

A WARPED SCALAR PORTAL TO FERMIONIC DARK MATTER

IFIC SEMINAR

ADRIAN CARMONA BERMUDEZ

UNIVERSIDAD
DE GRANADA

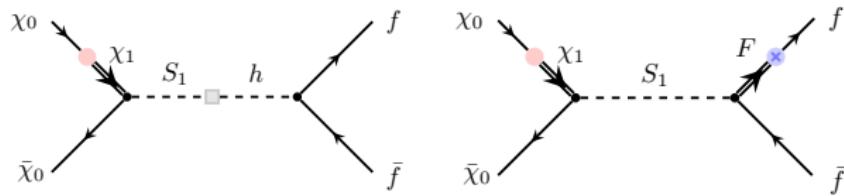
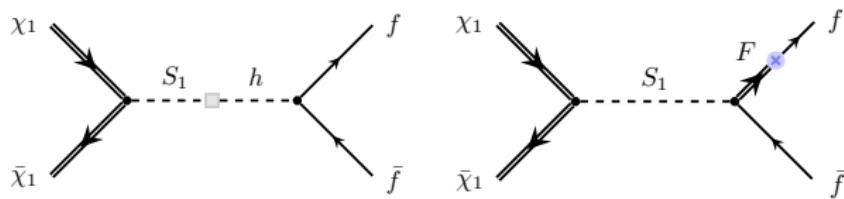
OFPI
Oficina de Proyectos
Internacionales

athenea
3i

BASED ON

- ★ Adrian Carmona, Javier Castellano Ruiz, and Matthias Neubert. "A warped scalar portal to fermionic dark matter". In: *Eur. Phys. J. C* 81.1 (2021), p. 58. doi: [10.1140/epjc/s10052-021-08851-0](https://doi.org/10.1140/epjc/s10052-021-08851-0). arXiv: [2011.09492 \[hep-ph\]](https://arxiv.org/abs/2011.09492)
- ★ Aqeel Ahmed, Adrian Carmona, Javier Castellano Ruiz, Yi Chung, and Matthias Neubert. "Dynamical origin of fermion bulk masses in a warped extra dimension". In: *JHEP* 08 (2019), p. 045. doi: [10.1007/JHEP08\(2019\)045](https://doi.org/10.1007/JHEP08(2019)045). arXiv: [1905.09833 \[hep-ph\]](https://arxiv.org/abs/1905.09833)

UNIVERSIDAD
DE GRANADA



OFPI
Oficina de Proyectos
Internacionales

SPOILER!

At the end of the day, we are going to have a:

- ★ A fermionic DM candidate χ co-annihilating into the SM via the Higgs h and a heavy scalar mediator S_1

MOTIVATION

All this is going to come from a model accounting for

- ★ the hierarchy between M_{Planck} and the electroweak scale
- ★ the hierarchy between the different fermion masses
- ★ the observed relic abundance

which are issues that **can not** be addressed within the SM

脚步 icon In particular, I will take the path of adding a warped extra dimension (WED)

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales

MOTIVATION

THE HEAVY SCALAR WILL BE A NATURAL MEDIATOR
TO ANY FERMIONIC DARK SECTOR PROPAGATING INTO
THE WARPED EXTRA DIMENSION

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales

MOTIVATION

It is **NATURAL** because

- ★ it was ordered to solve another problem
- ★ it is *technically* natural, like any scalar in WEDs
- ★ Once this guy is present, it has to couple to any fermion propagating into the WED

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales

A BRIEF DETOUR

WHAT CAN AN XDIM DO AND NOT DO FOR YOU?

It can

- ✓ give you a technically natural light Higgs
- ✓ provide a rationale to understand the flavor puzzle

However,

- ✗ contrary to SUSY, it does not have a prime DM candidate

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales

athenea
3i

THE PRICE TO PAY

For every field propagating into the bulk of the warped extra dimension, there will be an infinite tower of Kaluza-Klein resonances

like there are infinite harmonics in a vibrating guitar string. We will identify the massless zero-mode with the corresponding SM field

UNIVERSIDAD
DE GRANADA

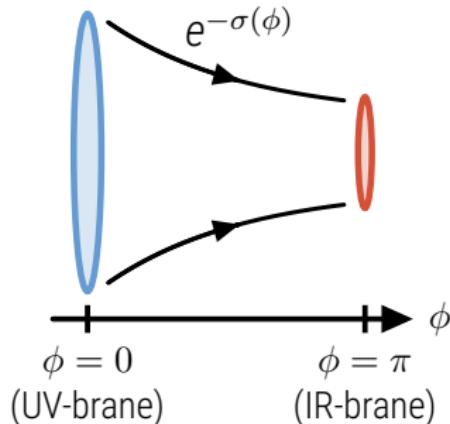
OFPI
Oficina de Proyectos
Internacionales

THE PRICE TO PAY

For every field propagating into the bulk of the warped extra dimension, there will be an infinite tower of Kaluza-Klein resonances

like there are infinite harmonics in a vibrating guitar string. We will identify the massless zero-mode with the corresponding SM field

UNIVERSIDAD
DE GRANADA


OFPI
Oficina de Proyectos
Internacionales

European
Commission

A NATURALLY LIGHT HIGGS

In WEDs, the fundamental scale of the theory $\mathcal{O}(M_{\text{Pl}})$ is redshifted by the warp factor to a few TeV on the IR brane, where the Higgs is localized [Randall, Sundrum '99]

$$ds^2 = e^{-2\sigma(\phi)} \eta_{\mu\nu} dx^\mu dx^\nu - r^2 d\phi^2$$

UV: $m \sim M_{\text{Pl}} = 2 \cdot 10^{15} \text{ TeV}$

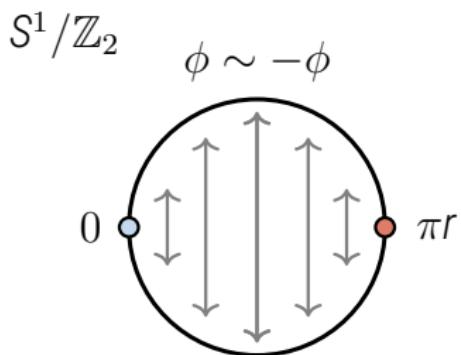
IR: $m \sim M_{\text{Pl}} \cdot e^{-\sigma(\pi)} \sim \text{TeV}$

The Higgs VEV (as any dimensionful parameter) gets redshifted

$$v_{\text{SM}} \sim M_{\text{Pl}} e^{-\sigma(\pi)} \quad \sigma(\pi) = kr\pi, \quad kr \sim 10$$

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales



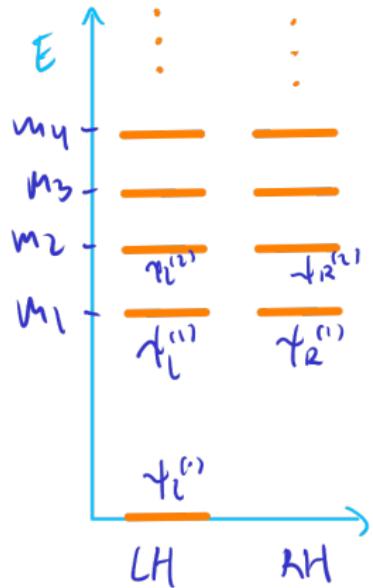
A RATIONALE FOR THE FLAVOR PUZZLE

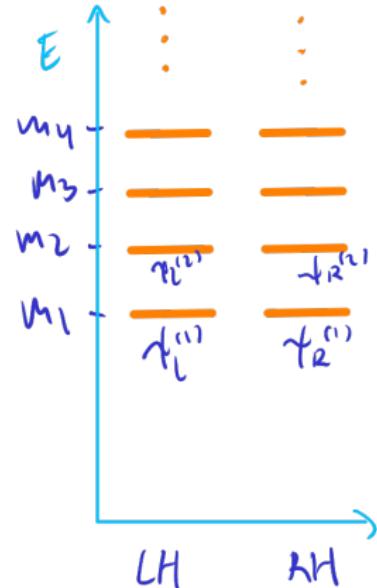
The smallest irrep of the 5D Clifford algebra $\{\Gamma^M, \Gamma^N\} = 2g^{MN}$ is 4D

$$\Gamma^5 = \pm \Gamma^0 \Gamma^1 \Gamma^2 \Gamma^3 \Rightarrow \bar{\Gamma} \propto 1$$

- 1 $\psi(x, \phi)$ are vector-like and can have bulk masses $M = c/k$
- 2 We can still get a 4D chiral spectrum

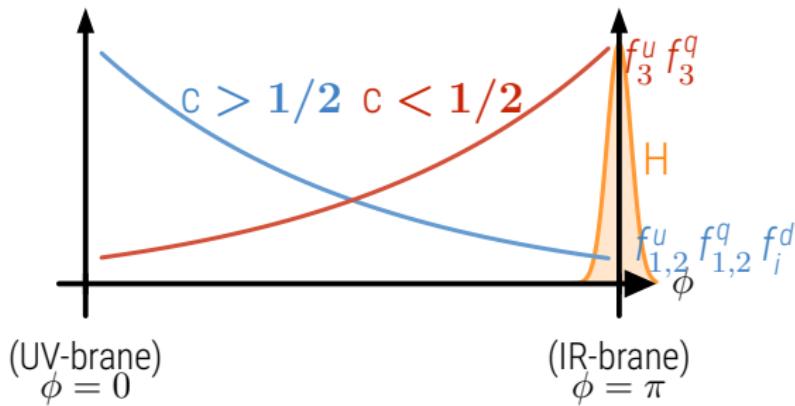
$$\psi_L(x, -\phi) = Z\psi_L(x, \phi) \quad Z^2 = 1$$
$$\psi_L(x, y)|_{0,\pi} = 0 \quad \partial_\phi \psi_L(x, y)|_{0,\pi} = 0$$


UNIVERSIDAD
DE GRANADA


OFPI
Oficina de Proyectos
Internacionales

A RATIONALE FOR THE FLAVOR PUZZLE

$$\int_R^{(n)}(0) = \int_R^{(n)}(\pi r) = 0$$



$$\int_R^{(n)}(0) = \int_R^{(n)}(\pi r) = 0$$

A RATIONALE FOR THE FLAVOR PUZZLE

This can explain the huge hierarchy between the different fermion masses

$$(m_{u,d})_{ij} \sim \frac{V}{\sqrt{2}} f_i^q Y_* f_j^{u,d}$$

We obtain naturally also a hierarchical mixing in the quark sector

$$\left| U_L^{u,d} \right|_{ij} \sim f_i^q / f_j^q \quad \left| U_R^{u,d} \right|_{ij} \sim f_i^{u,d} / f_j^{u,d} \quad i \leq j$$

END DETOUR

OUR ORIGINAL MOTIVATION

To have a chiral spectrum, $\bar{\Psi}\Psi$ has to be \mathbb{Z}_2 -odd. Normally, one just assumes

$$M \operatorname{sign}(\phi) \bar{\Psi}(x, \phi) \Psi(x, \phi)$$

However,

- ★ why $M \operatorname{sign}(\phi)$ and not any other \mathbb{Z}_2 -odd function?
- ★ is it obvious that $M \operatorname{sign}(\phi)$ can be obtained dynamically?
- ★ what are the phenomenological consequences?

We explore the case where the fermion bulk masses comes trough a term

$$\Sigma(x, \phi) \bar{\Psi}(x, \phi) \Psi(x, \phi)$$

after the \mathbb{Z}_2 -odd scalar field $\Sigma(x, \phi)$ takes a VEV [\[Georgi et al '00\]](#) for flat Xdim

$$\langle \Sigma(x, \phi) \rangle = \omega(\phi)$$

UNIVERSIDAD
DE GRANADA

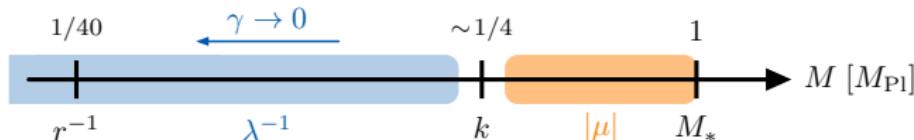
OFPI
Oficina de Proyectos
Internacionales

A COUPLED GRAVITY SCALAR SYSTEM

The scalar action reads

$$S_{5D} = 2 \int d^4x \int_0^\pi d\phi \sqrt{g} \left\{ \frac{1}{2} g^{MN} (\partial_M \Sigma) (\partial_N \Sigma) - V(\Sigma) \right\}, \quad \text{with}$$

$$V(\Sigma) = \Lambda_B + \frac{\mu^2}{2} \Sigma^2 + \frac{\lambda}{4!} \Sigma^4$$


- ★ The potential induces a ϕ -dependant VEV: $v(\phi) = \sqrt{\frac{\lambda}{6|\mu|^2}} \omega(\phi)$
- ★ Coupled to gravity through $\gamma \equiv \frac{|\mu|^2}{\lambda M_*^3}$

$$0 = \sigma''(\phi) - \gamma v'^2(\phi)$$

$$\sigma'|_{UV,IR} = \mp r \kappa^2 V_{UV,IR}$$

$$0 = v''(\phi) - 4\sigma'(\phi)v'(\phi) + |\mu r|^2 [v(\phi) - v^3(\phi)]$$

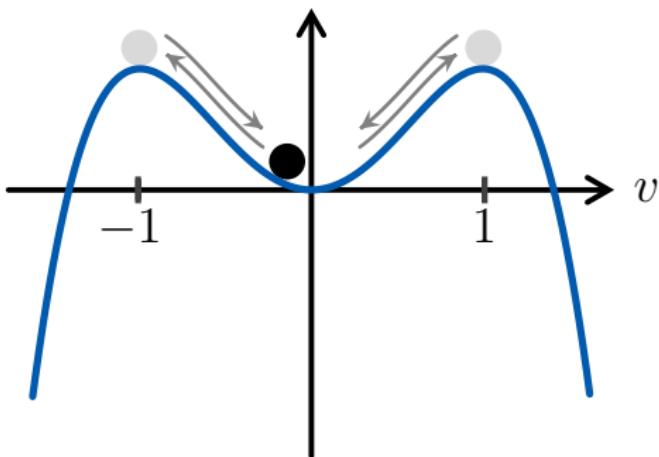
$$v|_{UV,IR} = 0$$

UNIVERSIDAD
DE GRANADA

athenea
3i
OFPI

European
Commission

BACKGROUND SOLUTIONS


$$0 = \sigma''(\phi) - \gamma v'^2(\phi)$$

$$\sigma'|_{UV,IR} = \mp r \kappa^2 V_{UV,IR}$$

$$0 = v''(\phi) - 4 \sigma'(\phi) v'(\phi) + |\mu r|^2 [v(\phi) - v^3(\phi)]$$

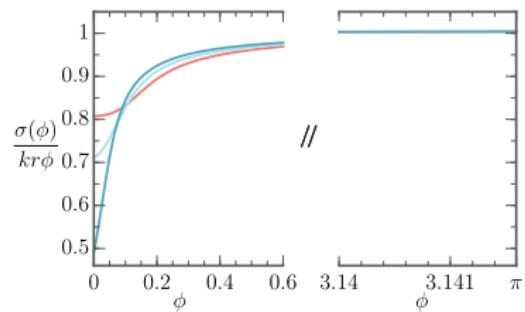
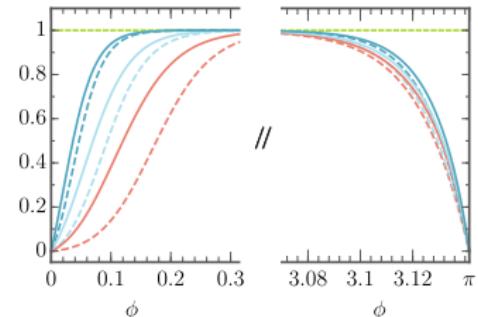
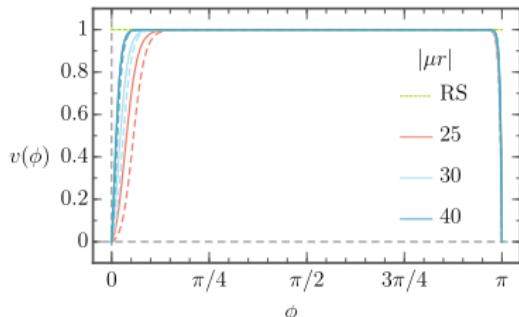
$$v|_{UV,IR} = 0$$

$$\mathcal{V}(v) = |\mu r|^2 \left[\frac{1}{2} v^2 - \frac{1}{4} v^4 \right]$$

$$|\mu r|^2 - 4(kr)^2 \geq 1$$

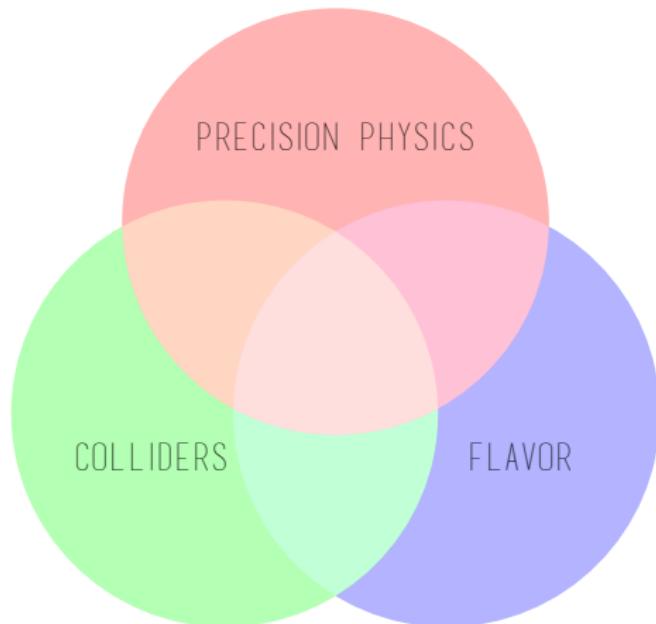
UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales




BACKGROUND SOLUTIONS

$$0 = \sigma''(\phi) - \gamma v'^2(\phi)$$

$$\sigma'|_{\text{UV,IR}} = \mp r \kappa^2 V_{\text{UV,IR}}$$


$$0 = v''(\phi) - 4\sigma'(\phi)v'(\phi) + |\mu r|^2 [v(\phi) - v^3(\phi)] \quad v|_{\text{UV,IR}} = 0$$

$m_g^1 = 10 \text{ TeV}$, $r = 40 M_{\text{Pl}}^{-1}$, with strong (no) backreaction - solid (dashed)

IMPLICATIONS

EWPT

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales

athenea
3i
Oficina de Proyectos
Internacionales

European
Commission

IMPLICATIONS

All this and more in [arXiv:1905.09833](https://arxiv.org/abs/1905.09833). We will concentrate on this talk on other effects, which we explored on [arXiv:2011.09492](https://arxiv.org/abs/2011.09492)

- ★ Mixing with a bulk-Higgs boson
- ★ Connection to dark sectors and DM

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales

athenea
3i

MIXING WITH A BULK HIGGS BOSON

- ★ In the previous discussion, we have neglected the mixing of Σ with the Higgs boson, but in general we will have

$$V(H, \Sigma) = \mu_H^2 |H|^2 - \frac{\mu_S^2}{2} \Sigma^2 + \frac{\lambda_S}{4} \Sigma^4 + \lambda_{HS} |H|^2 \Sigma^2$$

- ★ If the Higgs is also a bulk field, such mixing is unavoidable. We parametrize it by

$$\bar{\lambda} = \frac{\mu_S^2}{k^2} \frac{\lambda_{HS}}{\lambda_S}$$

- ★ The coupled system of equations become larger and nastier to solve. We do it perturbatively for a vanishing backreaction and smallish $\bar{\lambda}$

MIXING WITH A BULK HIGGS BOSON

We write the metric as

$$ds^2 = \frac{\epsilon^2}{t^2} \left(\eta_{\mu\nu} dx^\mu dx^\nu - \frac{dt^2}{M_{KK}^2} \right), \quad t \in [0, 1], \quad \epsilon = e^{-kr\pi} \sim \mathcal{O}(10^{-16})$$

Due to EWPT, we take $M_{KK} = k\epsilon = 5 \text{ TeV}$. In the unitary gauge,

$$H(x, t) = (0, \frac{t}{\epsilon\sqrt{2r}} [\varphi_H(t) + h(x, t)])^T, \quad \Sigma(x, t) = \varphi_S(t) + \frac{t}{\epsilon\sqrt{r}} S(x, t)$$

The equations of motion for the VEVs $\varphi_H(t)$ and $\varphi_S(t)$ are

$$\begin{aligned} \left[t^2 \partial_t^2 - 3t \partial_t + \frac{\mu_S^2}{k^2} \left(1 - v_S^2 - \bar{\lambda} \frac{k^4}{\mu_S^4} \frac{\lambda_S}{r} t^2 \frac{\varphi_H^2}{M_{KK}^2} \right) \right] v_S(t) &= 0, \\ [t^2 \partial_t^2 + t \partial_t - \beta^2 - \bar{\lambda} v_S^2] \frac{\varphi_H(t)}{t} &= 0. \end{aligned}$$

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales

athenea
3i

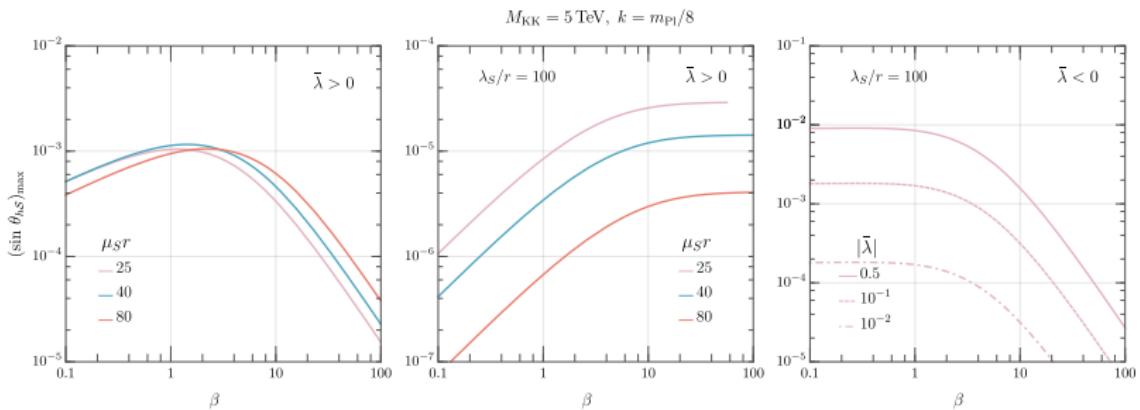
European
Commission

MIXING WITH A BULK HIGGS BOSON

The guys with no VEV will have the following KK-decomposition for $\bar{\lambda} = 0$

$$h(x, t) = \sum_{n=0}^{\infty} h_n(x) \chi_n^h(t), \quad S(x, t) = \sum_{n=1}^{\infty} S_n(x) \chi_n^S(t)$$

The lightest resonances $h_0(x), h_1(x), S_1(x)$ will mix whenever $\bar{\lambda} \neq 0$, leading to new mass eigenstates $h_{\text{phys}}(x), \mathcal{S}(x), \mathcal{H}(x)$,


$$h_0(x) = h_{\text{phys}}(x) + \sin \theta_{h\mathcal{S}} \mathcal{S}(x) + \sin \theta_{h\mathcal{H}} \mathcal{H}(x),$$

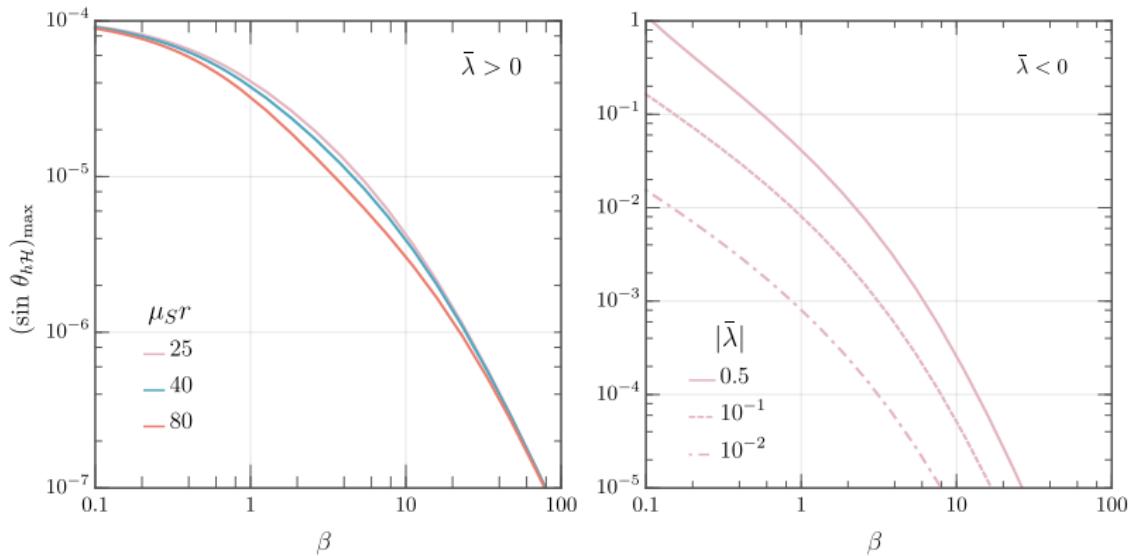
$$\mathcal{H}(x) = h_1(x) + \mathcal{O}(\bar{\lambda}), \quad \mathcal{S}(x) = S_1(x) + \mathcal{O}(\bar{\lambda})$$

$$\sin \theta_{h\mathcal{S}} = \bar{\lambda} \frac{\kappa_{h_0 S_1}^2}{x_{S_1}^2 - x_{h_0}^2} \approx \bar{\lambda} \frac{\kappa_{h_0 S_1}^2}{x_{S_1}^2} \quad \sin \theta_{h\mathcal{H}} = \bar{\lambda} \frac{\kappa_{h_0 h_1}^2}{x_{h_1}^2 - x_{h_0}^2} \approx \bar{\lambda} \frac{\kappa_{h_0 h_1}^2}{x_{h_1}^2}$$

MIXING WITH A BULK HIGGS BOSON

$$m_h^2 \approx (x_{h_0}^2 + \bar{\lambda} \kappa_{h_0}^2) M_{KK}^2$$

UNIVERSIDAD
DE GRANADA


OFPI
Oficina de Proyectos
Internacionales

athenea
3i

MIXING WITH A BULK HIGGS BOSON

$M_{\text{KK}} = 5 \text{ TeV}$, $k = m_{\text{Pl}}/8$

$$m_h^2 \approx (x_{h_0}^2 + \bar{\lambda} \kappa_{h_0}^2) M_{\text{KK}}^2$$

UNIVERSIDAD
DE GRANADA

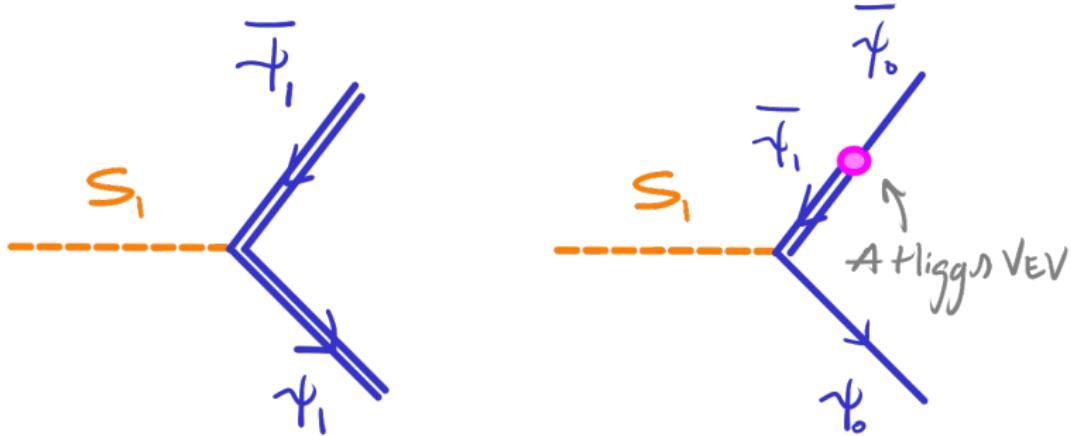
OFPI
Oficina de Proyectos
Internacionales

athenea
3i

A WINDOW TO DARK FERMIONS

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales



European
Commission

A WINDOW TO DARK FERMIONS

ANY fermion $\psi(x) \subset \Psi(x, t)$ propagating into the bulk of the extra dimension has to interact with $S_1(x) \subset \Sigma(x, t)$,

$$S_{5D} \supset - \int d^5x \sqrt{g} \mathcal{Y} \bar{\Psi}(x, t) \Psi(x, t) \Sigma(x, t) \rightarrow y_{aA\mathcal{S}} S_1(x) \bar{\psi}(x) \psi^{(i)}(x)$$

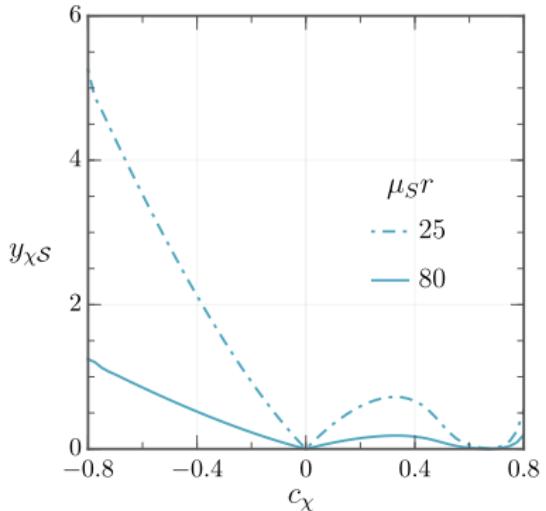
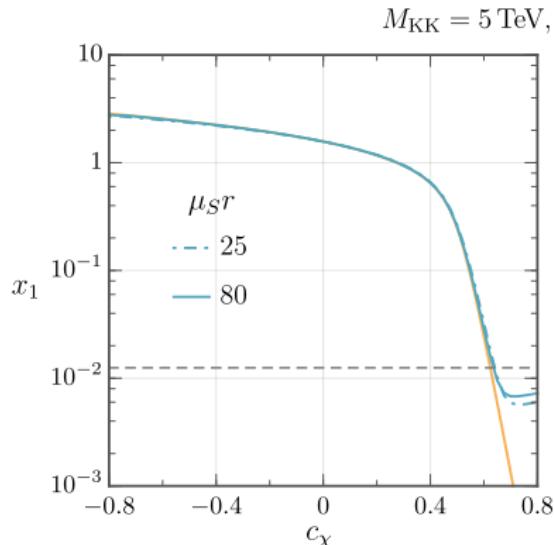
A WINDOW TO DARK FERMIONS

Consider a dark sector composed of N_χ 5D fermions, singlets of the SM

- ★ The lightest KK resonance will be stable, even if dark fermions are charged under a dark gauge group
- ★ The lightest fermion can be a **chiral zero-mode** or a **massive KK fermion**, depending on the boundary conditions
 - A **chiral zero-mode** will require a dark Higgs
 - A **massive KK fermion** can be made much lighter than M_{KK}
- ★ For the sake of concreteness, we chose the second option

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales

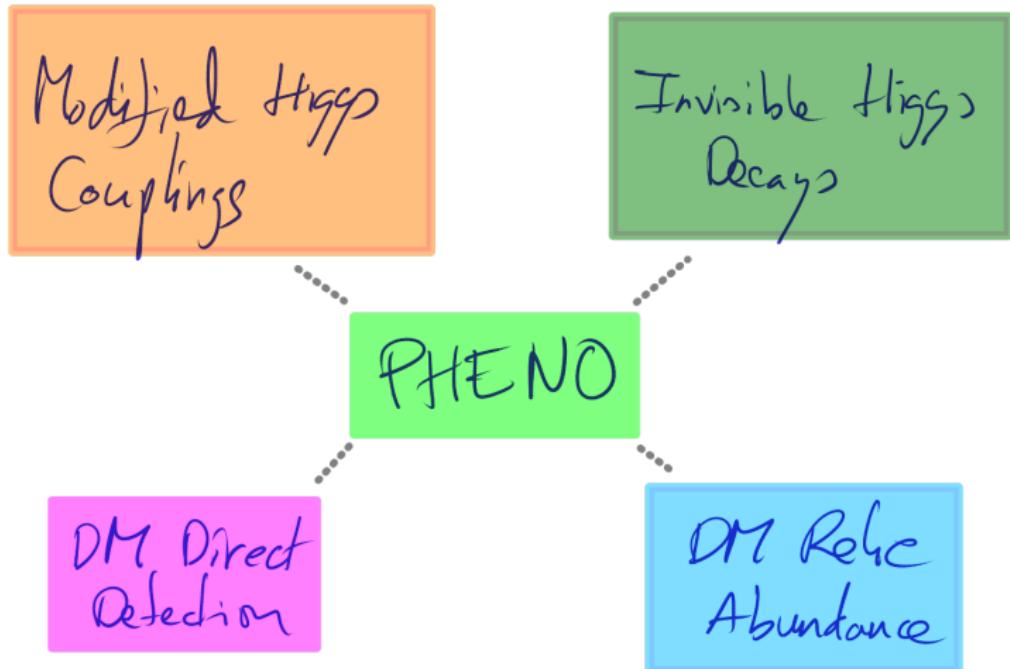


athenea
3i

European
Commission

A WINDOW TO DARK FERMIONS

The first KK fermion resonance can be very light too Agashe, Servant, '04

Where we have defined $x_1 = m_\chi/M_{\text{KK}}$ and $c_\chi = \mathcal{Y}_\chi \sqrt{\frac{6}{\lambda_S}} \mu_S/k$

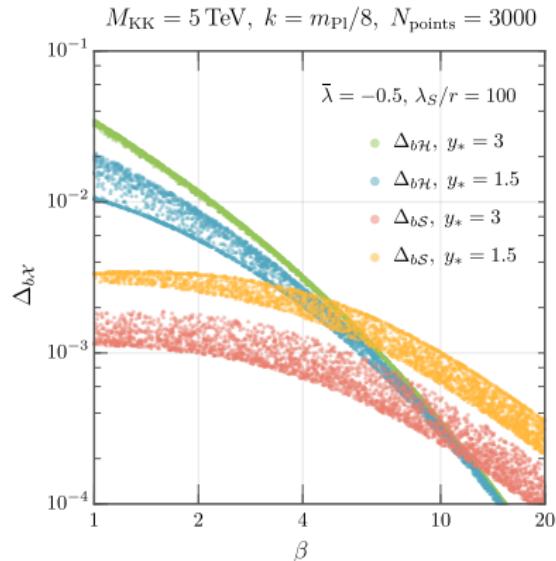

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales

A WINDOW TO DARK FERMIONS

UNIVERSIDAD
DE GRANADA

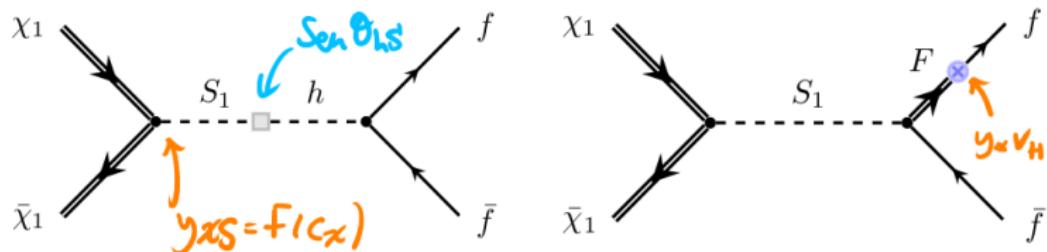
OFPI
Oficina de Proyectos
Internacionales


athenea
3i

European
Commission

MODIFIED HIGGS COUPLINGS

$$\delta y_{fh}^{\text{phys}} \equiv 1 - \frac{y_{fh}^{\text{phys}}}{y_{fh}^{\text{SM}}} \simeq (1 - \varkappa_f) + \Delta_{f\mathcal{H}} + \Delta_{f\mathcal{S}} \quad y_* = \frac{\sqrt{k(1 + \beta)}}{2 + \beta} Y_{5D},$$


UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales

DM COANNIHILATION

- ★ The mixing of the Higgs with S_1 is controlled by $\sin \theta_{hS} \lesssim 10^{-3}$
- ★ m_χ and $y_{\chi S}$ are both controlled by c_χ , as we have seen before
- ★ $y_* = \mathcal{O}(1)$ is related to the 5D Yukawa coupling and controls the localization of the different SM fermions and therefore the mixing between

$$Q_L t_R, \quad q_L T_R, \dots$$

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales

European
Commission

DM COANNIHILATION

We consider two cases,

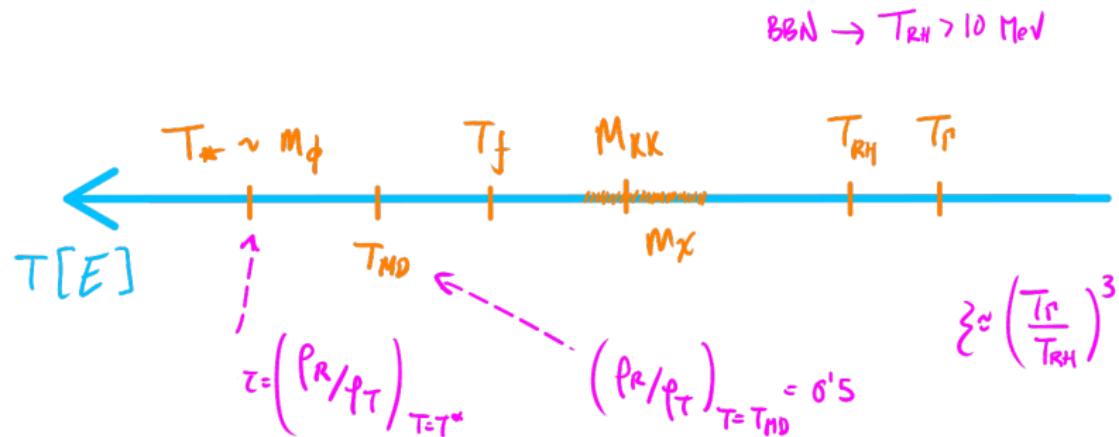
- ★ the usual freeze-out mechanism

$$\Omega_\chi h^2 \simeq \frac{x_f}{2\sqrt{g_{*s}(m_\chi/x_f)}} \frac{10^{-9} \text{GeV}^{-2}}{\langle \sigma v \rangle}$$

- ★ that DM freeze-out happens during an early period of matter-domination
[Hamdan, Unwin, '18](#), which makes

$$H \propto T^{3/2} \quad \text{instead of} \quad H \propto T^2$$

UNIVERSIDAD
DE GRANADA



OFPI
Oficina de Proyectos
Internacionales

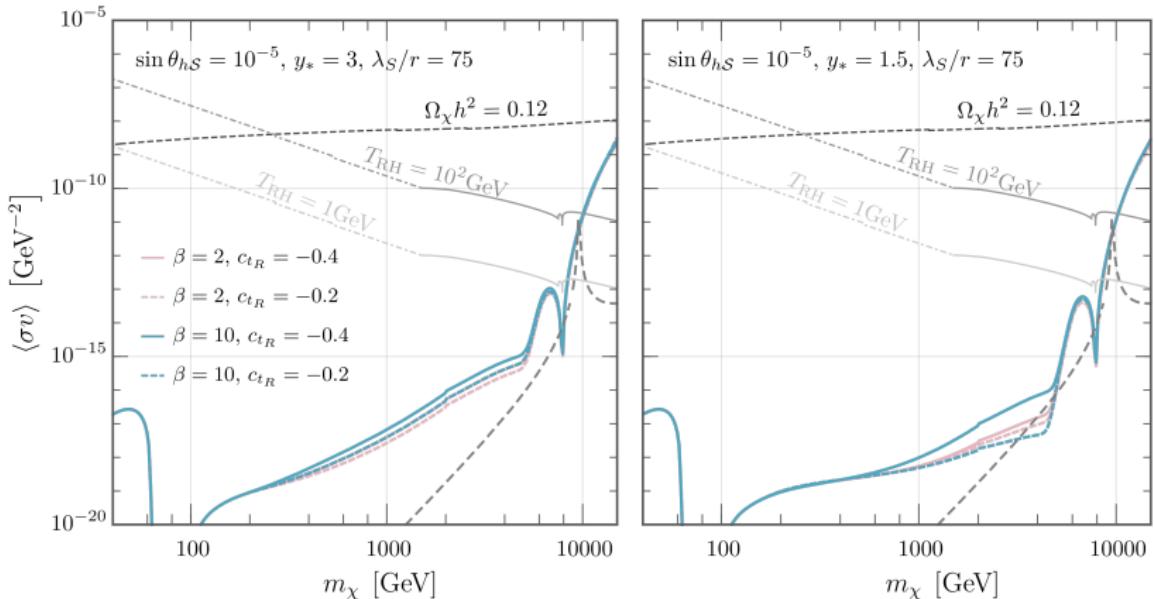
A COSMOLOGICAL SOAP OPERA

We can think of a scalar field ϕ living on the UV brane and relatively long-lived

Eventually, in the scenario of matter domination (MD), we are going to have three parameters: T_* , τ and T_{RH}

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales


athenea
3i

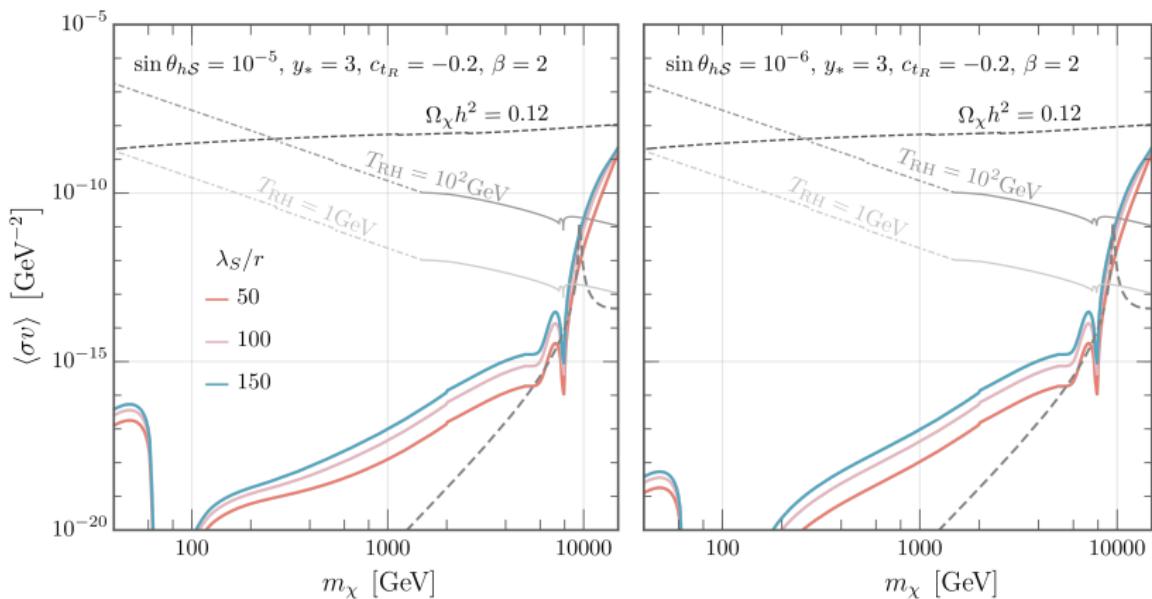
European
Commission

LET US COANNIHILATE

$$M_{\text{KK}} = 5 \text{ TeV}, k = m_{\text{Pl}}/8$$

For the MD case, we take $T_* = 10^5 \text{ GeV}$ and $\tau = 0.99$

UNIVERSIDAD
DE GRANADA



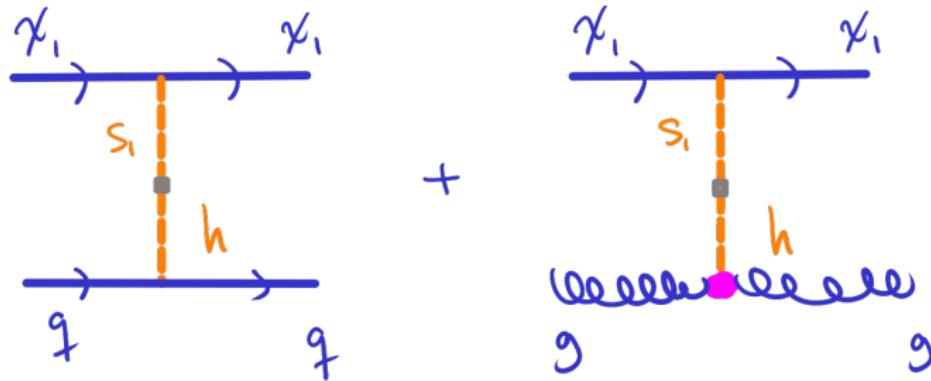
OFPI
Oficina de Proyectos
Internacionales

athenea
3i

LET US COANNIHILATE

For the MD case, we take $T_* = 10^5$ GeV and $\tau = 0.99$

UNIVERSIDAD
DE GRANADA



OFPI
Oficina de Proyectos
Internacionales

DM DIRECT DETECTION

Since S_1 is very heavy, constraints from DM direct detection come mostly through Higgs exchange

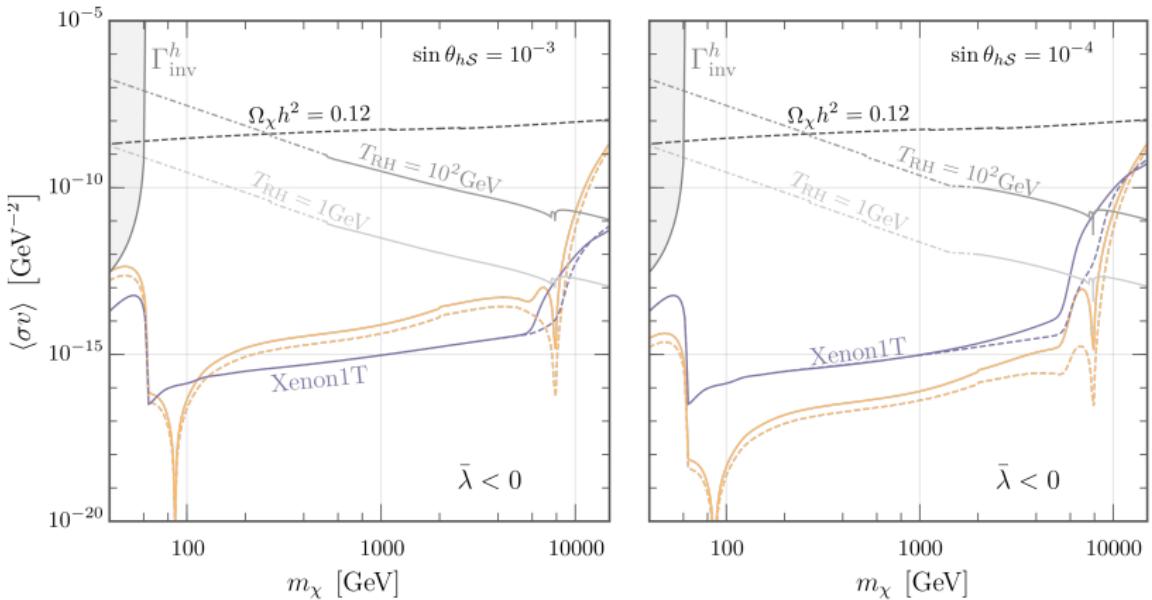
which is controlled by $\sin \theta_{hS}$. Indeed, the WC for the effective vertex $\bar{q}q\bar{\chi}\chi$ reads

$$\alpha_q = y_{\chi S} \left\{ \frac{y_{qS}}{m_S^2} + \frac{y_{qh} \sin \theta_{hS}}{m_h^2} \right\}$$

WE NEED TO CHECK ALL THE CONSTRAINTS

We do not have infinite freedom, e.g. ~~X~~ Chorizo, ~~X~~ Huevo, ~~X~~ Piña, . . .

UNIVERSIDAD
DE GRANADA



OFPI
Oficina de Proyectos
Internacionales

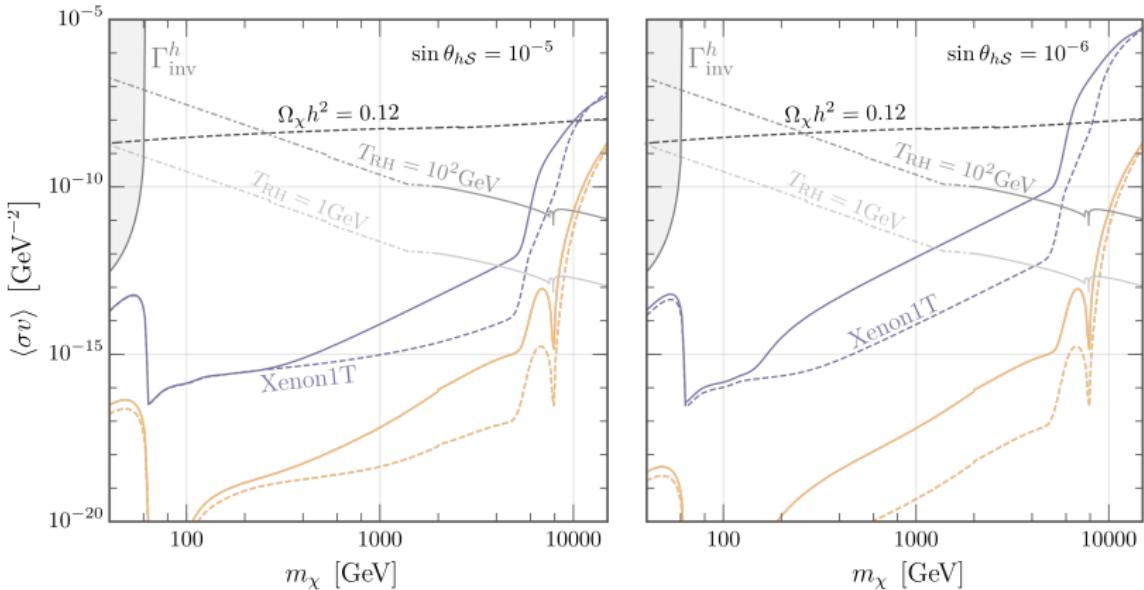
ALL THE STUFF TOGETHER

$$M_{\text{KK}} = 5 \text{ TeV}, k = m_{\text{Pl}}/8, c_{t_R} = -0.2, \beta = 2$$

For the MD case, we take $T_\star = 10^5$ GeV and $\tau = 0.99$

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales


athenea
3i

European
Commission

ALL THE STUFF TOGETHER

$$M_{\text{KK}} = 5 \text{ TeV}, k = m_{\text{Pl}}/8, c_{t_R} = -0.2, \beta = 2$$

For the MD case, we take $T_\star = 10^5$ GeV and $\tau = 0.99$

UNIVERSIDAD
DE GRANADA

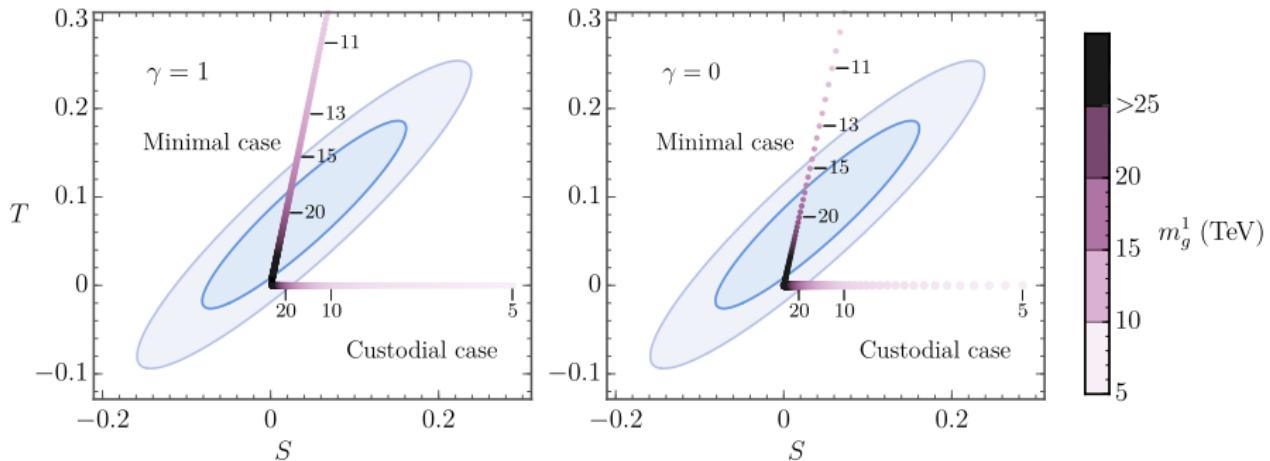
OFPI
Oficina de Proyectos
Internacionales

athenea
3i

European
Commission

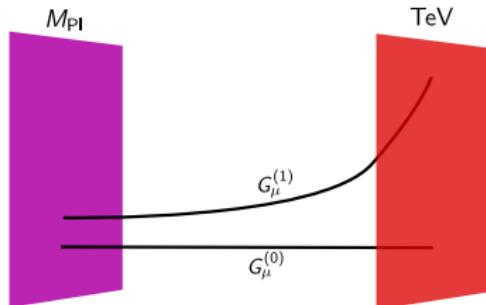
CONCLUSIONS

- ★ 5D fermion masses can be obtained dynamically
- ★ This require adding a \mathbb{Z}_2 -odd field $\Sigma(x, \phi)$
- ★ Every 5D fermion has to couple to Σ
- ★ We have therefore a natural window to any 5D fermion sector
- ★ S_1 -mediated DM can provide a fraction of the observed relic abundance or all of it, in the case of a MD freeze-out



THANKS!

BACKUP SLIDES



$$r = 40 M_{\text{Pl}}^{-1}, |\mu r| = 25$$

γ	$m_g^1 \text{ (TeV)} - \text{minimal}$	$m_g^1 \text{ (TeV)} - \text{custodial}$	$M_{\text{KK}} \text{ (TeV)} - \text{minimal}$
1	15.3	17.0	22.8
10^{-1}	14.7	17.0	7.4
10^{-2}	14.6	17.0	6.1
0	14.6	17.0	5.9

Different fermion localizations lead to family dependent couplings to massive KK gauge bosons, which are IR localized

$$g_\alpha^{(1)} \approx g_s \left(-\frac{1}{\sqrt{L}} + f_\alpha^2 \gamma(c_\alpha) \right)$$

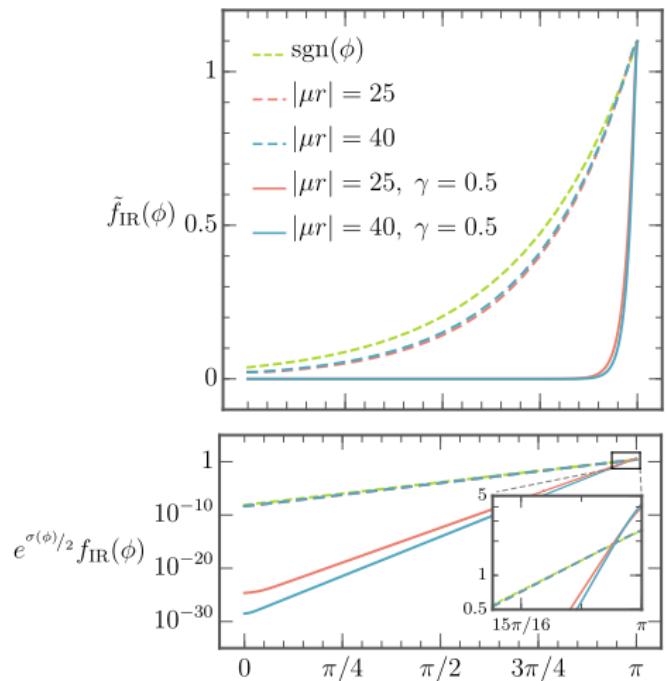
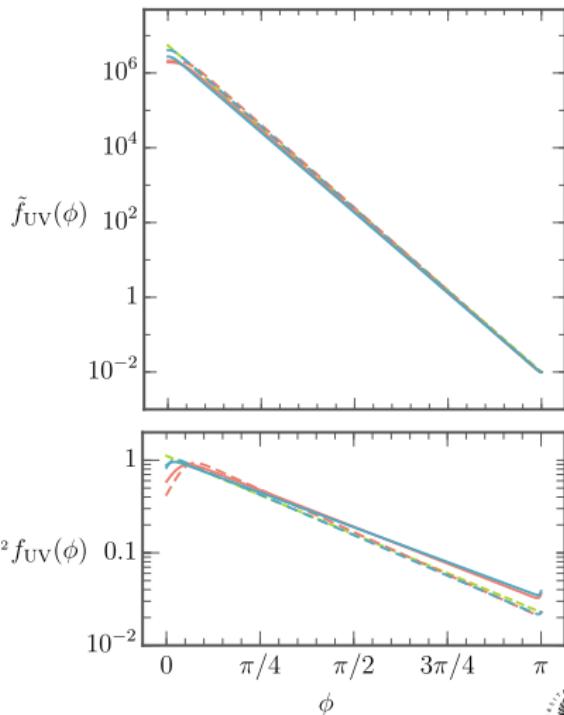
$$\sqrt{L} = \sqrt{k r \pi} \approx 5 \quad \gamma(c_\alpha) \sim \mathcal{O}(1)$$

For UV localized fermions $\Rightarrow f_\alpha \ll 1 \Rightarrow g_\alpha^{(1)} \approx -0.2g_s$

RS-GIM Mechanism

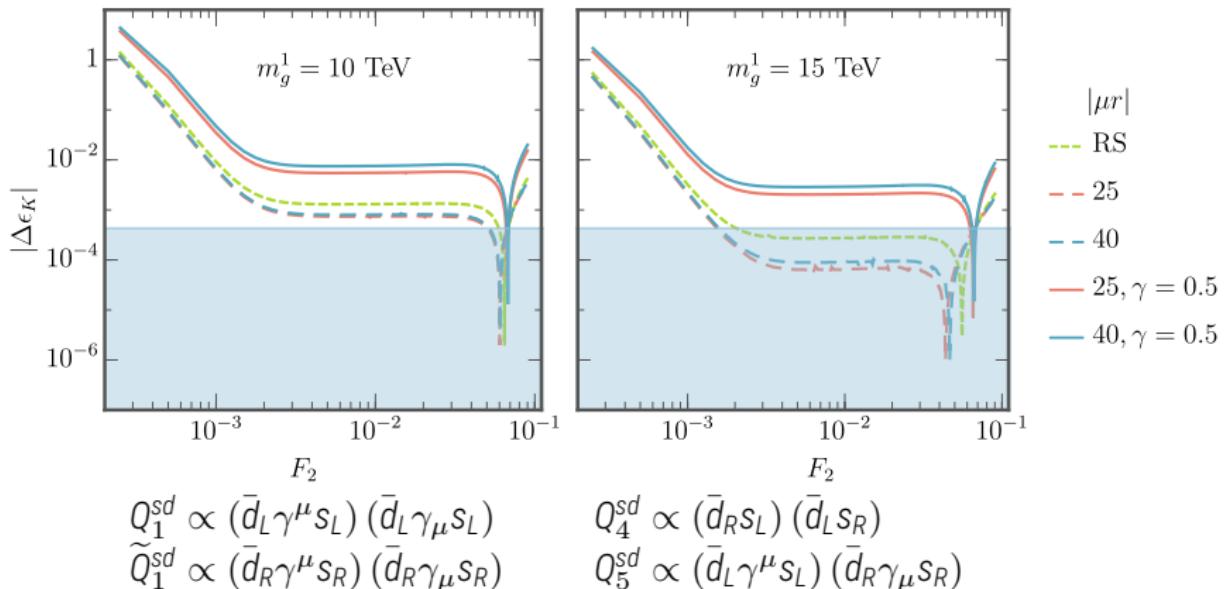
Off-diagonal couplings are suppressed by CKM entries and by ratios of mixing and masses. Still, Δm_K and ϵ_K impose some tuning.

UNIVERSIDAD
DE GRANADA



OFPI
Oficina de Proyectos
Internacionales

athenea
3i

$$\text{SM masses: } (\gamma_q^{\text{eff}})_{ij} = F(c_{Q,i}) (Y_q)_{ij} F(c_{q,i})$$


$m_g^1 = 10 \text{ TeV}$, $r = 40 M_{\text{Pl}}^{-1}$, with (without) backreaction - solid (dashed)

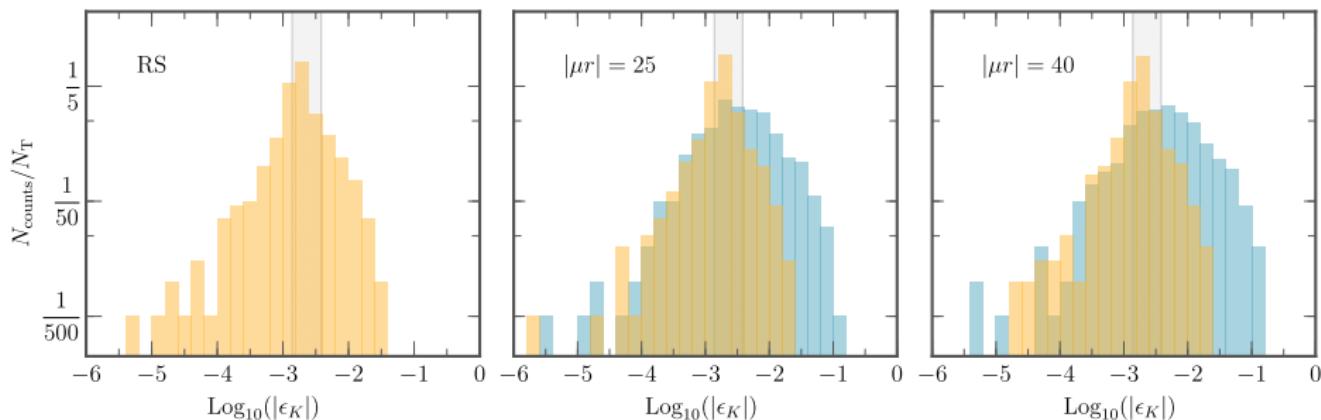
FLAVOR CONSTRAINTS A CASE STUDY

A BENCHMARK POINT

$|\Delta\epsilon_K|$ with (without) backreaction - solid (dashed), $r = 40 M_{\text{Pl}}^{-1}$

$$\Delta \equiv |\epsilon_K - \epsilon_K^{\text{SM}}| \propto \Im \left[C_1 + \tilde{C}_1 + 213 \left(C_4 + \frac{C_5}{N_c} \right) \right]$$

UNIVERSIDAD
DE GRANADA


athenea
3i

FLAVOR CONSTRAINTS A CASE STUDY

SCANNING OVER YUKAWA MATRICES

$r = 40 M_{\text{Pl}}^{-1}$, $m_g^1 = 15 \text{ TeV}$, $F_2 = 10^{-2}$, with (without) backreaction - blue (yellow)

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales

athenea
3i

European
Commission

METRIC SCALAR SYSTEM

Scalar-gravity action ($\kappa^{-2} \equiv 2M_*^3$)

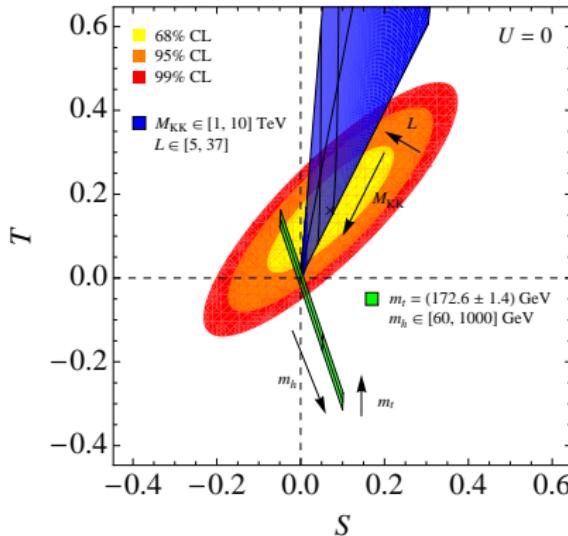
$$S = 2 \int d^4x \int_0^\pi d\phi \sqrt{g} \left\{ -\frac{\mathcal{R}}{2\kappa^2} + T(\Sigma) - V(\Sigma) - \sum_i \frac{\sqrt{|\hat{g}_i|}}{\sqrt{g}} V_i(\Sigma) \delta(\phi - \phi_i) \right\}$$

Einstein's equation and EOM for ω

$$\begin{aligned} \mathcal{R}_{MN} - \frac{1}{2} g_{MN} \mathcal{R} &= \kappa^2 T_{MN}, \\ -\frac{1}{\sqrt{g}} \partial_M (\sqrt{g} g^{MN} \partial_N \omega) &= \frac{\partial V(\omega)}{\partial \omega} + \sum_i \frac{\sqrt{|\hat{g}_i|}}{\sqrt{g}} \frac{\partial V_i(\omega)}{\partial \omega} \delta(\phi - \phi_i), \end{aligned}$$

Energy-momentum tensor T_{MN} for ω

$$\begin{aligned} T_{MN} &= \partial_M \omega \partial_N \omega - g_{MN} \left[\frac{1}{2} g^{PQ} \partial_P \omega \partial_Q \omega - V(\omega) \right] \\ &+ \sum_i \frac{\sqrt{|\hat{g}_i|}}{\sqrt{g}} V_i(\omega) \hat{g}_{\mu\nu}^i \delta_M^\mu \delta_N^\nu \delta(\phi - \phi_i) \end{aligned}$$


UNIVERSIDAD
DE GRANADA

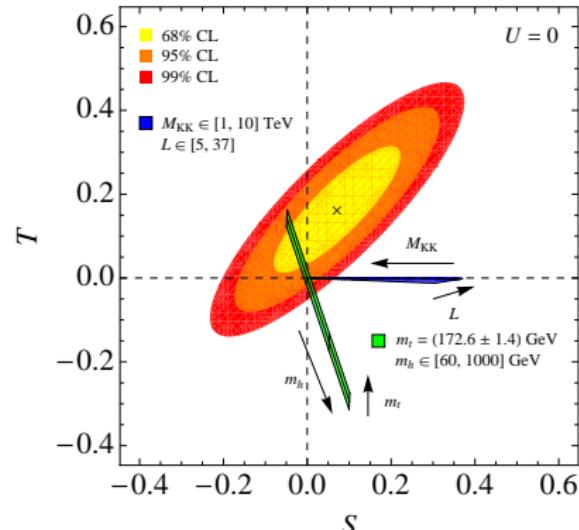
OFPI
Oficina de Proyectos
Internacionales

$$T = \frac{\pi^2 V_h^2 r^2}{c_W^2} \int_0^\pi d\phi_1 e^{2\sigma(\phi_1)}, \quad S = 8\pi^2 V_h^2 r^2 \int_0^\pi d\phi_1 e^{2\sigma(\phi_1)} \int_{\phi_1}^\pi d\phi_2$$

Minimal case

M. Neubert et al - [0807.4937]

UNIVERSIDAD
DE GRANADA



OFPI
Oficina de Proyectos
Internacionales

athenea
3i

European
Commission

Custodial case

KAON MIXING

$$\epsilon_K = \frac{\kappa_\epsilon e^{i\phi_\epsilon}}{\sqrt{2}(\Delta m_K)_{\text{exp}}} \text{Im} \langle K^0 | \mathcal{H}_{\text{eff}}^{\Delta S=2} | \bar{K}^0 \rangle$$

- Effective $\Delta S = 2$ Hamiltonian

$$\mathcal{H}_{\text{eff}}^{\Delta S=2} = \sum_{i=1}^5 C_i Q_i^{sd} + \sum_{i=1}^3 \tilde{C}_i \tilde{Q}_i^{sd}$$

- Relevant operators (at TL in RS)

$$Q_1^{sd} \propto (\bar{d}_L \gamma^\mu s_L) (\bar{d}_L \gamma_\mu s_L)$$

$$\tilde{Q}_1^{sd} \propto (\bar{d}_R \gamma^\mu s_R) (\bar{d}_R \gamma_\mu s_R)$$

$$Q_4^{sd} \propto (\bar{d}_R s_L) (\bar{d}_L s_R)$$

$$Q_5^{sd} \propto (\bar{d}_L \gamma^\mu s_L) (\bar{d}_R \gamma_\mu s_R)$$

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales

KAON MIXING

- Effective $\Delta S = 2$ Hamiltonian

$$\mathcal{H}_{\text{eff}}^{\Delta S=2} = \sum_{i=1}^5 C_i Q_i^{\text{sd}} + \sum_{i=1}^3 \tilde{C}_i \tilde{Q}_i^{\text{sd}}$$

- Wilson coefficients:

$$C_1^{\text{RS}} \propto (\tilde{\Delta}_D)_{12} \otimes (\tilde{\Delta}_D)_{12}$$

$$\tilde{C}_1^{\text{RS}} \propto (\tilde{\Delta}_d)_{12} \otimes (\tilde{\Delta}_d)_{12}$$

$$C_4^{\text{RS}} \propto (\tilde{\Delta}_D)_{12} \otimes (\tilde{\Delta}_d)_{12}$$

$$C_5^{\text{RS}} \propto (\tilde{\Delta}_D)_{12} \otimes (\tilde{\Delta}_d)_{12}$$

$$(\tilde{\Delta}_F)_{mn} \otimes (\tilde{\Delta}_{f'})_{m'n'} \propto \int_0^\pi d\phi \int_0^\pi d\phi' e^{\sigma(\phi)} e^{\sigma(\phi')} D(\phi, \phi') \\ \times \left[C_m^{(F)}(\phi) C_n^{(F)}(\phi) \right] \times \left[C_{m'}^{(f')}(\phi') C_{n'}^{(f')}(\phi') \right],$$

UNIVERSIDAD
DE GRANADA

OFPI
Oficina de Proyectos
Internacionales

athenea
3i

European
Commission