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Hadrons

I ’Regular’ hadrons: qq̄, qqq

I Exotics: qq̄qq̄, qqqqq̄, qqg,...
Not qq̄: JPC = 0+−, 1−+, 2+−,
3−+,... Rho ρ, ω

  ρ ω
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Light hadrons
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Close to ...

−→ PP th. ππ, K K̄ ... PB K Λ,πΣ, K̄ N...

−→ PV th. K K̄ ∗, πρ, πω, ηω... SB σN...

−→ VV th. ρρ, K ∗K̄ ∗... VB ρ(ω)N, K ∗N...

−→ Hybrid, Glueball candidate
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Dynamically generated resonances

Many suggestions of dynamically generated resonances...

I Oller, Oset, Pelaez, PRL80(1998)
I Ramos, Oset, Nucl. Phys. A635(1998), A725(2003)
I Krehl, Hanhart, Krewald, Speth, Phys. Rev. C62(2000)
I Nieves, Ruiz-Arriola, Phys. Rev. D64(2001)
I Inoue, Vicente-Vacas, Oset, Phys. Rev. D65(2002)
I Epelbaum, Meissner, Nucl. Phys. A725(2003)
I Garcia-Recio, Nieves, Ruiz-Arriola, Phys. Rev. D67(2003)
I Roca, Oset, Singh, Phys. Rev. D72(2005)
I Molina, Nicmorous, Oset, Phys. Rev. D78(2008)
I Geng, Oset, Phys. Rev. D79(2009)
I Alvarez-Ruso, Oller, Alarcon, Phys. Rev. D80(2009)
I Oset, Ramos, EPJA44(2010)

...and a very long list of authors! + + + ...
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Heavy hadrons
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Figure 1: The spectrum of states in the c̄c sector as of July 2019. Thin solid lines represent the states established experimentally and dashed lines
are for those that are claimed but not (yet) established (following the approach used by PDG, we regard a state as established if it is seen in different
modes). States whose quantum numbers are undetermined are not shown. States in the plot are labeled according to the PDG primary naming
scheme — see Sec. 1.2 for further details and for the correspondence with the XYZ naming scheme. Dashed lines show some relevant thresholds
that open in the considered mass range; here D1 stands for D1(2420) and D∗2 for D∗2(2460). Thresholds with hidden strangeness or involving broad
states are not shown. The states shown in the two columns to the right are isovectors containing a c̄c pair; they are necessarily exotic.

in Fig. 1, this applies to the isovector states displayed in the two rightmost columns. In the other cases, there is no
general rule when a state should carry the label exotic and when it is an ordinary c̄c state. However, there is consensus
that all states below the lowest open-flavour threshold (D̄D) are ordinary states. Moreover, also the properties of the
vector states ψ(3770), ψ(4040) and ψ(4160) and of the tensor state ψ2(3823) appear to agree with those of ordinary
quarkonia. All the other states may or may not be exotic and will be discussed in this report. As of today, in the
charmonium sector the number of experimentally established exotic candidates is similar to the number of ordinary
states. In the bottomonium sector, on the other hand, only two exotics are established and they are both charged. The
states in the b̄b spectrum are shown in Fig. 2.

Some of the exotic candidates reside rather close to open-flavour thresholds, however, the impact these thresholds
have on the states is not clear yet. A possibility is that they induce kinematic enhancements, so that not all of
the observed signals may correspond to new states in the QCD spectrum. Nevertheless, as we will argue in this
review, most of them certainly do correspond to new states. From a comparison of Figs. 1 and 2 one can see that
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viously seen charmonium states plus a fourth state. A
typical signal Mrec�J= � instrumental resolution is
�30 MeV=c2; the signal shape is further smeared by ini-
tial state radiation (ISR) resulting in a higher mass tail.
The expected signal line shapes are determined from
Monte Carlo (MC) simulation assuming no

���
s
p

dependence
of the form factors (FF). The mass values for all states are
free parameters in the fit, the widths of �c and �c0 are fixed
to PDG values [8], and the �c�2S� width is fixed to
17 MeV=c2 [9]. The X�3940� width is a free parameter.
The background is parametrized by a second order poly-
nomial and a threshold term [

��������������������������������������
Mrec�J= � � 2MD

p
] with a

free normalization to allow for contributions from e�e� !
J= D �D; thresholds for J= D��� �D� are taken into account
in the systematic uncertainties.

The fit results are given in Table I and shown in Fig. 1 as
the solid curve; the dashed curve is the background func-
tion. We note that the masses of the known charmonium
states are �10 MeV=c2 lower than their nominal values.
As the Mrec�J= � scale has been calibrated using the
process e�e� !  �2S�� (the uncertainty due to J= mo-
mentum reconstruction is <3 MeV=c2 [7]), we ascribe
these shifts to a combination of statistical fluctuations
and systematic effects due to the high mass tails of the
peaks. Varying the

���
s
p

dependence of the FF’s in the MC
simulation, we find shifts as large as 5 MeV=c2. The
systematic error in the �c, �c0, and �c�2S� mass is thus
estimated to be 6 MeV=c2. The significance for each signal
is defined as

�����������������������������������
�2 ln�L0=Lmax�

p
, where L0 and Lmax de-

note the likelihoods returned by the fits with the signal

yield fixed at zero and at the fitted value, respectively. The
significance of the X�3940� signal is 5:0�. The fitted width
of the X�3940� state is consistent with zero within its large
statistical error: � 
 39� 26 MeV=c2.

The X�3940� mass is above both the D �D and the D� �D
thresholds. We therefore perform a search for X�3940�
decays into D �D and D� �D final states. Because of the small
product of D��� reconstruction efficiencies and branching
fractions, it is not feasible to reconstruct fully the chain
e�e� ! J= X�3940�, X�3940� ! D��� �D. To increase the
efficiency, we reconstruct the J= and one D meson,
detecting the other �D��� as a peak in the Mrec�J= D�
spectrum. The MC simulation for e�e� ! J= D��� �D pro-
cesses indicates a Mrec�J= D� resolution of about
30 MeV=c2 and a separation between these two pro-
cesses of 2:5�. Figure 2 shows the Mrec�J= D� spectrum
in the D mass window and the scaled D mass sidebands,
where D includes D0 and D�. Some events have multiple
D candidates. In these cases, only the candidate with
invariant mass closest to the nominal D-meson mass is
used. Two enhancements around the nominal D and D�

masses are clearly visible in this distribution. The excess of
realD events compared to theD sidebands at masses above
2:1 GeV=c2 is due to e�e� ! J= D� �D� or J= D��� �D����
processes. A fit to this spectrum is performed using shapes
fixed from MC simulation for three processes (J= D �D,
J= D� �D, and J= D� �D�) and a second order polynomial.
The fit gives ND �D 
 86� 17 (5:1�) and ND� �D 
 55� 18
(3:3�) events in the D and the D� peaks, respectively.
Selecting events from the Mrec�J= D� regions around the
D and D� masses (�70 MeV=c2), we thus effectively tag
the processes e�e� ! J= D �D and J= D� �D. The effi-
ciencies of the D and D� tag procedures are found from
MC calculations to be independent of MD �D��� and equal to
0.097 in both cases, assuming equal fractions for
X�3940� ! D���0 �D0 and D����D�.

We constrain Mrec�J= D� to the D��� nominal mass,
improving the M�D��� �D� � Mrec�J= � resolution by a fac-

TABLE I. Summary of the signal yields, charmonium masses,
and significances for e�e� ! J= �c �c�res.

�c �c�res N M�GeV=c2	 N�

�c 501� 44 2:970� 0:005 15.3
�c0 230� 40 3:406� 0:007 6.3
�c�2S� 311� 42 3:626� 0:005 8.1
X�3940� 266� 63 3:936� 0:014 5.0
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FIG. 2. The Mrec�J= D� distribution for the D signal window
(points with error bars). The hatched histogram corresponds to
scaled D sidebands. The solid line shows the fit described in the
text. The dashed line is the background function.
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FIG. 1. The distribution of Mrec�J= � in inclusive e�e� !
J= X events (points with error bars). The histograms and curves
are described in the text.
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Clear evidence of exotic states!
I Hidden-charm charged tetraquarks Z +

c ∼ cd̄uc̄ (D(∗)D̄(∗)).
Hidden-strange candidate? a0(980)? how many?

I Hidden-charm (strange) pentaquarks P+
c(s) ∼ cc̄uud(s), (D̄(∗)Σ

(∗)
c (Ξ

(∗)
c )).

Hidden-strange candidate? N∗(1535), (strange) Λ(1405),...more?
Raquel Molina |



6

Nature of the scalar resonances?

Figure: Light scalar nonet.

Figure: NN potential (1S0 channel).
The attractive interaction is
dominated by the σ or correlated
two-pion exchange. PRL99 (2007), Ishii, Aoki.

I 70’s. Analyticity, unitarity and crossing symmetry constraints required
the existence of a broad σ pole (Guillou, Morel, Navalet, Basdevant,
Froggatt, Peterson, Roy).

I Glueball scenario. Not favored by lattice calculations, large Nc

arguments and chiral symmetry.
I Alternative scenario to qq̄, Jaffe, 1976, MIT bag model, tetraquark?.Raquel Molina |
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The σ meson

Analyses with Breit-Wigner-like parameterizations led to misleading results
(different values of the parameters of the resonance).
Rev. Part. Phys. 1973:

“It is clear that the behavior of the δ0
0 is much too complicated to allow

a description in terms of one or several Breit-Wigner resonances. We
therefore list the positions of the poles of the T matrix.”
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Chiral Perturbation Theory

I ChPT expansion of the amplitude for meson-meson scattering

t(s) = t2(s) + t4(s) + ....t2k = O(p2k ) (1)

I Lowest-order Chiral Lagrangian

L2 =
f 2

4
〈∂µU†∂µU + M(U + U†)〉 (2)

L4 = L1〈∂µU†∂µU〉2 + L2〈∂µU†∂νU〉〈∂µU†∂νU〉
+L3〈∂µU†∂µU∂νU†∂νU〉+ L4〈∂U†∂µU〉〈U†M + M†U〉
+L5〈∂µU†∂µU(U†M + M†U)〉+ L6〈U†M + M†U〉2
+L7〈U†M −M†U〉2 + L8〈M†UM†U + U†MU†M〉 (3)

Raquel Molina |
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Chiral Perturbation Theory

where U(φ) = exp(i
√

2Φ/f ), and

Φ(x) =


π0
√

2
+ η√

6
π+ K +

π− − π0
√

2
+ η√

6
K 0

K− K̄ 0 − 2√
6
η


µ

(4)

M =

 m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π

 (5)

[1] J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984)

[2] J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

[3] J. A. Oller, E. Oset and J. R. Pelaez, Phys. Rev. D 59, 074001
(1999)
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Unitarity

I Unitarity in coupled channels:
ImTif = TinσnnT ∗nf (6)

with σnn(s) = − kn
8π
√

sθ(s − (m1n + m2n)2) and kn is the on-shell c.m.
momentum.
σ = T−1ImTT ∗−1 = 1

2i T
−1(T−T ∗)T ∗−1 = 1

2i (T
−1∗−T−1) = −ImT−1.

Expansion of T−1 in powers of p2:

T−1 ' T−1
2 [1 + T4T−1

2 + ...]−1 ' T−1
2 [1− T4T−1

2 ...]

T = T2T−1
2 [ReT−1 − iσ]−1T−1

2 T2 = T2[T2ReT−1T2 − iT2σT2]−1T2

Since T2 = ReT2, ImT = ImT4 = T2σT2.
T = [1− VG]−1,V = V 2

V2−V4
; (Bethe− Salpeter)

T = T2[T2 − ReT4 − iImT4]−1T2 −→ T = T2[T2 − T4]−1T2 (7)

UChPT (NLO) Oller, Oset, Pelaez (1999) with T4 = T p
4 + T2GT2

Raquel Molina |
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Second Riemann Sheet

Schwartz reflexion theorem: f (z) is analytic in a region of the
complex plane in which f is real, then

f (z∗)∗ = f (z) (8)

For the loop function, above threshold, Re
√

s > m + M,

G(
√

s − iε) = (G(
√

s + iε))∗ = G(
√

s + iε)− i 2ImG(
√

s + iε) (9)

Since the beginning of R2 is equal to the end of R1,

GII(
√

s + iε) = GI(
√

s − iε) = GI(
√

s + iε)− i 2ImGI(
√

s + iε) (10)

Since ImGI(
√

s + i ε) = − q
8π
√

s ,

GII(
√

s) = GI(
√

s) + i
q

4π
√

s
, Imq > 0 (11)

Raquel Molina |
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Inverse Amplitude Method

Dispersion relations

t(s) =
1

2πi

∫
C

t(s′)
s′ − s

ds′

If we assume that t → 0 as |s| → ∞, then

t(s) =
1
π

∫ ∞
sth

Imt(s′)
s′ − s

ds′ +
1
π

∫ 0

−∞

Imt(s′)
s′ − s

ds′ (12)

with Imt(s + iε) = 1
2i [t(s + iε)− t(s − iε)]. If t does not goes to zero

when |s| → ∞ sufficiently fast,

G(s) =
t(s)

(s − s1)(s − s2)....(s − sN)

Subtraction points: s1, s2, ....sN
Raquel Molina |
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Inverse Amplitude Method

Dispersion relation of the function g(s) = t2(s)2/t(s),

g(s) = g(0) + g′(0) s + g′′(0)s2 − s3

π

∞∫
4M2

π

ds′
σ(s)t2(s)2

s′ 3(s′ − s − iε)

+
s3

π

0∫
−∞

ds′
Im g(s)

s′ 3(s′ − s − iε)
, (13)

Subtraction constants. NLO ChPT, g(0) ' t2(0)− t4(0),
g′(0) ' t ′2(0)− t ′4(0), g′′(0) ' −t ′′4 (0).
Unitarity condition: (physical cut)Img = t2

2 Im 1
t = −t2

2σ
Left-hand cut (perturbative expansion)
Img = t2

2 Im 1
t ' t2

2 Im 1
t2+t4

' −Imt4.

tIAM(s) =
t2(s)2

t2(s)− t4(s)

Raquel Molina |
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Inverse Amplitude Method

S-matrix

Sij = δij + 2 i√σiσj tij , σi =

{ √
1− 4 m2

i /s
√

s > 2 mi

0 else

Parameterization

S =

(
ηe2iδ1 i(1− η2)1/2ei(δ1+δ2)

i(1− η2)1/2ei(δ1+δ2) ηe2iδ2

)
. (14)

Analytical continuation,

SI (s + iε) = SII (s − iε) . (15)

Schwartz reflection principle, i.e. S (s + iε) = S∗(s − iε);
Unitarity, SS∗ = 1 =⇒ SII (s − iε) = SI (s − iε)−1

. Thus,

t II(s) =
t I(s)

1 + 2 i σ(s) t I(s)
(16)

Raquel Molina |



15

IAM with coupled-channels

Unitarity

Im T−1 = −Σ , Σ =

(
σ1 0
0 σ2

)
, (17)

T = T2
[
T2ReT−1T2 − i T2ΣT2

]−1
T2 ,=⇒ T = T2[T2 − T4]−1T2 (18)

Riemann sheet n,

T (n)(s) = T (s)
(

1 + 2 i Σ(s)(n) T (s)
)−1

, (19)

ππ, K K̄ I = J = 1 coupled-channel system,

ΣII =

(
σ1 0
0 0

)
, ΣIII =

(
0 0
0 σ2

)
, ΣIV =

(
σ1 0
0 σ2

)
.

(20)

Coupling,
gigj = −16π lim

s→spole
(s − spole) tij (2J + 1)/2p2J , (21)

Raquel Molina |
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Formalism in the finite volume

Two-meson-loop function G:

G = Gco(E) =

∫
q<qmax

d3q
(2π)3

ω1 + ω2

2ω1ω2

2Mi

E2 − (ω1 + ω2)2 + iε
(22)

where ωi =
√

m2
i + |~qi |2 is the energy and ~q stands for the

momentum of the meson in the channel i . In the finite volume, the
momenta is quantized,

~qi =
2π
L
~ni ; T −→ T̃ ; G(E) −→ G̃(E) , (23)

[1] M. Doring, U. G. Meißner, E. Oset and A. Rusetsky, Eur. Phys. J.
A47, 139 (2011)

[2] M. Doring, J. Haidenbauer, U. G. Meißner, and A. Rusetsky, Eur.
Phys. J. A47, 163 (2011)

Raquel Molina |
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Formalism in the finite volume

T̃ = [1− VG̃]−1V (24)

with V = V 2
2 /(V2 − V4), and

G̃(E) =
1
L3

∑
~qi

I(E , ~qi ) , (25)

with

I(E , ~qi ) =
ω1(~qi ) + ω2(~qi )

2ω1(~qi )ω2(~qi )

1
(E)2 − (ω1(~qi ) + ω2(~qi ))2 (26)

and ~q = 2π
L (nx ,ny ,nz). The formalism can also be made independent

of qmax and related to α.

G̃ = GDR + lim
qmax→∞

(
1
L3

∑
q<qmax

I(E , ~q)−
∫

q<qmax

d3q
(2π3)

I(E , ~q)

)
≡ GDR + lim

qmax→∞
δG , (27)

A. Martinez Torres, L. R. Dai, C. Koren, D. Jido and E. Oset, PRD85(2012)
Raquel Molina |
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Formalism in the finite volume

I Bethe-Salpeter eq. finite volume, energy levels:

T̃−1 = V−1 − G̃ det(I − VG̃) = 0 (28)

I One-channel amplitude inf. volume:

T = (G̃(Ei )−G(Ei ))−1. tanδ = −k/(8πE∆G) (29)

Boost, Asymmetric Boxes and Partial Wave Decomposition
Doering, Meißner, Oset, Rusetsky (2012)

T̃lm,l′m′ (p, p′) = Vl (p, p′)δll′ δmm′ +
∑

l′′m′′
Vl (p, qon,∗)G̃

lm,l′′m′′
(qon,∗)T̃

l′′m′′ ,lm
(qon,∗, p′) (30)

det(δll′δmm′ − Vl (qon,∗, qon,∗)G̃lm,l′m′(q
on,∗)) = 0 (31)

Irreducible representations for asymmetric boxes and boost
~P = 2π

ηL (0, 0, 1),

I = L = 0 −→ A+ : −1 + V0G00,00 = 0
I = L = 1 −→ A−2 : −1 + V1G10,10 = 0; E− : −1 + V1G11,11 = 0

Raquel Molina |



19

Conformal mapping

Parameterization
I Most general form of the K -matrix as an analytical function of

energy
I The convergence of the series is improved by mapping it onto

the interior of a disk

ω[cm1](s) =

√
s − α

√
4m2

K − s
√

s + α
√

4m2
K − s

, (32)

ω[cm2](s) =

√
s − α√
s + α

, (33)

with α = 1; mK = 550 MeV [cm1] and α = 1000 MeV [cm2].
I. Caprini. Phys. Rev. D77 (2008)
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Conformal mapping

K matrix:

K−1
00 (s) =

1
16π

M2
π

sA − s

( 2sA

Mπ

√
s

+ B0 + B1ω(s) + ...
)

(34)

Chiral symmetry dictates that T00(s) must vanish for s = sA ∼ M2
π/2.

I α is fixed (not significant improved if running).
I Two fitting parameters, B0 and B1.

Scattering amplitude in the finite volume and I = L = 0 channel,

T̃00(s) =
1

K−1
00 (s)− G̃(s)

, (35)

Solution: Energies E i
0 with covariance matrix C,

χ2 = (E − E0)T · C−1 · (E − E0) (36)

which provide a minimal χ2.
Raquel Molina |



21

Results

Conformal mapping vs. UChPT fits

Par. Fitted Mπ = 227 MeV Mπ = 315 MeV

data set Rez0 - Imz0 g Rez0 - Imz0 g

cm1 σ227 460+30
−60 180+30

−30 3.2+0.1
−0.1 – – –

σ315 – – – 660+50
−70 150+40

−50 4.0+0.2
−0.2

cm2 σ227 475+30
−60 176+50

−40 3.3+0.3
−0.2 – – –

σ315 – – – 660+50
−90 140+40

−50 3.9+0.2
−0.2

chm2 σ227 ρ227 460+30
−40 160+30

−30 3.0+0.1
−0.1 – – –

σ315 ρ315 – – – 660+40
−60 120+40

−40 3.6+0.1
−0.1

Table: Pole positions (z0 in MeV) and corresponding couplings to ππ channel
(g in GeV) in the conformal mapping parameterizations, [cm1] and [cm2], and
in the UChPT individual fits [chm2].

Lattice data from GWU 2018 simulation, mπ = 227 and 315 MeV,
Alexandru, Guo, Molina, Mai, Döring, PRD98(2018)
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Results

Conformal mapping vs. UChPT σ + ρ individual fits:

cm1

cm2

chm2
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e
V
]

mπ=315 MeV

Figure: p cotδ as a function of p2 in the conformal parameterizations for the
I = L = 0 channel, [cm1] and [cm2], in comparison with the individual σ + ρ
UChPT fits.
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Combined fits from UChPT
σ [chm1] and σ + ρ [chm2] fits
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Figure: Energy levels in the σ fits [chm1] to mπ = 227, 315 MeV energy
levels. The energy levels are similar when the ρ meson is included [chm2].
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Pion mass dependence
Pole position z0

Figure: Left: Mπ dependence of the pole position of the σ resonance in the
complex plain of the energy. The encircle numbers represent the pion mass
in units of the physical one. Right: Mπ dependence of the coupling of the σ
resonance.
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Physical point vs. other works

Par. Mπ = 138 MeV

Fitted data set Rez0 - Imz0 g

chm1 440+60
−90 240+20

−50 3.0+0.2
−0.6

σ227,315

chm2 440+10
−16 240+20

−20 3.0+0.0
−0.0

σ227,315 ρ227,315

Pelaez 2015 449+22
−16 275+12

−12 3.5+0.3
−0.2

Albaladejo 2012 440 ± 10 238 ± 10

Doring, Mai 2016 452+1
−0 144+0

−4 2.6+0.0
−0.0

chm1 (comb.)

chm2 (comb.)

Exp.

0.00 0.05 0.10 0.15 0.20
0.0

0.5

1.0

1.5

2.0

2.5

3.0

p
2 [GeV2 ]

δ

mπ=138 MeV

0.00 0.05 0.10 0.15 0.20
0.0

0.2

0.4

0.6

0.8

p
2 [GeV

2 ]

δ

Fitσ

phys. (ext.)

227 MeV

315 MeV

HadSpec extr.

HadSpec (235)

PDG:
Mass: (400− 550) MeV
Width: (200− 350) MeV
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The ρ meson

I Quark model ∼ qq̄ meson. Phase shift ∼ Breit-Wigner + small
corrections, Pisut, Jan and Roos, Matts, Nucl. Phys. B (1968), Lafferty, G. D., Z. Phys. C(1993)

I Nc dependence of the ρ(770) meson leads to small non-q̄q component
Pelaez, J. R. and Rios, G. ,PRL (2006), Ruiz de Elvira, J. and Pelaez, PRD(2011)

I Quark-mass dependence of ρ parameters (general Feynmann
-Hellmann theorem) requires a non-negligible correction beyond the
quark model. Ledwig, T. and Nieves, J. and Pich, A. and Ruiz Arriola, E. and Ruiz de Elvira, J., PRD(2014)

I Dominates the ππ scattering amplitudes in the I = J = 1 channel below
1 GeV. Pole parameters have been determined very precisely. Tanabashi,

PRD(2018), Ananthanarayan, Colangelo, Gasser, Leutwyler, PR (2001), NPB (2001); Garcia-Martin, Kaminski, Pelaez, Ruiz de

Elvira, Yndurain, PRD (2011)

I The ρ(770) contribution is also important for the hadronic total cross
section σ(e+e− → hadrons), hadronic-vacuum polarization,
light-by-light contributions to the anomalous magnetic moment of the
muon Aubert, Bernard, Phys. Rev. Lett (2009); Babusci et al. PLB(2012), Ablikim et al. PLB(2015),Eidelman, and

Jegerlehner, Phys. C(1995);Jegerlehner Fred and Nyffeler, Andreas, PR (2009); Colangelo, Gilberto and Hoferichter, PRL (2017)

I Role int the restoration of chiral symmetry at higher temperatures Pisarski,

Robert PRD (1995); Harada, Masayasu and Yamawaki, Koichi, PRL(2001); Gomez Nicola, Pelaez, Ruiz de Elvira, PRD(2013)
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Previous results with UChPT

Analyses Nf = 2 & 2 + 1 lattice data done in Refs. : Hu, Molina,
Döring, Alexandru, PRL 117 (2016), Guo, Alexandru, Molina and M. Döring,
PRD(2016) ;Hu, Molina, Doring, Mai, Alexandru, PRD (2017)
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Previous results with UChPT

Motivation

KK̄ loops in the ππ − KK̄ system with (I = 1,L = 1)

200 400 600 800 1000

W[MeV]

|p
cm
(π

π
)p
cm
(K
K
)
2
|G

K
K_
|

mρ=770. MeV

KKππ

Ratio of the couplings of the ρ meson to ππ and KK̄

Oller/Pelaez1999 Guo/Oller2012

|gKK̄/gππ| 0.54 0.64

Not that small! NL0 UChPT PRD59,074001 vs. One-loop UChPT, PRD84,034005

June 27, 2017 6 / 40

Motivation

KK̄ loops in the ππ − KK̄ system with (I = 1,L = 1)
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W[MeV]
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mρ=770. MeV

KKππ

Ratio of the couplings of the ρ meson to ππ and KK̄

Oller/Pelaez1999 Guo/Oller2012

|gKK̄/gππ| 0.54 0.64

Not that small! NL0 UChPT PRD59,074001 vs. One-loop UChPT, PRD84,034005

June 27, 2017 6 / 40

NLO UChPT vs. One-loop UChPT; Not that small!!

Ratio of the couplings of the ρ meson to ππ and K K̄

Oller/Pelaez(1999) Guo/Oller(2012)
gK K̄
gππ

0.54 0.64

Can this be explained by different values of the strange quark (kaon)
mass? (or because of uncertainties in “a”, or both...?)

New Nf = 2 + 1 data on TrM= K :
Andersen, Christian and Bulava, John and Hörz, Ben and Morningstar, Colin,

NPB(2018)
150 200 250 300

750

800

850

mπ (MeV)

m
ρ
|E

δ
=

9
0

o
(M

e
V
)

Tr M=K, Two different sets {ai}1,2

C101,β=3.4(a)

D101,β=3.4(a)

N200,β=3.55(b)

N401,β=3.46(d)

D200,β=3.55(b)

J303,β=3.7(c)

C101,β=3.4(a)

D101,β=3.4(a)

N200,β=3.55(b)

N401,β=3.46(d)

D200,β=3.55(b)

J303,β=3.7(c)

Exp.
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FLAG Review 2019

Only based on the
trajectory ms = m0

s (0 ≡
phys.), no input on the
strange quark mass
dependence of decay
constants.
The FLAG average is not
a fit of data (large errors)
Only pseudoscalar
masses and decay
constant data analyses.

I Analysis of ππ I = 1, J = 1 phase shift lattice data (ρ meson) &
pseudoscalar meson masses and decay constants on different
chiral trajectories (ms = m0

s and TrM=TrM0)
I Check of the KSFR relation, gρππ = mρ/

√
2fπ
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Chiral trajectories (NLO ChPT)

I Strange quark mass constant, ms = k :

M2
0K = +

1
2

M2
0π + k B0 ,

where k = m(0)
s or 0.6 m(0)

s .
I Light and strange quark mass varies, Tr M = c:

M2
0K = −1

2
M2

0π + c B0 ,

with c = 2m(0)
ud + m(0)

s . Predictions for other k ’s, c’s, and:
I Symmetric, ms = mud ,

M2
0k = M2

0π ,

I Light quark mass constant, mud = m(0)
ud ,

M2
0π = M2(0)

0π ; M2
0K = M2(0)

0K + (ms −m(0)
s ) B0

Free parameters: L12 = 2 L1 − L2 and Li , i = 3, 8, and c B0, k B0, adjusted
to the the chiral trajectories. µ = 770 MeV, f0 = 80 MeV.
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Fitting procedure

I Energy measurements/phase shifts in the lattice are correlated:

χ2
W = ( ~W1 − ~W0)T C−1( ~W1 − ~W0), W1i =

g(W0i )− f (W0i )

f ′(W0i )− g′(W0i )
+ W0i

~W0: lattice eigenenergies; C: covariance; ~W1: energies of the fit
function. Taylor expansion (first order) around W0i for δL = g(W ), and
δfit = f (W1i ), (W1i =reconstructed energies (Lüscher)).

χ = χ2
W + χ2

f + λ
∑

ij

∫
|(S S†)ij − δij |2 dE , χ2

f =
∑

ij

(hij − hl
ij )

2/el 2
ij

h1 = mπ/fπ, h2 = mK/fK and h3 = mK/fπ.
Molina, Ruiz de Elvira, JHEP2011(2020)
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NLO Chiral fits
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Fit I (mud=ms )

Fit I (ms=ms,phys)

Fit I (ms=0.6 ms,phys)

Fit IV, β=3.4 (Tr M=c)

Fit IV, β=3.55 (Tr M=c)

Fit IV, β=3.7 (Tr M=c)

Fit IV (mud=ms )

Fit IV (ms=ms,phys)

Fit IV (ms=0.6 ms,phys)

CLS, β=3.4 (Tr M=c)

CLS, β=3.55 (Tr M=c)

CLS, β=3.7 (Tr M=c)

UKQCD (ms=ms,phys)

MILC (ms=ms,phys)

Laiho (ms=ms,phys)

100 200 300 400
0

1

2

3

4

mπ (MeV)

m
π
/f
π

Fit I, β=3.4 (Tr M=c)

Fit I, β=3.55 (Tr M=c)

Fit I, β=3.7 (Tr M=c)

Fit I (mud=ms )

Fit I (ms=ms,phys)

Fit I (ms=0.6 ms,phys)

Fit IV, β=3.4 (Tr M=c)

Fit IV, β=3.55 (Tr M=c)

Fit IV, β=3.7 (Tr M=c)

Fit IV (mud=ms )

Fit IV (ms=ms,phys)

Fit IV (ms=0.6 ms,phys)

CLS, β=3.4 (Tr M=c)

CLS, β=3.55 (Tr M=c)

CLS, β=3.7 (Tr M=c)

UKQCD (ms=ms,phys)

MILC (ms=ms,phys)

MILC (ms=0.6 ms,phys)

Laiho (ms=ms,phys)

LEC×103 Fit I
L4 −0.06(1)

L5 0.91(2)

L6 0.15(2)

L8 0.03(3)

c(k) B0 × 10−3(MeV2) Fit I
[c B0 ]β=3.4 316(6)

[c B0 ]β=3.55 295(6)

[c B0 ]β=3.7 298(6)

[k B0 ]ms,phys 257(6)

Σ0 = B0 f20 = −〈0|q̄q|0〉0 =⇒

Σ
1/3
0 = 245 − 280MeV

Flag review: 214 − 290 MeV.

MILC: Σ
1/3
0 = 245(5)(4)(4) MeV.

We obtain 258 and 245 MeV for Fits I

and IV in the ms = ms,phys

trajectory, respectively, which are

compatible.

Raquel Molina |



33

Global fit decay constant + phase shift lattice
data

(χ2/d.o.f = 1.2) LECs×103

L12 0.36+0.02(0.06)
−0.02(0.02)

L3 −3.44+0.04(0.07)
−0.04(0.06)

L4 −0.08+0.03(0.05)
−0.04(0.03)

L5 0.98+0.07(0.06)
−0.05(0.04)

L6 0.24+0.08(0.16)
−0.06(0.05)

L7 0.008+0.09(0.12)
−0.14(0.15)

L8 0.098+0.10(0.11)
−0.11(0.16)

c(k) × 10−3 (MeV2)

Tr MB0(β = 3.4) 268+14(8)
−18(20)

Tr MB0(β = 3.55) 254+11(7)
−18(18)

Tr MB0(β = 3.7) 257+12(7)
−17(19)

msB0 224+14(10)
−18(20)

Table: Values of the parameters
obtained in Fit IV.
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Global fit decay constant + phase shift lattice
data

Figure: Decay constant ratios, mK/fπ and mK/fK , obtained in Fit IV in
comparison with the lattice data.
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Global fit decay constant + phase shift lattice
data
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Figure 12: Phase shift lattice data for the trajectories Tr M= c in
comparison with the result of the global fit (mπ ' 200,230 and 280
MeV, D200, D101 and N200 respectively).
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Global fit decay constant + phase shift lattice
data
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Figure 13: Phase shift lattice data for the trajectories Tr M= c
(mπ ' 260 MeV), and ms = m0

s , in comparison with the result of the
global fit.
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Global fit decay constant + phase shift lattice
data
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Figure 14: Phase shift lattice data for the trajectories Tr M= c, and
extrapolation to the physical point in comparison with experimental
data.
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Global fit decay constant + phase shift lattice
data

Figure 15: Result of the global fit for Mρ over trajectories ms = k and
TrM= c, in comparison with lattice data.
I Mρ(mπ) becomes flatter in TrM= c trajectories.
I Around mπ = 450 MeV, the ρ becomes bounds in near ms = m0

s
trajectories, while it starts to decay into K K̄ in the TrM= c ones.

I In the chiral limit the mass of the ρ is ' 680 MeV.
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Global fit decay constant + phase shift lattice
data

Figure 16: gππ, gK K̄ and the ratio
√

2fπgππ/mρ (KSFR).

I The coupling to K K̄ increases when ms

becomes lighter.
I The ratio of the couplings becomes

gK K̄/gππ = 1/
√

2 in the symmetric line.
I The ρ becomes bound for mπ around 430

MeV
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Global fit decay constant + phase shift lattice
data

Figure 17:
Real part
of the pole
position of
the rho
meson.

Figure 18:
Re(Im)

√
s0 as a

function of mK over
the mu = c,
mπ = m0

π

trajectories.
Raquel Molina |



41

Global fit decay constant + phase shift lattice
data
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Comparison with Nf = 2 and Nf = 2+1+1 lattice
data

Figure 20: Result for the ρ meson
mass when interacting terms
involving kaons and etas are set to
zero in comparison with Nf = 2
lattice data.

Figure 21: Comparison of
Nf = 2 + 1 with new Nf = 2 and
Nf = 2 + 1 + 1 data.
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The hidden gauge formalism

Bando, Kugo, Yamawaki, PRL54,1215

Lagrangian

L = L(2) + LIII (37)

L(2) =
1
4

f 2〈DµUDµU† + χU† + χ†U〉 (38)

LIII = −1
4
〈VµνVµν〉+

1
2

M2
V 〈[Vµ −

i
g

Γµ]2〉

DµU = ∂µU − ieQAµU + ieUQAµ, U = ei
√

2P/f

Upon expansion of [Vµ − i
g Γµ]2, L′s

LVγ = −M2
V

e
g

Aµ〈VµQ〉,LVPP = −ig〈Vµ[P, ∂µP]〉,LγPP = ieAµ〈Q[P, ∂µP]〉, ...

FV

MV
=

1√
2g
,

GV

MV
=

1
2
√

2g
, FV =

√
2f , GV =

f√
2
, g =

MV

2f
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Vector-vector scattering Bando,Kugo,Yamawaki

LIII = − 1
4 〈VµνVµν〉 L(3V )

III = ig〈(∂µVν − ∂νVµ)VµV ν〉

L(c)
III = g2

2 〈VµVνVµV ν − VνVµVµV ν〉

Vµν =
∂µVν − ∂νVµ − ig[Vµ,Vν ]

g = MV
2f

Vµ =
ρ0
√

2
+ ω√

2
ρ+ K ∗+ D̄∗0

ρ− − ρ0
√

2
+ ω√

2
K ∗0 D∗−

K ∗− K̄ ∗0 φ D∗−s

D∗0 D∗+ D∗+
s J/ψ


µ

VV

V V

−→

a) b) c) d)

V V

V

+
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PB and VB interaction

B
1

V*V*

(a) (b)

P
1

P
2 V

1

B
2

B
1

B
2

V
2

LBBV = g(〈B̄γµ[Vµ,B]〉+ 〈B̄γµB〉〈Vµ〉)
tP1P2V = g15F C15F (15⊗ 15) (q1 + q2)µε

µ

tB1B̄2V = {g151 C151 (20′ ⊗ 2̄0′) + g152 C152 (20′ ⊗ 2̄0′)

+g1 C1(20′ ⊗ 2̄0′)}ūr ′(p2)γ · ε ur (p1)

with g15F = −2
√

2g. g151 , g152 and g1 are evaluated demanding

1) The couplinga pp̄ → J/ψ, pp̄ → φ should be zero by OZI rules,

2) The coupling pp̄ → ρ0 should be the one obtained in SU(3).

g151 = −g; g152 = 2
√

3 g; g1 = 3
√

5 g .

Bethe-Salpeter equation T = [I − VG]−1V
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Pentaquark states

Wu, Molina, Oset, Zou (2010)

Vab(P1B1→P2B2) =
Cab

4f 2 (q0
1 + q0

2)

Vab(V1B1→V2B2) =
Cab

4f 2 (q0
1 + q0

2)~ε1 · ~ε2

D̄∗Σc D̄∗Λ+
c ρN ωN φN K∗Σ K∗Λ

D̄∗Σc −1 0 −1/2
√

3/2 0 1 0
D̄∗Λ+

c 1 −3/2 −
√

3/2 0 0 1

Cab for the VB system in the sector I = 1/2, S = 0.

D̄∗s Λ+
c D̄∗Ξc D̄∗Ξ

′
c ρΣ ωΛ φΛ K̄∗N K∗Ξ

D̄∗s Λ+
c 0 −

√
2 0 0 0 −1 −

√
3 0

D̄∗Ξc −1 0 −3/2 −1/2 0 0
√

3/2

D̄∗Ξ
′
c −1

√
3/2
√

3/2 0 0 1/
√

2

Cab for the VB system in the sector I = 0, S = −1.

PB resonances (units in MeV)

(I, S) M Γ Γi
(1/2, 0) πN ηN η′N K Σ ηc N

4261 56.9 3.8 8.1 3.9 17.0 23.4
(0,−1) K̄ N πΣ ηΛ η′Λ K Ξ ηc Λ

4209 32.4 15.8 2.9 3.2 1.7 2.4 5.8
4394 43.3 0 10.6 7.1 3.3 5.8 16.3

VB resonances

(I, S) M Γ Γi
(1/2, 0) ρN ωN K∗Σ J/ψN

4412 47.3 3.2 10.4 13.7 19.2
(0,−1) K̄∗N ρΣ ωΛ φΛ K∗Ξ J/ψΛ

4368 28.0 13.9 3.1 0.3 4.0 1.8 5.4
4544 36.6 0 8.8 9.1 0 5.0 13.8

Λb → p + J/ψ + K−

Experimental Pc states (LHCb, 2019)

M (MeV) Γ (MeV)

4311.9 ± 0.7+6.8
−0.6 9.8 ± 2.7+3.7

−4.5
4440.3 ± 1.3+4.1

−4.7 20.6 ± 4.9+8.7
−10.1

4457.3 ± 0.6+4.1
−1.7 6.4 ± 2+5.7

−1.9
Pcs states (LHCb, 2020)

4458.8 ± 2.9+4.7
−1.1 17.3 ± 6.5+8.0

−5.7
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Pentaquarks states

LHCb 2015.
P+

c (4380), M = (4380± 8± 29) MeV, Γ = (205± 18± 86) MeV, and
P+

c (4450), M = (4449.8± 1.7± 2.5) MeV, Γ = (39± 5± 19) MeV
Assignments: (3/2+, 5/2− ) and (5/2+, 3/2− ) are possible.

Introduction PB and VB resonances in the hidden charm sector Results Conclusions

Quantum numbers of the pentaquark Pc(4450)

The theoretical analysis of the Λb → J/ψK−p reaction is done
by L. Roca, J. Nieves and E. Oset, PRD92, 094003(2015) supports the
JP = 3/2− assignment of the pentaquark state, and its nature
as D̄∗Σc, D̄∗Σ∗c molecule.

The theoretical analysis of the
Λb → J/ψK−p L. Roca, J. Nieves and E.

Oset, PRD92, 094003(2015) supports the
JP = 3/2− assignment of the
pentaquark state, and its nature
as D̄∗Σc , D̄∗Σ∗c molecule.

4200 4250 4300 4350 4400 4450 4500 4550 4600
 [MeV]pψ/Jm
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data
total fit
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LHCb

+(4312)cP
+(4440)cP +(4457)cP

0*D +
cΣ

0
D +

cΣ

In 2019 the new experimental analysis shows one
more pentaquark, Pc(4312) and Pc(4450) splits
into two.
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Pentaquark states

Generalized HGF formalism with HQSS Xiao, Nieves, Oset (2013,2019)

I = 1/2; C = 0; S = −1; JP = 1/2−

J/ψΛ D̄∗Ξc D̄∗s Λc D̄∗Ξ′c D̄Ξ∗c D̄∗Ξ∗c
4429.52 + i7.67

|gi | 0.32 2.77 0.74 0.02 0.06 0.04

4506.99 + i1.03

|gi | 0.27 0.03 0.03 0.03 1.56 0.05

I = 1/2; C = 0; S = 0; JP = 3/2−

(4374.33 + i6.87) J/ψN D̄∗Λc D̄∗Σc D̄Σ∗c D̄∗Σ∗c
|gi | 0.73 0.18 0.19 1.94 0.30

(4452.48 + i1.49) J/ψN D̄∗Λc D̄∗Σc D̄Σ∗c D̄∗Σ∗c
|gi | 0.30 0.07 1.82 0.08 0.19

I = 1/2; C = 0; S = 0; JP = 1/2−

(4306.38 + i7.62)

ηc N J/ψN D̄Λc D̄Σc D̄∗Λc D̄∗Σc D̄∗Σ∗c
|gi | 0.67 0.46 0.01 2.09 0.25 0.31 0.16

(4452.96 + i11.72)

ηc N J/ψN D̄Λc D̄Σc D̄∗Λc D̄∗Σc D̄∗Σ∗c
|gi | 0.25 0.89 0.11 0.13 0.14 2.03 0.19

Mass Width Main channel JP Experiment

4306.4 15.2 D̄Σc 1/2− Pc (4312)

4453.0 23.4 D̄∗Σc 1/2− Pc (4440)

4452.5 3.0 D̄∗Σc 3/2− Pc (4457)

The heavy quarks are spectators if we exchange light vectors. Heavy
quark spin symmetry is automatically fulfilled.
The exchange of light vectors gives the dominant terms.

Raquel Molina |



49

New flavor exotic tetraquark

LHCb (2020): Two states JP = 0+,1− decaying to DK̄ ( D̄K in the
experiment). First clear example of an heavy-flavor exotic tetraquark,
∼ csūd̄ (C = 1,S = −1).

X0(2866) : M = 2866± 7 and Γ = 57.2± 12.9 MeV,
X1(2900) : M = 2904± 5 and Γ = 110.3± 11.5 MeV.

Molina,Branz,Oset, PRD82(2010). HGF

J Amplitude Contact V-exchange ∼ Total

0 D∗K̄∗ → D∗K̄∗ 4g2 −
g2(p1+p4).(p2+p3)

m2
D∗s

+ 1
2 g2( 1

m2
ω
− 3

m2
ρ

)(p1 + p3).(p2 + p4) −9.9g2

1 D∗K̄∗ → D∗K̄∗ 0
g2(p1+p4).(p2+p3)

m2
D∗s

+ 1
2 g2( 1

m2
ω
− 3

m2
ρ

)(p1 + p3).(p2 + p4) −10.2g2

2 D∗K̄∗ → D∗K̄∗ −2g2 −
g2(p1+p4).(p2+p3)

m2
D∗s

+ 1
2 g2( 1

m2
ω
− 3

m2
ρ

)(p1 + p3).(p2 + p4) −15.9g2

Table: Tree level amplitudes for D∗K̄ ∗ in I = 0. The last column shows the
value of V at threshold.
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New flavor exotic tetraquark

D∗ D∗

K̄∗ K̄∗

D∗ D∗

ρ, ω

K̄∗ K̄∗ K̄∗ D∗

D∗ K̄∗

D∗
s

(a) (b) (c)

+ +

P(0) =
1
3
εµε

µενε
ν

P(1) =
1
2

(εµενε
µεν − εµενενεµ)

P(2) = {1
2

(εµενε
µεν + εµενε

νεµ)

−1
3
εµε

µενε
ν} .

States with C = 1, S = 1, I = 0

I(JP ) M[MeV] Γ[MeV] Channels state
0(2+) 2572 23 D∗K∗, D∗s φ, D∗s ω Ds2(2572)

0(1+) 2707 - D∗K∗, D∗s φ, D∗s ω ?
0(0+) 2683 71 D∗K∗, D∗s φ, D∗s ω ?

States with C = 1, S = −1, I = 0

I(JP ) M[MeV] Γ[MeV] Channels state
0(2+) 2733 36 D∗K̄∗ ?
0(1+) 2839 - D∗K̄∗ ?
0(0+) 2848 59 D∗K̄∗ X0(2866)

T = [1̂− VG]−1V

K̄∗

D∗

D

K̄

K̄∗

D∗

π π
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New flavor exotic tetraquark

Two-meson loop function:

Gi (s) =
1

16π2

(
α + Log

M2
1

µ2 +
M2

2 −M2
1 + s

2s
Log

M2
2

M2
1

+
p√
s

(
Log

s −M2
2 + M2

1 + 2p
√

s
−s + M2

2 −M2
1 + 2p

√
s

+ Log
s + M2

2 −M2
1 + 2p

√
s

−s −M2
2 + M2

1 + 2p
√

s

))
,

Form factor (box-diagram):

F (q) = e((p0
1−q0)2−~q 2)/Λ2

Navarra,PRD65(2002)

(39)

with q0 = (s + m2
D −m2

K )/2
√

s, Λ ∼ 1− 1.3 GeV. Previous work (2010):
α = −1.6 (with µ = 1500 MeV) and Λ = 1200. Recent work: Molina, Oset
PLB811 2020, α = −1.474, Λ = 1300.

D∗(p1) D∗(p3)

K̄∗(p2) K̄∗(p4)

D∗(q)

K̄

π π

L =
iG′√

2
εµναβ〈δµVνδαVβP〉

LVPP = −ig〈[P, ∂µP]Vµ〉
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New flavor exotic tetraquark

I(JP) M[MeV] Γ[MeV] Coupled channels state
0(2+) 2775 38 D∗K̄ ∗ ?
0(1+) 2861 20 D∗K̄ ∗ ?
0(0+) 2866 57 D∗K̄ ∗ X0(2866)

Table: New results including the width of the D∗K channel.

Λ=1200 MeV

Λ=1300 MeV

2700 2750 2800 2850 2900 2950 3000

0

200 000

400 000

600 000

800 000

1×106

E[MeV]

|T
2

I = 0; J = 0

Λ=1200 MeV

Λ=1300 MeV

2800 2850 2900 2950

0

1×10
6

2×10
6

3×10
6

4×10
6

5×10
6

6×10
6

E[MeV]

|T
2

I = 0; J =1

Figure: |T |2 for C = 1,S = −1, I = 0, J = 0 and J = 1.
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Hidden-charm strange tetraquark?

BESIII (2020) has reported a state, Zcs(3985), from the D∗−s D0,
D−s D∗0 invariant mass distribution of e+e− → K +(D∗−s D0 + D−s D∗0).

M = 3982.5+1.8
−2.6 ± 2.1 MeV, Γ = 12.8+5.3

−4.4 ± 3.0 MeV. (40)

7 MeV above the D∗−s D0, D−s D∗0 threshold. It could be the SU(3)
partner of the Zc(3900) state, where a u or d quark has been
replaced by an s quark.

J/ψK− (1), K ∗−ηc (2),
1√
2

(D−s D∗0+D∗−s D0) (3)

V V

P P

p1

p2

p3

p4

Vex

m̄D = 1916 MeV, m̄D∗ = 2060 MeV

A =
1√
2

(D−s D∗0 + D∗−s D0),

B =
1√
2

(D−s D∗0 − D∗−s D0).
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Hidden-charm strange tetraquark?

Vij = g2Cij
1
2

[
3M2

12 − (m2
1 + m2

2 + m2
3 + m2

4)− 1
M2

12
(m2

1 −m2
2)(m2

3 −m2
4)

]
,

where M2
12 = (p1 + p2)2. q2 correction in the propagators: q2 = 0 for Vii and

q2 = M2 + M2
D∗ − 2EM2

D∗ , for V13, V23, with E =
M2

12+M2−m2

2M12
.

Ikeno, Oset, Molina, PLB(2020)

Cij =


0 0

√
2

m̄2
D∗

0
√

2
m̄2

D∗

− 1
m2

J/ψ

 .

T = [1− VG]−1 V ,
e+e− → K +(D∗−s D0 + D−s D∗0 )

dσ

dMD̄sD∗
=

1

s
√

s
pq̃ N

∣∣T33
∣∣2

Gl =

∫
d3q

(2π)3

ω1 + ω2

2ω1ω2

1
(P0)2 − (ω1 + ω2)2 + iε

ω1 =
√

m2 + ~q 2, ω2 =
√

M2 + ~q 2, and
|~q| < qmax. qmax ∼ 700–850 MeV in
Aceti,Oset, PRD90(2014) BS factor,ψ = −

1

3
+

4

3

(
mL

mH

)2
(2.8)

p =
λ1/2(s,m2

K ,M
2
D̄sD∗)

2
√

s
,

q̃ =
λ1/2(M2

D̄sD∗ ,m
2
Ds ,m

2
D∗)

2MD̄sD∗
,
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Hidden-charm strange tetraquark?

Exp. datac.c. conv.
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Figure: Results of dσ/dMD̄sD∗ . Solid line: Result for the D̄sD∗ + D̄∗s D
combination with its coupled channels (c.c.). Dashed line: Result for the
single channel D̄sD∗ − D̄∗s D combination (1 ch.). Dotted line: phase space.
Dashed-dotted line: result folded with the experimental resolution (c.c. conv.).
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Search for hidden-charm pentaquarks

Stimulated by LHCb, BESIII is conducting an analysis for the search of
hidden-strange pentaquarks (decaying to pφ) in Λc decays.
I 2014. BESIII collected 567 pb−1 close to ΛcΛ̄c production threshold (4.6

GeV). However the result is limited by statistics and no evidence of a
peak was found.

I 2020. BESIII has collected new data between 4.6− 4.7 GeV in 2020.

Vincent Mathieu TAHSP Task 3.1 Light exotic, stangeonium, charmonium 14

BESIII Group in Ferrara

Vincent Mathieu TAHSP Task 3.1 Light exotic, stangeonium, charmonium 14

BESIII Group in Ferrara

Vincent Mathieu TAHSP Task 3.1 Light exotic, stangeonium, charmonium 14

BESIII Group in Ferrara

New decay mode pφ

80. N and ∆ resonances 3

Table 80.1. The status of the N resonances and their
decays. Sub-threshold decay modes are omitted. Only
resonances with an overall status of ∗∗∗ or ∗∗∗∗ are
included in the main Baryon Summary Table.

Status as seen in

Particle JP overall Nγ Nπ ∆π Nσ Nη ΛK ΣK Nρ Nω Nη′
N 1/2+ ∗∗∗∗

N(1440) 1/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗
N(1520) 3/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗ ∗∗∗∗
N(1535) 1/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗ ∗∗∗∗
N(1650) 1/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗ ∗∗∗∗ ∗
N(1675) 5/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗ ∗ ∗
N(1680) 5/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗ ∗ ∗
N(1700) 3/2− ∗∗∗ ∗∗ ∗∗∗ ∗∗∗ ∗ ∗ ∗
N(1710) 1/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗ ∗∗∗ ∗∗ ∗ ∗ ∗
N(1720) 3/2+ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗ ∗ ∗ ∗∗∗∗ ∗ ∗ ∗
N(1860) 5/2+ ∗∗ ∗ ∗∗ ∗ ∗
N(1875) 3/2− ∗∗∗ ∗∗ ∗∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗
N(1880) 1/2+ ∗∗∗ ∗∗ ∗ ∗∗ ∗ ∗ ∗∗ ∗∗ ∗∗
N(1895) 1/2− ∗∗∗∗ ∗∗∗∗ ∗ ∗ ∗ ∗∗∗∗ ∗∗ ∗∗ ∗ ∗ ∗∗∗∗
N(1900) 3/2+ ∗∗∗∗ ∗∗∗∗ ∗∗ ∗∗ ∗ ∗ ∗∗ ∗∗ ∗ ∗∗
N(1990) 7/2+ ∗∗ ∗∗ ∗∗ ∗ ∗ ∗
N(2000) 5/2+ ∗∗ ∗∗ ∗ ∗∗ ∗ ∗ ∗
N(2040) 3/2+ ∗ ∗
N(2060) 5/2− ∗∗∗ ∗∗∗ ∗∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
N(2100) 1/2+ ∗∗∗ ∗∗ ∗∗∗ ∗∗ ∗∗ ∗ ∗ ∗ ∗ ∗∗
N(2120) 3/2− ∗∗∗ ∗∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗ ∗ ∗
N(2190) 7/2− ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗∗∗ ∗∗ ∗ ∗∗ ∗ ∗ ∗
N(2220) 9/2+ ∗∗∗∗ ∗∗ ∗∗∗∗ ∗ ∗ ∗
N(2250) 9/2− ∗∗∗∗ ∗∗ ∗∗∗∗ ∗ ∗ ∗
N(2300) 1/2+ ∗∗ ∗∗
N(2570) 5/2− ∗∗ ∗∗
N(2600) 11/2− ∗∗∗ ∗∗∗
N(2700) 13/2+ ∗∗ ∗∗
∗∗∗∗ Existence is certain.
∗∗∗ Existence is very likely.
∗∗ Evidence of existence is fair.
∗ Evidence of existence is poor.

June 1, 2020 08:27
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Conclusions

I New observed states in the heavy sector are a clear evidence of
exotic hadrons

I The hadron spectrum might be full of these kind of states
I New “model independent” tools should be developed to

investigate the hadron nature
I The combination of Lattice+EFT might be an interesting

technique which can help to elucidate the hadron nature but one
should be careful with lattice systematic errors

Thank you
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