :Atomm and mov\ecu.lar
P 0») very | , Geantd-DNA, includ \structures dominating

limit of ~10 eV. The same approach is de

(a) The simulation energy r s alorimeters compared
standard devition mess urement & nard E et al, NIM A, 262, 22
in Monte Carlo is pu accuracy capability in
Geant4 is used for radio-, protor & carbo-therapy medical
is used also in optimization ®f bachytherapy devic
uclear imaging. Lar s c tin US, Europe
GPU prototy,

DNA Scale Level Simulation

Project initiated by the ESA, in view of manned mission to Mars: it is a bottom-
up approach of dosimetry. Physics processes are extended down to a few eV,
based on particle ! molecule The approach is applied also to
licon, for accurat v

v
try model simulated : 46
2k chromatine pi 2
6 billions base MV proton irradiation
a ~60% of total damages on DNA

EcOLe|
POLYTECHNIQUE
oo

S 6

Lawrence Livermore
National Laboratory

nce & Technology. ° ENERGY

ies Cournt Office of Science

K|§T| YRGS

*@:NBG £ Fermilab

KOBE

BORDEAUX 1

RITSUNEIKAN

Physics models in Geant4

e Geant4 offers

— Electromagnetic processes
— Hadronic and nuclear processes
— Photon/lepton-hadron processes
— Optical photon processes

— Decay processes

— Shower parameterization

— Event biasing techniques

— And you can plug-in more

Geant4 provides sets of alternative physics models

so that the user can freely choose appropriate
models according to the type of his/her application.

— For example, some models are more accurate
than others at a sacrifice of speed.

[mml\lgli.Iyl\m\nnm‘njl\;

Geant4 Kernel - part 2

User classes

* main()
— Geant4 does not provide main().
Note : classes written in red are mandatory.
 Initialization classes
— Use G4RunManager::SetUserlnitialization() to define.
— Invoked at the initialization
» G4VUserDetectorConstruction
* G4VUserPhysicsList —
« G4VUserActionlnitialization
« Action classes
— Instantiated in G4VUserActionlnitialization.
— Invoked during an event loop
» G4VUserPrimaryGeneratorAction
G4UserRunAction
G4UserEventAction
G4UserStackingAction
G4UserTrackingAction

E « G4UserSteppingAction I

n
>
)

Select physics processes

« Geant4 does not have any default particles or processes.
— Even for the particle transportation, you have to define it explicitly.

» Derive your own concrete class from G4V UserPhysicsList abstract

base class.
— Define all necessary particles
— Define all necessary processes and assign them to proper particles

— Define cut-off ranges applied to the world (and each region)

* Primarily, the user’s task is choosing a “pre-packaged” physics list, that
combines physics processes and models that are relevant to a typical
application use-cases.

— If “pre-packaged” physics lists do not meet your needs, you may
add or alternate some processes/models.

— If you are brave enough, you may implement your physics list.

Geant4 Kernel - part 2

https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsReferenceManual/html/index.html

#A Geant4 Homepage

Physics Reference Manual

10.7 (doc Rev5.0)

CONTENTS
General Information

Particle Decay

Electromagnetic Interactions

Hadronic Physics in Geant4
Gamma- and Lepto-Nuclear Interactions

Solid State Physics

LN

Docs » Physics Reference Manual

Physics Reference Manual
Scope of this Manual

The Physics Reference Manual provides detailed explanations of the physics implemented in the
Geant4 toolkit.

The manual'’s purpose is threefold:

e to present the theoretical formulation, model, or parameterization of the physics interactions
included in Geant4,

e to describe the probability of the occurrence of an interaction and the sampling mechanisms
required to simulate it, and

e to serve as a reference for toolkit users and developers who wish to consult the underlying
physics of an interaction.

This manual does not discuss code implementation or how to use the implemented physics
interactions in a simulation. These topics are discussed in the User’s Guide for Application
Developers. Details of the object-oriented design and functionality of the Geant4 toolkit are given
in the User’s Guide for Toolkit Developers. The Installation Guide for Setting up [Geant4/ in Your
Computing Environment describes how to get the Geant4 code, install it, and run it.

Contents

e General Information
o Definition of Terms Used in this Guide
o Monte Carlo Methods
= Bibliography
o Particle Transport
= Particle transport
= True Step Length

https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/html/index.html

o1 A
Pk M\
A Geant4 Homepage
Docs » Guide for Physics Lists
PhysicsListGuide

Guide for Physics Lists

Scope of this Manual

This guide is a description of the physics lists class which is one of the mandatory user classes for a
Geant4 application. For the most part the “reference” physic lists included in the source distribution
are described here as well the modularity and electronic options. Some use cases and areas of

application are also described.

10.7 (doc Rev5.0)
Y Contents:
e Physics List Guide

CONTEMTS: o Bibliography
Physics List Guide e Reference Physics Lists
Reference Physics Lists o FTFP_BERT
Electromagnetic physics constructors oS

o QGSP_BERT
Hadronic Physics o QGSP _BIC

o Shielding

e Electromagnetic physics constructors
o EM physics constructors
o EM ODtO
o EM Optl
o EM Opt2
o EM Opt3
o EM Opt4
o EM Liv
o EM Pen
o EMGS
o EMLE

Most-recommended physics lists

N

FTFP_BERT
— Recommended for most of the use-cases
— “Reference” to be used as the starting point

* QBBC
— Recommended for medical and space engineering use-cases
e Shielding

— Recommended for radiation shielding and deep-underground experiments

#include ”QBBC.hh”
int main(int argc,char** argv)
{
auto* runManager =
G4RunManagerFactory: :CreateRunManager (G4RunManagerType: :Default);
runManager->SetUserInitialization(new BlDetectorConstruction());

runManager->SetUserInitialization(new QBBC);

Geant4 Kernel - part 2

EM physics options

el A

LS | Y g \ W
« EM Option 0 is by default used by all physics lists recommended in the previous slide.

e EM Option 1 (_EMV)

— Faster than Option 0 with relatively low accuracy
« EM Option 4 (_EMZ)

— Most accurate, with additional CPU cost

 EMGS (_GS)
— Same as Option 0 except Goutsmit-Sounderson multiple-scattering mode (more
accurate)
e EMSS (_SS)

— No multiple-scattering, only single-scattering is used.

— Only for low-energy applications
 EM Liv (_LIV)

— Livermore EM physics models are used where applicable
« EMDNA (_DNA)

— For DNA physics/chemistry

Geant4 Kernel - part 2

Applying EM physics options

el A

L] 7 ga \ * 4

* Use G4PhysListFactory and specify the EM option name appended to your choice of the
reference physics list.

#include ”G4PhysListFactory.hh”
int main(int argc,char** argv)

{

auto* runManager = new G4MTRunManager();
runManager->SetUserInitialization(new BlDetectorConstruction());
G4PhysListFactory factory;

auto* physlList = factory.GetReferencePhysicsList(”FTFP_BERT EMZ”);
runManager->SetUserInitialization(physList);

Geant4 Kernel - part 2

Adding further extensions

* Further extensions can be added to the physics list/
— Optical photon generation (e.g. Cherenkov)
— Optical photon transport processes
— Artificial track killer (e.g. neutron killer)
— Event biasing

#include ”G4PhysListFactory.hh”

#include “G4NeutronTrackingCut.hh”

int main(int argc,char** argv)

{
auto* runManager = new G4MTRunManager();
runManager->SetUserInitialization(new BlDetectorConstruction());

G4PhysListFactory factory;

auto* physlList = factory.GetReferencePhysicsList(”FTFP_BERT EMZ”);
auto* neutronKiller = new G4NeutronTrackingCut();
neutronkKiller->SetTimelLimit(100.*CLHEP::s);
physList->RegisterPhysics(neutronkKiller);
runManager->SetUserInitialization(physList);

Geant4 Kernel - part 2

A SIMULATION TOOLKIT

Primary vertex and Primary particle

b I ‘ h NATI O NAL X U.S. DEPARTMENT OF

ACCELERATOR

ghﬂ“ LABORATORY Office of Science

User classes

* main()
— Geant4 does not provide main().
Note : classes written in red are mandatory.
« Initialization classes
— Use G4RunManager::SetUserlnitialization() to define.
— Invoked at the initialization
» G4VUserDetectorConstruction
» G4VUserPhysicsList
« G4VUserActionlnitialization
« Action classes
— Instantiated in G4VUserActionlnitialization.
— Invoked during an event loop
» G4VUserPrimaryGeneratorAction <
G4UserRunAction
G4UserEventAction
G4UserStackingAction
G4UserTrackingAction

E « G4UserSteppingAction I

n
>
)

Primary vertex and primary particle

n

e Primary particle means particle with which you start an event.

— E.g. particles made by the primary p-p collision, an alpha particle emitted from
radioactive material, a gamma-ray from treatment head, etc.

— Then Geant4 tracks these primary particles in your geometry with physics
interactions and generates secondaries, detector responses and/or scores.

* Primary vertex has position and time. Primary particle has a particle ID, momentum and
optionally polarization. One or more primary particles may be associated with a
primary vertex. One event may have one or more primary vertices.

G4PrimaryParticle objects

G4PrimaryVertex objects
= {PDG, momentum,
polarization...}

= {position, time}

* Generation of primary vertex/particle is one of the user-mandatory tasks.
G4VUserPrimaryGeneratorAction is the abstract base class to control the generation.

— Actual generation should be delegated to G4VPrimaryGenerator class. Several
concrete implementations, e.g. G4ParticleGun, G4GeneralParticleSource, are
provided.

Geant4 Kernel - part 2

G4VUserPrimaryGeneratorAction

N

This class is one of mandatory user classes to control the generation of primaries.

— This class itself should NOT generate primaries but invoke
GeneratePrimaryVertex() method of primary generator(s) to make primaries.

* Constructor
— Instantiate primary generator(s)
— Set default values to it(them)
* GeneratePrimaries() method
— Invoked at the beginning of each event.
— Randomize particle-by-particle value(s)
— Set these values to primary generator(s)
* Never use hard-coded Ul commands
— Invoke GeneratePrimaryVertex() method of primary generator(s)

* Your concrete class of G4VUserPrimaryGeneratorAction must be instantiated in the
Build() method of your G4VUserActionlnitialization

Geant4 Kernel - part 2

G4VUserPrimaryGeneratorAction

ol AR
— MyPrimaryGeneratorAction::MyPrimaryGeneratorAction() =
{
G4int n_particle = 1;
fparticleGun = new G4ParticleGun(n_particle);
>
. S. // default particle kinematic
§ g — G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
S 5 G4ParticleDefinition™* particle = particleTable->FindParticle("gamma");
427'; % fparticleGun->SetParticleDefinition(particle);
S = fparticleGun->SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));
= fparticleGun->SetParticleEnergy(100.*MeV);
fparticleGun->SetParticlePosition(G4ThreeVector(0.,0.,-50*cm));
)
— — void MyPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
=
o Y {
8 v _ fparticleGun->SetParticleMomentum(G4RandomDirection());
D § fparticleGun->GeneratePrimaryVertex(anEvent);
so L
S a

Geant4 Kernel - part 2

A SIMULATION TOOLKIT

Built-in primary particle generators

b I ‘ h NATI O NAL X U.S. DEPARTMENT OF

ACCELERATOR

ghﬂ“ LABORATORY Office of Science

G4ParticleGun

« Concrete implementations of G4VPrimaryGenerator
— A good example for experiment-specific primary generator implementation

« It shoots one primary particle of a certain energy from a certain point at a certain
time to a certain direction.

— Various set methods are available
— Intercoms commands are also available for setting initial values

* One of most frequently asked questions is :
| want “particle shotgun”, “particle machinegun”, etc.

* Instead of implementing such a fancy weapon, in your implementation of
UserPrimaryGeneratorAction, you can

— Shoot random numbers in arbitrary distribution
— Use set methods of G4ParticleGun
— Use G4ParticleGun as many times as you want

— Use any other primary generators as many times as you want to make
overlapping events

Geant4 Kernel - part 2

What to do and where to do

* In the constructor of your UserPrimaryGeneratorAction
— Instantiate G4ParticleGun
— Set default values by set methods of G4ParticleGun
» Particle type, kinetic energy, position and direction
* In your macro file or from your interactive terminal session
— Set values for a run
« Particle type, kinetic energy, position and direction
* In the GeneratePrimaries() method of your UserPrimaryGeneratorAction

— Shoot random number(s) and prepare track-by-track or event-by-event
values

» Kinetic energy, position and direction
— Use set methods of G4ParticleGun to set such values
— Then invoke GeneratePrimaryVertex() method of G4ParticleGun

— If you need more than one primary tracks per event, loop over randomization
and GeneratePrimaryVertex().

« examples/basic/B5/src/B5PrimaryGeneratorAction.cc is a good example to start
with.

Geant4 Kernel - part 2

G4VUserPrimaryGeneratorAction

N

void TOlPrimaryGeneratorAction::
GeneratePrimaries (G4Event* anEvent)
{ G4ParticleDefinition* particle;
G4int i1 = (int) (5.*G4UniformRand()) ;
switch (1)
{ case 0: particle = positron; break; ... }
particleGun->SetParticleDefinition (particle) ;
G4double pp =
momentum+ (G4UniformRand () -0.5) *sigmaMomentum;
G4double mass = particle->GetPDGMass () ;
G4double Ekin = sqgrt (pp*pptmass*mass)-mass;
particleGun->SetParticleEnergy (Ekin) ;
G4double angle = (G4UniformRand()-0.5)*sigmaAngle;
particleGun->SetParticleMomentumDirection
(GAThreeVector (sin (angle) ,0.,cos (angle))) ;
particleGun->GeneratePrimaryVertex (anEvent) ;

. You can repeat this for generating more than one primary particles.

Geant4 Kernel - part 2

Interfaces to HEPEvt and HepMC

« Concrete implementations of G4VPrimaryGenerator

— A good example for experiment-specific primary generator implementation
* G4HEPEvtInterface

— Suitable to /HEPEVT/ common block, which many of (FORTRAN) HEP

physics generators are compliant to.
— ASCII file input
 G4HepMClinterface
— An interface to HepMC class, which a few new (C++) HEP physics

generators are compliant to.

— ASCII file input or direct linking to a generator through HepMC.

Geant4 Kernel - part 2

G4GeneralParticleSource

N

« A concrete implementation of G4VPrimaryGenerator
— Suitable especially to space applications

MyPrimaryGeneratorAction::
MyPrimaryGeneratorAction ()

{ generator = new G4GeneralParticleSource; }

void MyPrimaryGeneratorAction::
GeneratePrimaries (G4Event* anEvent)

{ generator->GeneratePrimaryVertex (anEvent) ; }

« Detailed description
Section 2.7 of Application Developer’s Guide

Geant4 Kernel - part 2

http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/ForApplicationDeveloper/html/ch02s07.html

Example commands of General Particle Source

SLAC

two beams in a generator (macro continuation...)
#
beam #1 # beam #2
default intensity is 1 now change to 5. # 2x the instensity of beam #1
/gps/source/intensity 5. /gps/source/add 10. 2000 ot B
E 02 E
/gps/particle proton # this is a electron beam 2000 o E
/gps/pos/type Beam /gps/particle e- _— 5_ . E_
/gps/pos/type Beam g —o4 E
the incident surface is in the y-z plane # it beam spot is of 2d gaussian profile 9500 200 500 200 Pty
/gps/pos/rot1 010 # with a 1x2 mma2 central plateau Source Energy Spectrum Source X=Y distribution
/gps/pos/rot2001 # it is in the x-y plane centred at the orgin
/gps/pos/centre 0.0.0. mm 0.4 — 0.4 —
the beam spot is centered at the origin and is of /gps/pos/halfx 0.5 mm 02 : 0z
1d gaussian shape with a 1 mm central plateau /gps/pos/halfy 1. mm 0 E + ¢ F
/gps/pos/shape Circle /gps/pos/sigma_x 0.1 mm —0.2 | —02
/gps/pos/centre 0.0.0. mm # the spread in y direction is stronger SO B L ot p mn ey 1o e e oo B e B g el s 1% B L
/gps/pos/radius 1. mm /gps/pos/sigma_y 0.2 mm -0.4 —02 © 02 0.4 -04 -0.2 0 0.2 0.4
/gps/pos/sigma_r .2 mm # Source X—Z distribution Source Y—Z distribution
#the beam is travelling along -Z_axis 1 F -
the beam is travelling along the X_axis with /gps/ang/type beam2d 05 F)
5 degrees dispersion /gps/ang/sigma_x 2. deg 0o E g 100 *
/gps/ang/rot1001 /gps/ang/sigma_y 1. deg —05 E 50
/gps/ang/rot2010 # gaussian energy profile E L en B e s Ton o e | ; -
/gps/ang/type beam1d /gps/ene/type Gauss L 100 200 300 Yo 100 200 300
égps/ang/sigma_r 5. deg ;gps;ene;n‘\ono ggol\l:llle\), Source ¢os{theta)—phi distribution Source theta/phi distribution

gps/ene/sigma 50. Me

the beam energy is in gaussian profile
centered at 400 MeV

/gps/ene/type Gauss

/gps/ene/mono 400 MeV
/gps/ene/sigma 50. MeV

Geant4 Kernel - part 2

A SIMULATION TOOLKIT

Retrieving information from Geant4

b I ‘ h NATI O NAL X U.S. DEPARTMENT OF

ACCELERATOR

ghﬂ“ LABORATORY Office of Science

Extract useful information

« Given geometry, physics and primary track generation, Geant4 does proper
physics simulation “silently”.

— You have to do something to extract information useful to you.
* There are three ways:
— Built-in scoring commands
« Most commonly-used physics quantities are available.
— Use scorers in the tracking volume
« Create scores for each event
» Create own Run class to accumulate scores
— Assign G4VSensitiveDetector to a volume to generate “hit”.

» Use user hooks (G4UserEventAction, G4UserRunAction) to get event /
run summary

* You may also use user hooks (G4UserTrackingAction, G4UserSteppingAction,
etc.)

— You have full access to almost all information
— Straight-forward, but do-it-yourself

Geant4 Kernel - part 2

A SIMULATION TOOLKIT

Command-based scoring

‘ . h NAT I O N A L U.S. DEPARTMENT OF
1 A ENERGY

ACCELERATOR

ghﬂ“ LABORATORY Office of Science

Command-based scoring

(ad BV g
Dh AN

« Command-based scoring functionality offers the built-in scoring mesh and various
scorers for commonly-used physics quantities such as dose, flux, etc.
— Due to small performance overhead, it does not come by default.

» To use this functionality, access to the G4ScoringManager pointer after the
instantiation of G4(MT)RunManager in your main().

#include “G4ScoringManager.hh”
int main()
{
auto* runManager = new G4MTRunManager;
auto* scoringManager = G4ScoringManager::GetScoringManager/(),

« All of the Ul commands of this functionality are in /score/ directory.
« /examples/extended/runAndEvent/REO3

Geant4 Kernel - part 2

C O m m a n d - b a S e d S CO re rS viewer-0 (OpenGLImmediateX)

viewer-0 (OpenGLImmediateX)

viewer-0 (OpenGLImmediateX)

2.3e+03
 3.0e+01
3.8e-01

/M 6.3¢-05 [Mey]
| eDepPS

¢

Define a scoring mesh

n
!b
V’

« To define a scoring mesh, the user has to specify the followings.
1. Shape and name of the 3D scoring mesh.
* Currently, box and cylinder are available.
2. Size of the scoring mesh.

* Mesh size must be specified as "half width" similar to the arguments of
G4Box / G4Tubs.

3. Number of bins for each axes.
* Note that too many bins causes immense memory consumption.

4. Specify position and rotation of the mesh.

» If not specified, the mesh is positioned at the center of the world volume
without rotation.

define scoring mesh
/score/create/boxMesh boxMesh 1
/score/mesh/boxSize 100. 100. 100. cm
/score/mesh/nBin 30 30 30

/score/mesh/translate/xyz 0. 0. 100. cm

 The mesh geometry can be completely independent to the real material geometry.

Geant4 Kernel - part 2

Scoring quantities

ol A
D NS

« A mesh may have arbitrary number of scorers. Each scorer scores one physics
quantity.
— energyDeposit * Energy deposit scorer.
— cellCharge * Cell charge scorer.
— cellFlux * Cell flux scorer.
— passageCellFlux * Passage cell flux scorer
— doseDeposit * Dose deposit scorer.
— nOfStep * Number of step scorer.
— nOfSecondary * Number of secondary scorer.
— trackLength * Track length scorer.
— passageCellCurrent * Passage cell current scorer.
— passageTrackLength * Passage track length scorer.
— flatSurfaceCurrent * Flat surface current Scorer.
— flatSurfaceFlux * Flat surface flux scorer.
— nOfCollision * Number of collision scorer.
— population * Population scorer.
— nOfTrack * Number of track scorer.
— nOfTerminatedTrack * Number of terminated tracks scorer.

/score/quantity/ <scorer_name> <unit>

JTAIILUT NCITICI pail <

Filter

« Each scorer may take a filter.

— charged * Charged particle filter.

— neutral * Neutral particle filter.

— kineticEnergy * Kinetic energy filter.
/scoreffilter/kineticEnergy <fname> <eLow> <eHigh> <unit>

— particle * Particle filter.
/scoreffilter/particle <fname> <p1> ... <pn>

— particleWithKineticEnergy * Particle with kinetic energy filter.

/scoreffilter/Particle WithKineticEnergy
<fname> <elLow> <eHigh> <unit> <p1> ... <pn>

/score/quantity/energyDeposit eDep MeV ™\
/score/quantity/nOfStep nOfStepGamma
/scoreffilter/particle gammaFilter gamma Same primitive scorers
/score/quantity/nOfStep nOfStepEMinus > with differgn’r filters
/scoreffilter/particle eMinusFilter e- may be defined.
/score/quantity/nOfStep nOfStepEPIlus
/scoreffilter/particle ePlusFilter e+

I /score/close ~~ 4mmmm Close the mesh when defining scorers is done. I

_/

Drawing a score

N

* Projection
/score/drawProjection <mesh_name> <scorer_name> <color_map>
« Slice
/score/drawColumn <mesh_name> <scorer_name> <plane> <column>

<color_map>

« Color map
— By default, linear and log-scale color maps are available.

— Minimum and maximum values can be defined by

/score/colorMap/setMinMax command. Otherwise, min and max values are

taken from the current score.

Geant4 Kernel - part 2

Write scores to a file

« Single score

/score/dumpQuantityToFile <mesh_name> <scorer_name> <file_name>
« All scores

/score/dumpAllQuantitiesToFile <mesh _name> <file_name>

« By default, values are written in CSV.

« By creating a concrete class derived from G4V ScoreWriter base class, the user
can define his own file format.

— Example in /examples/extended/runAndEvent/REO3
— User’ s score writer class should be registered to G4ScoringManager.

Geant4 Kernel - part 2

A SIMULATION TOOLKIT

Define scorers to the tracking
volume

b I ‘ h NATIONAL ¢ S. DEPARTMENT OF

ACCELERATOR

ghﬂ“ LABORATORY Office of Science

_ Concrete class provided by 64
Class diagram - Abstract base class provided by 64
I Template class provided by G4
G4LogicalVolume G4Event B User's class
/705'\ !
0.1 G4HCof ThisEvent

G4VSensitiveDetector \ n
kind of T G4VHitsCollection

G4MultiFunctionalDetector

n
n G4VHit
G4VPrimitiveSensitivity f

G4PSDoseScorer

1 A7/

PN

hits map

Geant4 Kernel - part 2

example...

N

MyDetectorConstruction::ConstructSDandField()

{
G4MultiFunctionalDetector* myScorer = new G4MultiFunctionalDetector(*myCellScorer”);
G4VPrimitiveSensitivity* totalSurfFlux = new G4PSFlatSurfaceFlux(“TotalSurfFlux”);
myScorer->Register(totalSurfFlux);
G4VPrimitiveSensitivity* protonSufFlux = new G4PSFlatSurfaceFlux(“ProtonSurfFlux”);
G4VSDFilter* protonFilter = new G4SDParticleFilter(“protonFilter”);
protonFilter->Add(“proton”);
protonSurfFlux->SetFilter(protonFilter);
myScorer->Register(protonSurfFlux);
G4SDManager::GetSDMpointer()->AddNewDetector(myScorer);
SetSensitiveDetector(“myLogVol”,myScorer);

}

Geant4 Kernel - part 2

A SIMULATION TOOLKIT

Accumulate scores for a run

b I ‘ h NATIONAL ¢ S. DEPARTMENT OF

ACCELERATOR

ghﬂ“ LABORATORY Office of Science

_ Concrete class provided by 64
Class diagram - Abstract base class provided by 64
I Template class provided by G4
G4LogicalVolume G4Event B User's class
/705'\ !
0.1 G4HCof ThisEvent

G4VSensitiveDetector \ n
kind of T G4VHitsCollection

G4MultiFunctionalDetector

n
n G4VHit
G4VPrimitiveSensitivity f

G4PSDoseScorer

1 A7/

PN

hits map

Geant4 Kernel - part 2

Score == G4 THitsMap<G4double>

» At the end of successful event, G4Event has a vector of G4THitsMap as the
scores.

« Create your own Run class derived from G4Run, and implement two methods.

« RecordEvent(const G4Event*) method is invoked in the worker thread at the end
of each event. You can get all output of the event so that you can accumulate
the sum of an event to a variable for entire run.

* Merge(const G4Run*) method of the run object in the master thread is invoked
with the pointer to the thread-local run object when an event loop of that thread
is over. You should merge thread-local scores to global scores.

* Your run class object should be instantiated in GenerateRun() method of your
UserRunAction.

— This UserRunAction must be instantiated both for master and worker threads.

Geant4 Kernel - part 2

Customized run class

#include “G4Run.hh”
#include “G4Event.hh”
#include “G4THitsMap.hh”
Class MyRun : public G4Run

{

public: Implement how you accumulate
MyRun(); event data
virtual ~MyRun();
virtual void RecordEvent(const G4Event®);

virtual void Merge(const G4Run*); \ Implement how you merge

private: thread-local scores
G4int nEvent;

G4int totalSurfFluxID, protonSurfFluxID, totalDoselD;
G4THitsMap<G4double> totalSurfFlux;

G4 THitsMap<G4double> protonSurfFlux;
G4THitsMap<G4double> totalDose;

public:
... access methods ...

Geant4 Kernel - part 2

Customized run class

MyRun::MyRun()

{
G4SDManager* SDM = G4SDManager::GetSDMpointer();
totalSurfFluxID = SDM->GetCollectionID("myCellScorer/TotalSurfFlux");
protonSurfFluxID = SDM->GetCollectionID("myCellScorer/ProtonSurfFlux");
totalDoselD = SDM->GetCollectionID("myCellScorer/TotalDose");

) /

name of G4MultiFunctionalDetector
object

name of G4VPrimitiveSensitivity object

Geant4 Kernel - part 2

Customized run class

void MyRun::RecordEvent(const G4Event* evt)
{
G4HCofThisEvent* HCE = evt->GetHCofThisEvent();
G4THitsMap<G4double>* eventTotalSurfFlux
= (G4 THitsMap<G4double>*)(HCE->GetHC(totalSurfFluxID));
G4 THitsMap<G4double>* eventProtonSurfFlux
= (G4 THitsMap<G4double>*)(HCE->GetHC(protonSurfFluxID));
G4 THitsMap<G4double>* eventTotalDose
= (G4THitsMap<G4double>*)(HCE->GetHC(totalDoselD));

totalSurfFlux += *eventTotalSurfFlux;

No need of loops.

protonSurfFlux += *eventProtonSurfFlux; _ _
+= operator is provided !

totalDose += *eventTotalDose;

G4Run::RecordEvent(evt); Don't forget to invoke base class
method!

Geant4 Kernel - part 2

Customized run class

void MyRun::Merge(const G4Run* run)
{

const MyRun* localRun = static_cast<const MyRun*>(run); Cast |

totalSurfFlux += *(localRun . totalSurfFlux);
protonSurfFlux += *(localRun . protonSurfFlux); No need of loops
totalDose += *(localRun . totalDose); += operator is provided !

G4Run::Merge(run); Don't forget to invoke base class
} method!

Geant4 Kernel - part 2

RunAction with customized run

(ad BV g
Dh AN

G4Run* MyRunAction::GenerateRun()

{ return (new MyRun()); }
void MyRunAction::EndOfRunAction(const G4Run* aRun)

{

const MyRun* theRun = static_cast<const MyRun*>(aRun);

IsMaster() returns true for the RunAction

if(IsMaster()) u—— object assigned to the master thread. (also
{ returns true for sequential mode)

/[... analyze / record / print-out your run summary
/l MyRun object has everything you need ...

}
}

« As you have seen, to accumulate event data, you do NOT need

— Event / tracking / stepping action classes
* All you need are your Run and RunAction classes.

Geant4 Kernel - part 2

Sensitive detector vs. primitive scorer

5|_l%\'\°o

Sensitive detector Primitive scorer
* You have to implement your own « Many scorers are provided by

detector and hit classes. Geant4. You can add your own.
* One hit class can contain many « Each scorer accumulates one

quantities. A hit can be made for quantity for an event.

each individual step, or accumulate

quantities.

» G4MultiFunctionalDetector creates
many collections (maps), i.e. one
collection per one scorer.

« Hits collection is relatively compact. ¢ Keys of maps are redundant for
scorers of same volume.

« Basically one hits collection is made
per one detector.

I would suggest to :
» Use primitive scorers

» if you are not interested in recording each individual step but accumulating
some physics quantities for an event or a run, and

» if you do not have to have too many scorers.
» Otherwise, consider implementing your own sensitive detector.

Geant4 Kernel - part 2

A SIMULATION TOOLKIT

Basic structure of
detector sensitivity

b I ‘ h NATIONAL ¢ S. DEPARTMENT OF

ACCELERATOR

ghﬂ“ LABORATORY Office of Science

Sensitive detector

« A G4VSensitiveDetector object can be assigned to G4LogicalVolume.

(ad BV g
Dh AN

* In case a step takes place in a logical volume that has a G4VSensitiveDetector
object, this G4VSensitiveDetector is invoked with the current G4Step object.

— You can implement your own sensitive detector classes, or use scorer
classes provided by Geant4.

Steppin Physics Particle Step Track Logical Sensitive
WManager Process Change _Vg' ume Detector

GetPhysical InteractionLength
SelectShortest

Dolt > piyy o
Update -
Update ~
IsSensitive -
GenerateHits -

E_

Defining a sensitive detector c1oas

D AN

« Basic strategy
In your ConstructSDandField() method
G4VSensetiveDetector* pSensetivePart
= new MyDetector (“'/mydet”) ;

G4SDManager: :GetSDMpointer ()
->AddNewDetector (pSensetivePart) ;

SetSensitiveDetector (“myLogicalVolume” ,pSensetivePart) ;
« Each detector object must have a unique name.
— Some logical volumes can share one detector object.

— More than one detector objects can be made from one detector class with
different detector name.

— One logical volume cannot have more than one detector objects. But, one
detector object can generate more than one kinds of hits.

* e.g. a double-sided silicon micro-strip detector can generate hits for each
side separately.

Geant4 Kernel - part 2

_ Concrete class provided by 64
Class diagram - Abstract base class provided by 64
I Template class provided by G4
G4LogicalVolume G4Event B User's class
/705'\ !
0.1 G4HCof ThisEvent

G4VSensitiveDetector \ n
kind of T G4VHitsCollection

G4MultiFunctionalDetector

n
n G4VHit
G4VPrimitiveSensitivity f

G4PSDoseScorer

1 A7/

PN

= hits map

Geant4 Kernel - part 2

Hits collection, hits map

(ad BV g
Dh AN

« G4VHitsCollection is the common abstract base class of both G4THitsCollection
and G4 THitsMap.
« G4THitsCollection is a template vector class to store pointers of objects of one
concrete hit class type.
— Ahit class (deliverable of G4VHit abstract base class) should have its own
identifier (e.g. cell ID).
— In other words, G4 THitsCollection requires you to implement your hit class.

« G4THitsMap is a template map class so that it stores keys (typically cell ID, i.e.
copy number of the volume) with pointers of objects of one type.

— Objects may not be those of hit class.

 All of currently provided scorer classes use G4THitsMap with simple
double.

— Since G4THitsMap is a template, it can be used by your sensitive detector
class to store hits.

Geant4 Kernel - part 2

A SIMULATION TOOLKIT

Sensitive detector and hit

b I ‘ h NATI O NAL $ U.S. DEPARTMENT OF

ACCELERATOR

ghﬂ“ LABORATORY Office of Science

Sensitive detector and Hit

Each Logical Volume can have a pointer to a sensitive detector.
— Then this volume becomes sensitive.

« Hitis a snapshot of the physical interaction of a track or an accumulation of

interactions of tracks in the sensitive region of your detector.

« A sensitive detector creates hit(s) using the information given in G4Step
object. The user has to provide his/her own implementation of the detector

response.

« Hit objects, which are still the user’s class objects, are collected in a G4Event

object at the end of an event.

Geant4 Kernel - part 2

Hit class

Hit is a user-defined class derived from G4VHit.

You can store various types information by implementing your own concrete Hit class.
For example:

— Position and time of the step

— Momentum and energy of the track
— Energy deposition of the step

— Geometrical information

— or any combination of above

Hit objects of a concrete hit class must be stored in a dedicated collection which is
instantiated from G4 THitsCollection template class.

The collection will be associated to a G4Event object via G4HCofThisEvent.
Hits collections are accessible
— through G4Event at the end of event.
 to be used for analyzing an event
— through G4SDManager during processing an event.

 to be used for event filtering.

Implementation of Hit class

N

#include "G4VHit.hh"
#include "G4Allocator.hh"
class MyHit : public G4VHit
{
public:
MyHit (some arguments) ;
inline void*operator new(size_t);
inline void operator delete(void *aHit) ;
virtual ~MyHit() ;
virtual void Draw() ;
virtual void Print () ;
private:
// some data members
public:
// some set/get methods
};

#include “G4THitsCollection.hh”
typedef G4THitsCollection<MyHit> MyHitsCollection;

Geant4 Kernel - part 2

G4Allocator

» Instantiation / deletion of an object is a heavy operation.

— It may cause a performance concern, in particular for objects that are
frequently instantiated / deleted.

« E.g. hit, trajectory and trajectory point classes
* G4Allocator is provided to ease such a problem.
— It allocates a chunk of memory space for objects of a certain class.
* Please note that G4Allocator works only for a concrete class.
— It works only for “final” class.
— Do NOT use G4Allocator for abstract base class.

« G4Allocator must be thread-local. Also, objects instantiated by G4Allocator must
be deleted within the same thread.

— Such objects may be referred by other threads.

Geant4 Kernel - part 2

Use of G4Allocator

MyHit.hh
#include "G4VHit.hh"
#include "G4Allocator.hh"
class MyHit : public G4VHit

{
public:
MyHit (some arguments);
inline void*operator new(size t);
inline void operator delete(void *aHit);
}i

extern G4ThreadLocal G4Allocator<MyHit>* MyHitAllocator;
inline void* MyHit::operator new(size t)

{
if (!MyHitAllocator)
MyHitAllocator = new G4Allocator<MyHit>;
return (void*)MyHitAllocator->MallocSingle();
}

inline void MyHit::operator delete(void* aHit)
{ MyHitAllocator->FreeSingle((MyHit*)aHit); }

MyHit.cc
#include "MyHit.hh"
G4ThreadLocal G4Allocator<MyHit>* MyHitAllocator = 0;

Geant4 Kernel - part 2

Sensitive Detector class

tn

 Sensitive detector is a user-defined class derived from G4V SensitiveDetecto

-

#include "G4VSensitiveDetector.hh"
#include "MyHit.hh"
class GA4Step;
class G4HCofThisEvent;
class MyDetector : public G4VSensitiveDetector
{
public:
MyDetector (GAString name) ;
virtual ~MyDetector();
virtual void Initialize (G4HCofThisEvent*HCE) ;
virtual G4bool ProcessHits (G4Step*aStep,
G4TouchableHistory*ROhist) ;
virtual void EndOfEvent (G4HCofThisEvent*HCE) ;
private:
MyHitsCollection * hitsCollection;
G4int collectionID;

E}; I

Sensitive detector

(ad BV g
Dh AN

« Atracker detector typically generates a hit for every single step of every single
(charged) track.

— Atracker hit typically contains
« Position and time
* Energy deposition of the step
* Track ID

« A calorimeter detector typically generates a hit for every cell, and accumulates
energy deposition in each cell for all steps of all tracks.

— A calorimeter hit typically contains
« Sum of deposited energy
« Cell ID

* You can instantiate more than one objects for one sensitive detector class. Each
object should have its unique detector name.

— For example, each of two sets of detectors can have their dedicated
sensitive detector objects. But, the functionalities of them are exactly the
same to each other so that they can share the same class. See

E examples/basic/B5 as an example. I

Step

(ad BV g
Dh AN

« Step has two points and also “delta” information of a particle (energy loss on the

step, time-of-flight spent by the step, etc.).

« Each point knows the volume (and material). In case a step is limited by a

volume boundary, the end point physically stands on the boundary, and it

logically belongs to the next volume.

* Note that you must get the volume information from the “PreStepPoint”.

Boundary

Step

Post-step point
Pre-step point

Geant4 Kernel - part 2

Implementation of Sensitive Detector - 1_

Dk AN

MyDetector: :MyDetector (G4String detector name)
:G4VSensitiveDetector (detector name),

collectionID(-1)

collectionName.insert(“collection name");

« In the constructor, define the name of the hits collection which is handled by this
sensitive detector

* In case your sensitive detector generates more than one kinds of hits (e.g.

anode and cathode hits separately), define all collection names.

Geant4 Kernel - part 2

~\%

Implementation of Sensitive Detector - 2_

void MyDetector::Initialize (GAHCofThisEvent*HCE)
{
if (collectionID<K0) collectionID = GetCollectionID(O0) ;
hitsCollection = new MyHitsCollection
(SensitiveDetectorName,collectionName|[0]) ;
HCE->AddHitsCollection(collectionID,hitsCollection) ;

 Initialize() method is invoked at the beginning of each event.
» (Get the unique ID number for this collection.
— GetCollectionlD() is a heavy operation. It should not be used for every events.

— GetCollectionlD() is available after this sensitive detector object is constructed
and registered to G4SDManager. Thus, this method cannot be invoked in the

constructor of this detector class.

« Instantiate hits collection(s) and attach it/them to G4HCofThisEvent object given
in the argument.

* In case of calorimeter-type detector, you may also want to instantiate hits for all

I calorimeter cells with zero energy depositions, and insert them to the collection. I

Implementation of Sensitive Detector - 3_ |

S

G4bool MyDetector: :ProcessHits
(GAStep*aStep,G4TouchableHistory*ROhist)

{
MyHit* aHit = new MyHit();

// some set methods

hitsCollection->insert (aHit) ;
return true;

This ProcessHits() method is invoked for every steps in the volume(s) where this
sensitive detector is assigned.

In this method, generate a hit corresponding to the current step (for tracking
detector), or accumulate the energy deposition of the current step to the existing
hit object where the current step belongs to (for calorimeter detector).

Don’t forget to collect geometry information (e.g. copy number) from
“PreStepPoint”.

I * Currently, returning boolean value is not used. I

Implementation of Sensitive Detector - 4_

void MyDetector: :EndOfEvent (GAHCofThisEvent*HCE)
{:;}

x

« This method is invoked at the end of processing an event.
— Itis invoked even if the event is aborted.

— It is invoked before UserEndOfEventAction.

Geant4 Kernel - part 2

