IMPACT OF OPERATOR INTERFERENCE IN DARK MATTER DIRECT DETECTION EXPERIMENTS

In collaboration with Gonzalo Herrera, Alejandro Ibarra, Sunhyun Kang, Stefano Scopel and Gaurav Tomar

Anja Brenner
August/September 2021
DARK MATTER IN THE UNIVERSE

2000, Corbelli et. al.

2013, NASA

2011, Caltech
DARK MATTER DETECTION

- Particle production
- Indirect detection
- Direct detection

→ Upper limit on the dark matter-nucleon scattering rate R
Consider the interaction Hamiltonian \(H = c^p(\bar{p}\chi)(\bar{\chi}p) \).

Interaction rate \((R) \propto |<\text{final}|H|\text{initial}>)^2 \)

\[\Rightarrow R = (c^p)^2 \mathbb{R} \quad \Rightarrow \text{constrain coupling strength } c^p \text{ for given upper limit on } R \]

detector material
dark matter velocity distribution
local dark matter density
dark matter mass
LIMITS ON DARK MATTER–NUCLEON SCATTERING CROSS-SECTION

Assuming that $H = c^p(\bar{p}\chi)(\bar{\chi}p)$

\[\rightarrow \sigma_{\chi p} \propto (c^p)^2 \]

BUT: What if other interactions are possible, too?
INTERACTION INTERFERENCE

In general, dark matter interacts with protons AND neutrons

\[H = c^p(\bar{p}\chi)(\bar{\chi}p) + c^n(\bar{n}\chi)(\bar{\chi}n) \]

\[R = (c^p c^n) \begin{pmatrix} R_{pp} & R_{pn} \\ R_{np} & R_{nn} \end{pmatrix} \begin{pmatrix} c^p \\ c^n \end{pmatrix} = c^T R c \]

Dark matter may interact also through other interactions (Fitzpatrick et. al. 2012)

\[H = \sum_i c^p_{i} \Theta^p_{i} + c^n_{i} \Theta^n_{i} \]

4 independent operators for spin-0 dark matter
14 for spin-1/2 dark matter

\[R = c^T R c \]

Remember:

\[H = c^p(\bar{p}\chi)(\bar{\chi}p) \]

\[R = (c^p)^2 R \]

\[R \triangleq 8x8 \text{-matrix (spin-0)} \]

\[R \triangleq 28x28 \text{-matrix (spin-1/2)} \]
CURRENT XENON1T AND PICO60 LIMITS

Assuming that $c^p = c^n$

BUT: What happens if $c^p \neq c^n$?
EFFECT OF INTERACTION INTERFERENCE

Example: interference between c^p and c^n

$$R = (c^p \ c^n) \left(\begin{array}{cc} \mathbb{R}_{pp} & \mathbb{R}_{pn} \\ \mathbb{R}_{np} & \mathbb{R}_{nn} \end{array} \right) \left(\begin{array}{c} c^p \\ c^n \end{array} \right) \leq R^{u.l.} \quad \rightarrow \text{2D ellipse}$$

- X Ruled out by "plot", but not by data!
- Green Ruled out in model independent way

$\max\{c^p\} = \sqrt{\left(\mathbb{R}^{-1}\right)_{pp}} R^{u.l.}$
EFFECT OF INTERACTION INTERFERENCE ON XENON1T AND PICO60 RESULTS
EFFECT OF INTERACTION INTERFERENCE ON XENON1T AND PICO60 RESULTS
EFFECT OF INTERACTION INTERFERENCE ON XENON1T AND PICO60 RESULTS
EFFECT OF INTERACTION INTERFERENCE ON XENON1T AND PICO60 RESULTS
Remember:

$$H = \sum_i c_{i}^{p} \phi_{i}^{p} + c_{i}^{n} \phi_{i}^{n}$$

14 for spin-1/2 dark matter
EFFECT OF INTERACTION INTERFERENCE ON XENON1T AND PICO60 RESULTS
EFFECT OF INTERACTION INTERFERENCE ON XENON1T AND PICO60 RESULTS

![Graphs showing the effect of interaction interference on XENON1T and PICO60 results.](image-url)
COMBINING EXPERIMENTS

Combine experiments

\[
\max\{c^p\} = \sqrt{\left(\mathbb{R}^{-1}\right)_{pp} R^{u,l}}.
\]

\[
\max\{c^p\} = \max\{c^p\}_A \cup \max\{c^p\}_B
\]

\[
\max\{c^p\} = \left(\mathbb{R} - \mathbb{1}\right)_{pp} R^{u,l}.
\]

\[
\max\{c^p\}(\mathbb{R}, N_{j}^{obs}, N_{j}^{back})
\]
RESULTS: COMBINING EXPERIMENTS

[Graphs showing the scattering cross-sections for different experiments as a function of the mass of the neutralino (m_χ) in GeV.]
RESULTS: COMBINING EXPERIMENTS

\[\sigma_{SI}^{\chi p} \] vs. \(m_\chi \) [GeV] for different experiments and operators.
SUMMARY

- common assumption for limits on the dark matter-nucleon coupling strength: dark matter couples equally to protons and neutrons
- new method to get most conservative limits on the coupling strength
 → taking interaction interference into account can relax the cross-section limits by up to two orders of magnitude
- apply method to get combined limits
 → stronger limits for the cross-section