

First search for new forces at the micron scale using optically levitated microspheres

miércoles, 1 de septiembre de 2021 19:15 (15)

We report on a search for non-Newtonian forces that couple to mass, with a characteristic scale of $\sim 10 \mu\text{m}$, using an optically levitated microsphere as a precision force sensor. A silica microsphere trapped in an upward-propagating, single-beam, optical tweezer is utilized to probe for interactions sourced from a nanofabricated attractor mass with a density modulation brought into close proximity to the microsphere and driven along the axis of periodic density in order to excite an oscillating response. We obtain force sensitivity of $< 10^{-16} \text{ N}/\sqrt{\text{Hz}}$. Separately searching for attractive and repulsive forces results in the constraint on a new Yukawa interaction of $|\alpha| > 10^8$ for $\lambda > 10 \mu\text{m}$. This is the first test of the inverse-square law using an optically levitated test mass of dimensions comparable to λ , a complementary method subject to a different set of system effects compared to more established techniques.

Reference to paper (DOI or arXiv)

arXiv:2102.06848

Your gender (free text)

He/Him/His

Primary author(s) : FIEGUTH, Alexander (Stanford University); Dr. KAWASAKI, Akio (National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology); Sr. BLAKEMORE, Charles (Stanford University); Dr. PRIEL, Nadav (Stanford University); Dr. RIDER, Alexander (SRI); Prof. GRATTA, Giorgio (Stanford University); Dr. WANG, Qidong (Institute of Microelectronics of the Chinese Academy of Sciences)

Presenter(s) : FIEGUTH, Alexander (Stanford University)

Clasificación de la sesión : Poster session 2

Clasificación de temáticas : Cosmology and particle physics