Chiral Effective Field Theory on the Light Front

Jean-François Mathiot
Laboratoire de Physique Corpusculaire
Clermont-Ferrand, France

Motivations

- □ Calculation of baryon properties
 - > need a relativistic non-perturbative formulation for bound states
- ☐ Chiral effective Lagrangian expanded in momentum p
 - > but any calculation of baryon properties relies on an expansion in pion fields
- Appropriate formalism based on Light Front Dynamics

and a decomposition of the baryon state vector in Fock sectors, with Fock space truncation

- □ Problems to solve
 - > Control of rotational invariance
 - > Adequate renormalization scheme consistent with Fock space truncation
 - Appropriate regularization procedure which preserves symetries

Covariant formulation of Light Front Dynamics

> State vector $\phi(p)$ of any bound state defined on the light front with aribtrary position ω

$$\omega\cdot x=0\quad \mbox{with } \omega^2=0$$

$$\omega=(1,0,0,-1) \ \ \mbox{for the standard formulation of LFD}$$

- > Explicitly covariant, and control of any violation of rotational invariance through the (1) dependence of observables (in any approximate calculation)
- Bound state eigenvalue equation

$$\hat{P}^{2} \phi(p) = M^{2} \phi(p) \quad \text{with} \quad \hat{P}_{\mu} = \hat{P}_{\mu}^{0} + \hat{P}_{\mu}^{int}$$

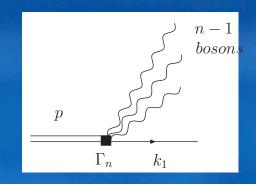
$$\hat{P}_{\mu}^{int} = \omega_{\mu} \int H^{int}(x) \delta(\omega \cdot x) \ d^{4}x = \omega_{\mu} \int_{-\infty}^{+\infty} \tilde{H}^{int}(\omega \tau) \frac{d\tau}{2\pi}$$

>> Fock state decomposition

$$|p\rangle = |1\rangle + |2\rangle + |3\rangle + \dots$$

> Non-perturbative many-body vertices Γ_n for the two-body component in the Yukawa model

$$\bar{u}(p)\Gamma_2 u(k_1) = \bar{u}(p) \left[b_1 + b_2 \frac{m\varphi}{\omega p} \right] u(k_1)$$



> For any truncation of the Fock space of order N, one can write down the relevant effective Lagrangian

$$\mathcal{L}_{lfd}^{N} \equiv \mathcal{L}_{eff}^{p=2(N-1)}$$

- V. Karmanov, Sov. Phys. JETP 44 (210) 1976
- J. Carbonell, V. Karmanov, JFM, B. Desplanques, Phys. Rep. 300 (215) 1998

Non-perturbative renormalization scheme on Light Front Dynamics

Ex. Yukawa model (or QED)

> In first order perturbation theory

$$at \quad p^2 = m^2$$

- > The renormalization condition couples contributions from two different Fock components
- > One should keep track of the physical content of the counterterm as a function of the number of particles it corresponds to : $\delta m^{(2)}$ and more generally $\delta m^{(n)}$
- \gg The same is true for the bare coupling constant $g_0
 ightarrow g_0^{(n)}$
- > This is the only way to prevent uncancelled divergences when the Fock space is truncated

- ightharpoonup A calculation of order N involves $\delta m^{(1)} \dots \delta m^{(N)}$ $g_0^{(1)} \dots g_0^{(N)}$
- > $\delta m^{(n)}$ and $g_0^{(n)}$ are calculated by successive solutions of the N=1, N=2 , N=3 ...N systems
- > The explicit covariance of our formalism enables to write down immediately the structure of counterterms, which may depend on ω

V. Karmanov, JFM, S. Smirnov, Phys. Rev. D77 (2008) 085028

Test function regularization method

> Field operators are treated as distributions which are defined on specific test functions

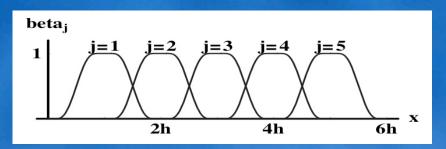
$$T_x\Phi(\rho) = \langle \varphi, \rho \rangle = \int d^D \varphi(y) \rho(x-y)$$

Decomposition in momentum space

$$\phi(x) = \int \frac{d^{(D-1)}}{(2\pi)^{(D-1)}} \frac{f(\omega_p^2, \vec{p}^2)}{2\omega_p} \left[a_p^+ e^{ipx} + a_p e^{-ipx} \right]$$

- Adequate choice of test fuctions
 - partition of unity: observables should be independent of the choice of test functions

$$f(x) = \sum_{j=0}^{N-1} u(x - jh)$$



 Super regular test functions with all their derivatives equal to zero at the boundaries to treat all types of singularities at once

Scaling properties provided by the boundary condition

In the UV domain

$$f(X)=0$$
 at $X=1+h$ with $h(X)=\mu^2 X^{\alpha}-1$ the limit $f\to 1$ corresponds to $\alpha\to 1^-$ Scale

Using the Lagrange formula

$$f(X) = -\frac{X}{k!} \int_{1}^{\infty} \frac{dt}{t} (1-t)^k \partial_X^{(k+1)} \left[X^k f(Xt) \right]$$

one can define the extension of any distribution

$$\langle T,f
angle \equiv \langle ilde{T},f
angle
ightarrow \langle ilde{T},1
angle$$
 by partial integration. $ilde{T}$ is finite

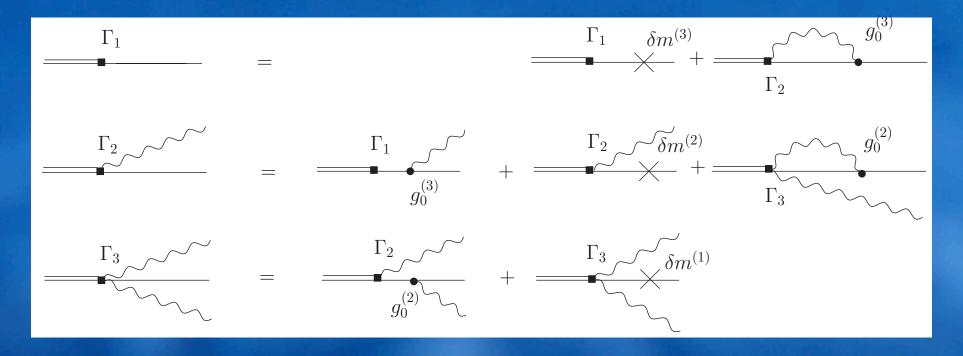
Direct relation to BPHZ scheme

H. Epstein , V. Glaser, Ann. Inst. Henri Poincaré, XIX A (1973) 211
P. Grangé, E. Werner, Nucl. Phys. B, Proc. Supp. 161 (2006) 75
arXiv: math-ph/0612011

First application to the Yukawa model

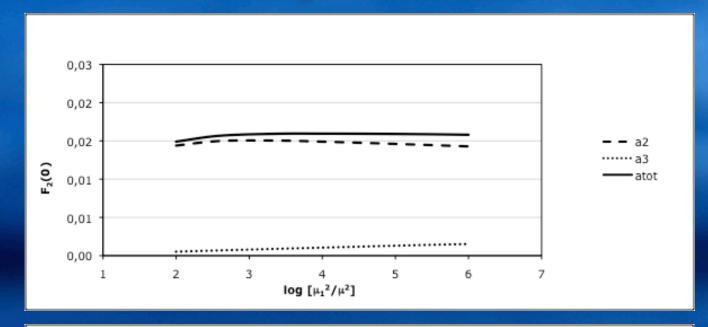
Scalar bosons coupled to one fermion

- ➤ In the non trivial Fock space truncation N=3 (up to two bosons "in flight")
- > Eigenvalue equation



Regularization scheme used here : Pauli-Villars

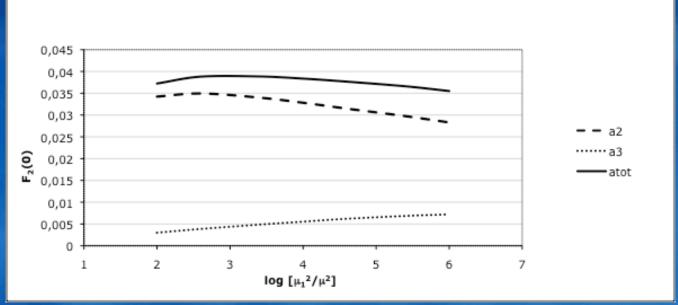
■ Anomalous magnetic moment



$$m = 1 \text{ GeV}$$

 $\mu = 1 \text{ GeV}$

$$\alpha = 0.2$$



$$\alpha = 0.5$$

> Still residual dependence on the mass of the Pauli-Villars boson μ_1 to be cured by appropriate counterterms

Perspectives

□ Coherent scheme

in order to describe both the effective Lagrangian and the state vector of any bound state

- Systematic relativistic and non-perturbative framework
- Expansion in Fock components, with truncation

Should be valid at low energies: Fock components with high number of particles correspond to short time fluctuations

lacktriangleq All πN states considered in a consistent way

Resonances like the $\,\Delta$ (1232 MeV) or the Roper (1440 MeV) resonances are already taken into account at the N=3 Fock state truncation

