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Hadrons

Standard Hadrons Exotic Hadrons

o P ¥

Meson Baryon

> Regular hadrons: qqg, qqq
AR, 5 % o
I Dgﬁ diqt;a\rk—diantiquark

> Exotics: 99q9Q, 99993, 999, ... ) ‘”6
Do

Not qg: J7¢ =0*—, 17+, 27,
37,

qg-gluon“hybrid”
DO - D “molecule”
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Light hadrons
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Dynamically generated resonances

Many suggestions of dynamically generated resonances...

» Oller, Oset, Pelaez, PRL80(1998)

Ramos, Oset, Nucl. Phys. A635(1998), A725(2003)
Krehl, Hanhart, Krewald, Speth, Phys. Rev. C62(2000)
Nieves, Ruiz-Arriola, Phys. Rev. D64(2001)

Inoue, Vicente-Vacas, Oset, Phys. Rev. D65(2002)
Epelbaum, Meissner, Nucl. Phys. A725(2003)
Garcia-Recio, Nieves, Ruiz-Arriola, Phys. Rev. D67(2003)
Roca, Oset, Singh, Phys. Rev. D72(2005)

Molina, Nicmorous, Oset, Phys. Rev. D78(2008)
Geng, Oset, Phys. Rev. D79(2009)

Alvarez-Ruso, Oller, Alarcon, Phys. Rev. D80(2009)
Oset, Ramos, EPJA44(2010)

...and a very long list of authors! >< . ><>< >©<>< .

vV VYV VvV VYV VYV VYVvYy
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Heavy hadrons
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Clear evidence of exotic states!
» Hidden-charm charged tetraquarks Z; ~ cduc (D™ D™)).
Hidden-strange candidate? a,(980)? how many?
» Hidden-charm (strange) pentaquarks P, ~ ctuud(s), (DE{(Z0)).
Hidden-strange candidate? N*(1535), (strange) A(1405),...more?
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Nature of the scalar resonances?

1 1
'S, channel

K;(800)  K;(800) =t

[ ]

fo(500), fo(980)

0 eV
g
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ap(980)

ap(980)

K(800)  K3(800)

Figure: NN potential ('S, channel).
The attractive interaction is
dominated by the o or correlated
two-pion exchange. prLss (2007), ishii, Aok

Figure: Light scalar nonet.

» 70’s. Analyticity, unitarity and crossing symmetry constraints required
the existence of a broad ¢ pole (Guillou, Morel, Navalet, Basdevant,
Froggatt, Peterson, Roy).

» Glueball scenario. Not favored by lattice calculations, large N,
arguments and chiral symmetry.
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The ¢ meson
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Analyses with Breit-Wigner-like parameterizations led to misleading results
(different values of the parameters of the resonance).
Rev. Part. Phys. 1973:

“It is clear that the behavior of the 53 is much too complicated to allow
a description in terms of one or several Breit-Wigner resonances. We
therefore list the positions of the poles of the T matrix.”
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Chiral Perturbation Theory

» ChPT expansion of the amplitude for meson-meson scattering
t(s) = t(8) + t4(8) + ....tax = O(p%¥) (1)
» Lowest-order Chiral Lagrangian
f2
Lo = (0, UtorU + M(U + U")) (2)
Li=  Li(9,U0"U)? + (0, U9, U) (0" U 0" U)
+L3(0,UT0"Ud, U U) + Ly(0UTO" U)(U'M + MTU)

+L5(0, UTo" U(UTM 4+ MTU)) + Lg(U'M + MTU)?
+L7 (UM — MTU)2 + Le(MTUMTU + U'MU'™M)  (3)
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Chiral Perturbation Theory

where U(¢) = exp(iv2®/f), and

s + +
ﬁ + % s K
op)=| A —min ko @)
K- K° — 2
&'/,
m2 0 0
M=| 0o m 0 (5)
0 0 2m-m

[1] J. Gasser and H. Leutwyler, Annals Phys. 158, 142 (1984)
[2] J. Gasser and H. Leutwyler, Nucl. Phys. B 250, 465 (1985)

[3] J. A. Oller, E. Oset and J. R. Pelaez, Phys. Rev. D 59, 074001
(1999)
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Unitarity

» Unitarity in coupled channels:
[ty = Tinonn Ty | (6)

With onn(S) = —g2250(s — (Min + M2n)?) and k; is the on-shell c.m.

momentum.
o= T mTT*" = LT-Y(T-T*)T*1 = L(T-"*—T-") = ~ImT~",
Expansion of T~" in powers of p?:

T e T+ Tl ] =T - TT,
T=ToT, '[ReT " —io] ' T, ' To = To[ToReT ' T — iToo T2) ' T

Since To = ReTo, ImT =1ImTy = Too To.
T=[1-VG ", V= V\iz\/ ; (Bethe — Salpeter)
>—Vy

T= T[T~ ReTy —imTe] 'To — | T = BT~ T 'Ts @)

UChPT (NLO) Oller, Oset, Pelaez (1999) with T, = T + T.GT>



Second Riemann Sheet

Schwartz reflexion theorem: f(z) is analytic in a region of the
complex plane in which f is real, then

For the loop function, above threshold, Re\/s > m + M,

G(V's —ie) = (G(Vs + )" = G(V's + i) — i2ImG(V/s + ie)  (9)
Since the beginning of R2 is equal to the end of R1,

G'(Vs +ie) = G'(Vs — ie) = G'(V/s + ie) — i2ImG'(/s + i€) (10)

Since ImG/(v/s+i¢) = —87:7\/5,
I _ . q
G(\@)_G(\/§)+/4W\/§, Img >0 (11)
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Inverse Amplitude Method

Dispersion relations R,

1 {(s')
t = 5 ds’ s o
(s) 27 /C s'—s
If we assume that t — 0 as |s| — oo, then
1 [ Imi(s’ 1 % Imi(s
t(s) = */ H,li()ds’ + —/ L,l ( )ds’ (12)
TJsy S —S mT) o S —S8

with Imt(s + ie) = 2 [t(s + ie) — t(s — ie)]. If t does not goes to zero
when |s| — oo sufficiently fast,
t(s)
(5 —51)(s— 82)....(5 — sn)
Subtraction points: s1, so, ....Sy
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Inverse Amplitude Method

Dispersion relation of the function g(s) = t(s)?/t(s),

9(s) = 9(0) + g'(0) s + 9"(0 /d 's/s tzsile)
4M2

_'_7/01/ ImﬁgstE) (13)

Subtraction constants. NLO ChPT, g(0) ~ £(0) — #(0),

g'(0) ~ ;(0) — £(0), 9"(0) ~ —£;/(0).
Unitarity condition: (physical cut)Img = $#Im} = — 20
Left- hand cut (perturbatlve expansion)

Img = Imf ~ l‘2 Imﬁ ~ —Imly. X >%
fianls) = (tf()() X O O
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Inverse Amplitude Method

S-matrix

_ 2 .
Sj = 0j +21\/ai0} tj, m—{o1 4mi/s Vs>2m

else
Parameterization
B 7]62’5‘ i(1 - n2)1/2ei(51+52)
S= <,-(1 o n2)1/26i(61+52) 1762’52 : (14)
Analytical continuation,
S'(s+ie) = S" (s — ). (15)

Schwartz reflection principle, i.e. S(s+ ie) = S*(s — ie);
Unitarity, S§* = 1 — S" (s — i) = S' (s — ie) ' . Thus,

t'(s)

R EEILCILC "
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IAM with coupled-channels

Unitarity

In7T'=-%, z_<go‘ 0>, (17)

02

T=T, [T2R€T71 T —iTgZTg]i‘1 T , —> T = T2[T2 — 7—4]71 T (18)

Riemann sheet n,
-1
TO)(s) = T(s) (1+2i(s)" T(s)) (19)

7w, KK | = J = 1 coupled-channel system,
n_ (o1 O m_ (0 0O wv_ (o1 O
Z(o 0)’ > (o oz>’ x (o o)

Coupling,

9igi = —1671 _lim (8 — Spole) tj(2J + 1)/20% |, 1)

S—Spole
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Formalism in the finite volume

Two-meson-loop function G:

d3q w{ + wo 2M;
(27)8 2wiws E? — (wy + w2)? + ie

G= G(E) = /

q<gmax

where w; = /m? + |qg; |2 is the energy and g stands for the
]

momentum of the meson in the channel i. In the finite volume, the
momenta is quantized,

Gi = zfﬂﬁi; T—T, G(E) — G(E) (23)

[1] M. Doring, U. G. MeiB3ner, E. Oset and A. Rusetsky, Eur. Phys. J.
A47,139 (2011)

[2] M. Doring, J. Haidenbauer, U. G. MeiB3ner, and A. Rusetsky, Eur.
Phys. J. A47, 163 (2011)
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Formalism in the finite volume

T=[1-VG Vv (24)
with V = V2/(Va — V4), and
GE) = 15 S E.G). (25)
g
with . .

2wi(Gi)w2(qr) (E)? — (wi(qi) + wa(di))?
and g = %(nx, ny, nz). The formalism can also be made independent
of gmax and related to «.

- , 1 ~ d®q ~
G= GDM%J;Q% (La > I(E, q)f/ (Qﬁs)/(Ea 67)>

q<Qmax 9<Gmax

=G+ Iim 4G, (27)

Gmax — 00

A. Martinez Torres, L. R. Dai, C. Koren, D. Jido and E. Oset, PRD85(2012)
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Formalism in the finite volume

» Bethe-Salpeter eq. finite volume, energy levels:

T'=v'-G |det(/-VG)=0 (28)

» One-channel amplitude inf. volume:

T=(G(E)- G(E))™". [tans = —k/(87EAG)] (29)

Boost, Asymmetric Boxes and Partial Wave Decomposition
Doering, Meifiner, Oset, Rusetsky (2012)

T, 02 2') = Vi, )8 8 s + //;m:” vi(p, q"“'*)élm‘l,,m,,(q°“=*)T/,,m,,7Im(q°“'*,p’) (30)
det((S///(Smm/ o \/I(q()r‘.'*7 qon,*)é/m’l/m/ (qon‘*)) -0 (31 )
Irreducible representations for asymmetric boxes and boost
P =22(0,0,1),
1

I=L=0—A":=1+VoGpoo0=0
[I=L=1-—A; : =1+ ViGio10=0E : =1+ V1G1111 =0



Conformal mapping

Parameterization

» Most general form of the K-matrix as an analytical function of
energy

» The convergence of the series is improved by mapping it onto
the interior of a disk

_ l4am2 —
[cml] \/g @ My —$ (32)
f+a\/4m2 _s

[cm2] _ \/5 -
w(s) ot a’
with o = 1; mx = 550 MeV [cm1] and o« = 1000 MeV [cm2].
I. Caprini. Phys. Rev. D77 (2008)
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Conformal mapping

K matrix:

Ko? (s)

_L /\/772r <2SA
© 16w Sp — S\ M, /s

Chiral symmetry dictates that Too(s) must vanish for s = s4 ~ M2 /2.
» «is fixed (not significant improved if running).
» Two fitting parameters, By and B;.

Scattering amplitude in the finite volume and / = L = 0 channel,

1

+ By + Byw(s) + ) (34)

Too(8) = —————, (35)
Koo1 (s) — G(s)
Solution: Energies Eé with covariance matrix C,
X°=(E—E)"-C"(E-E) (36)

which provide a minimal 2.



Results

Conformal mapping vs. UChPT fits

Par. Fitted M, = 227 MeV M, = 315 MeV
data set | Rez -lmzy g Rezg -lmzy g
cmi o027 460730 180" 3.27071 |- - -
0315 - - - 66075 1507% 4.07%2
cm2 o7 475730 176750 3.379% | - - -
0315 - - - 660730 140M% 3.9792
chm2 o257 poo7 | 460730 160750 3.07%% | - - -
0315 pats | — - - 66075 12075 3.67%]

Table: Pole positions (2, in MeV) and corresponding couplings to == channel
(g in GeV) in the conformal mapping parameterizations, [cm1] and [cm2], and
in the UChPT individual fits [chm2].

Lattice data from GWU 2018 simulation, m,, = 227 and 315 MeV,
Alexandru, Guo, Molina, Mai, Déring, PRD98(2018)
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Results

Conformal mapping vs. UChPT o + p individual fits:

my =227 MeV =315 MeV

p cotéGeV]
p cotélGeV]

" emt
-04f  m cm2 —
1 chm2

0.00 0.05 0.10 0.15 020 0.00 005 0.10 0.15
PlGeV?] PPlGeV?]

Figure: pcotd as a function of p? in the conformal parameterizations for the
I = L =0 channel, [cm1] and [cm2], in comparison with the individual o + p
UChPT fits.
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Combined fits from UChPT

o [chm1] and o + p [chm2] fits

Fit,(315 MeV), P=0 Fit,(315 MeV), P=(0,0,1)

1100 1100
1000 1000 \
o 900 _ 900
3 3
2 800 2 0
T T
700 700
. i ——
600} § 1 600
500 500
10 12 14 16 18 20 10 12 14 16 18 20

Fit,(227 MeV), P=(0,0,1)

Fit,(227 MeV), P=0

1ooo\i\t\+\ 1000 \r\
= 800 = sooq\i\%-\
[} [
= =)
Y 600 W 600
“x'“
400! v 400
09 10 11 12 13 14 15 16 09 10 11 12 13 14 15 16

Figure: Energy levels in the o fits [chm1] to m, = 227,315 MeV energy
levels. The energy levels are similar when the p meson is included [chm2].
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Pion mass dependence

Pole position z,

hys light heavy

400

300

200

Im p [MeV]
3
8

=100

-200|

~200 ~100 0 100 200
Rep [MeV]

1.0 15 2.0 25 3.0 35
Mg

Figure: Left: M. dependence of the pole position of the o resonance in the

complex plain of the energy. The encircle numbers represent the pion mass
in units of the physical one. Right: M. dependence of the coupling of the o

resonance.
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Physical point vs. other works

Par. My = 138 MeV " m=138 e
Fitted data set Rezg - Imzq g
chm 440180 240120 30102 s EEQ?Z::’:
227,315 20
chm2 440t10 240%20 30100
227,315 P227,315
Pelaez 2015 449722 27512 35108 .
Albaladejo 2012 440 4+ 10 238 + 10 05
Doring, Mai 2016 as2tl 14410 26700 N
0.00 0.05 0.10 0.15 0.20

PlGeV?]

—— phys. (ext)
227 MeV P DG :
—— 315MeV

TTZmm  Mass: (400 - 550) MeV
Width: (200 — 350) MeV

0.00 0.05 0.10 015 020
PP[GeV?]
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The p meson

>

Quark model ~ qg meson. Phase shift ~ Breit-Wigner + small

COrreC“OnS, Pisut, Jan and Roos, Matts, Nucl. Phys. B (1968), Lafferty, G. D., Z. Phys. C(1993)

N; dependence of the p(770) meson leads to small non-gq component

Pelaez, J. R. and Rios, G. ,PRL (2006), Ruiz de Elvira, J. and Pelaez, PRD(2011)

Quark-mass dependence of p parameters (general Feynmann
-Hellmann theorem) requires a non-negligible correction beyond the
quark model. Ledwig, T. and Nieves, J. and Pich, A. and Ruiz Arriola, E. and Ruiz de Elvira, J., PRD(2014)

Dominates the =7 scattering amplitudes in the / = J = 1 channel below
1 GeV. Pole parameters have been determined very precisely. tanaashi,
PRD(2018), Ananthanarayan, Colangelo, Gasser, Leutwyler, PR (2001), NPB (2001); Garcia-Martin, Kaminski, Pelaez, Ruiz de

Elvira, Yndurain, PRD (2011)

The p(770) contribution is also important for the hadronic total cross
section o(e"e~ — hadrons), hadronic-vacuum polarization,
light-by-light contributions to the anomalous magnetic moment of the
MUON Aubert, Bernard, Phys. Rev. Lett (2009); Babusci et al. PLB(2012), Ablikim et al. PLB(2015),Eidelman, and

Jegerlehner, Phys. C(1995);Jegerlehner Fred and Nyffeler, Andreas, PR (2009); Colangelo, Gilberto and Hoferichter, PRL (2017)

Role int the restoration of chiral symmetry at higher temperatures pisarsi

Robert PRD (1995); Harada, Masayasu and Yamawaki, Koichi, PRL(2001); Gomez Nicola, Pelaez, Ruiz de Elvira, PRD(2013)
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Previous results with UChPT

Analyses N; = 2 & 2 + 1 lattice data done in Refs. : Hu, Molina,
Déring, Alexandru, PRL 117 (2016), Guo, Alexandru, Molina and M. Déring,
PRD(2016) ;Hu, Molina, Doring, Mai, Alexandru, PRD (2017)

Physical & Physical
a /Sl
O Langll O Langll
3 C:gPACS)7 Ny=2 CP-PACSO07,N;=2
E c s z a4 PACS-CS11,Ng=2+1
2 PACS-CSL1, Ny=2+1 e :
€ v GWU16 = v GWUI6
£ © RQCDI16
S + HadSpecl
adSpec
HadSpec!
 Bull5/16
BMW13/15 & i
150 200 250 300 350 o0 * CAkx
m[MeV] Ful6

M, =138MeV HadSpec Comb

of
500 600 700 800 900 1000 1100 500 600 700 800 00 1000 1100
W[MeV] W[MeV]
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Previous results with UChPT

¥ ~ Lpon{TTpen(KK) | 1Geal

NLO UChPT vs. One-loop UChPT; Not that small!!

Ratio of the couplings of the p meson to =r and KK
Oller/Pelaez(1999) Guo/Oller(2012)

gﬂ 0.54 0.64

Can this be explained by different values of the strange quark (kaon)

maSS? (or because of uncertainties in “a”, or both...?)

New N; = 2 + 1 data on TrM= K: A L
3 4
Andersen, Christian and Bulava, John and Hérz, Ben and Morningstar, Colin e [} [
[}
NPB(2018)
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FLAG Review 2019

3 3
FIG2019 10°Ls FAG2019 10°Ls

Ne=2+141

Only based on the
trajectory ms = m2 (0 =
phys.), no input on the
strange quark mass
dependence of decay
constants.

The FLAG average is not
a fit of data (large errors)
Only pseudoscalar
masses and decay
constant data analyses.

Ne=3 Ne=2+141

Ne=2+

» Analysis of 7 | = 1, J = 1 phase shift lattice data (p meson) &
pseudoscalar meson masses and decay constants on different
chiral trajectories (ms = m% and TrM=TrM°)

» Check of the KSFR relation, g, = m,/v/2f,
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Chiral trajectories (NLO ChPT)

» Strange quark mass constant, ms; = k:

Mz = %Mgﬂ +kBy,
where k = m(o) or 0.6 m(so)

» Light and strange quark mass varies, Tr M = c:
1
Msx = —*Mgw +c¢Bo,

with ¢ = 2m( ) + ms Predictions for other k’s, ¢’s, and:
» Symmetric, ms = Myg,

2
MOk - MO’IT ’

» Light quark mass constant, m,y = mf,d),

Mg, = MED; MEe = MED) + (ms — m) By

T

Free parameters: L1, =2L; — L, and L;, i = 3,8, and ¢ By, k By, adjusted
to the the chiral trajectories. 1 = 770 MeV, f, = 80 MeV.



Fitting procedure

» Energy measurements/phase shifts in the lattice are correlated:
2 o N A= _ 9(Woi) — f(Wai) _
Xw = (W1 Wo) C (W1 Wo), W1l = f/(WOi) — g/(WOI) + WOI

Wo: lattice eigenenergies; C: covariance; W : energies of the fit

function. Taylor expansion (first order) around Wy, for 6, = g(W), and
dse = f(Wh;), (Ws; =reconstructed energies (Luscher)).

I

x:xﬁx+x?+>\2/l(ssf)ij*5/‘/|2 dE | xF = (hj—hy)?/eff
j

hi = mx/fx, ho = mk/fx and hs = my /.
Molina, Ruiz de Elvira, JHEP2011(2020)

memEEEm
FTEELCCy
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NLO Chiral fits

Fitl, B=3.4 (Tr M=c)
Fitl, 5=.55 (T Mac)
—— Fil, =37 (Tr M=c)

e BRIV, 62355 (Tr M)
OLS, B=3.4 (Tr M=c)
CLS, 423,55 (TrMec)
CLS, §=37 (Tr M=c)
UKD (7= i)

MILC (M=)
Laiho (me=spoye)

m3(GoV?)

— FiLL, =34 (Tr M)
Fitl, B35 (Tr M=c)

—— Fitl, B=37 (T M=c)

)

e B (M)

1 (=08 My )
FitIV, 6=3.4 (Tr Mec)

+ FIIV, B=3.55 (Tr M)

CLS, B=3.4 Tr M=c)
CLS, 6355 (TrM=c)
CLS, B=3.7 (Tr M=c)
UKD (= e gne)

rrrrr MILC (=)
MILC (my=0.8 )
Lalho (my=my )

Ma(MeV)

........ FitIV, B=3.7 (Tr Mec)

FiUIV (mgem)

FILIV (1,206 M gye)

....... FitIV, B=3.7 (Tr Mec)
FitIV (mag=ms)
FILIV (= )

FILIV (=06 My )

LEC x 103 Fit |
Ly ~0.06(1)
Lg 0.91(2)
Lg 0.15(2)
Lg 0.03(3)
c(k) By x 10~ 3(Mev?2) Fit |
[cBols_3.4 316(6)
[cBolg—3. 295(6)
[cBolg—3.7 298(6)
[k Bolmg_ e 257(6)
Iy = Bofé = —(0]3q]0)g =

£3/® = 245 — 2800

Flag review: 214 — 290 MeV.
.51/3

MILC: 4/ = 245(5)(4)(4) MeV.

We obtain 258 and 245 MeV for Fits |

and IV in the mg = Mg phys

trajectory, respectively, which are

compatible.

Raquel Molina |



(x2/d.o.f =1.2) LECs x 103
0.02(0.06)
L2 036 _0.02(0.02)
44 +0.04(0.07)
Ls 844 _5.04(0.06)
+0.03(0.05)
Ly —0.08 5 04(0.03)
£0.07(0.06)
Ls 098 _4.05(0.04)
+0.08(0.16)
Ls 024 _ 5 06(0.05)
4£0.09(0.12)
b 0-008 _4 14(0.15)
£0.10(0.11)
Lg 0-09%8 _5 11(0.16)
(k) x 1073 (MeV?)
o 14(8)
TIMBy (8 = 3.4) 268710
. +11(7)
TIMBy (8 = 3.55) 25t
L +12(7)
TMBy (8 = 3.7) 257t 20
+14(10)
msBy 224 )

Table: Values of the parameters

obtained in Fit IV.

ma=m (aLC)

miz0sm (o)

men Gane)

me=0

=005

meong

—— myeosn?

100

my(MeV)

<0

100

200

300

mr(iev)

oot
m=00tsmd 1oz

me=002md

=0
my=1.6n
-1
,,,,, meem (Laio)
<= mem o)
« meemd (UkQCD)
« myemyg, 6346 (0L5)
0 o TrMea. 534 (0LS)
» T b, =355 0L5)
¢ Mes, =37 (0L5)
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100 200 300 400 500 100 200 300 400 500

Mr(Mev) My (MeV) Tr Mg, B=37 (CLS)

Figure: Decay constant ratios, my/f. and my/fx, obtained in Fit IV in
comparison with the lattice data.
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Global fit

101, Tr M=c — 1AM (m,=236 MeV)
o — M o101 Tr oo 150f  — IAM (D101)
* HS(236), m,=m
D101, Tr M=c.
S S
50| 50|
0 2 30 35 0 45 50 20 5 30 3 40 5
E/m, E/m,
- 1= N200, Tr M=c
1AM © D200, Tr M=c — &
150 150 N401, Tr M=c
S S
20 50 55 20 25 30 35

E/m,

Figure 12: Phase shift lattice data for the trajectories Tr M= c in
comparison with the result of the global fit (m, ~ 200,230 and 280
MeV, D200, D101 and N200 respectively).
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Global fit decay constant + phase shift lattig

data

1AM o D200, Tr M=c 1AM JB(233), m,=m{

E/my

— 1AM+ HS(236), m=md + Hs(391), my=m{

— 1AM

6:(°)

20 25 30 35 40 45 18 20 22 24 26

Figure 13: Phase shift lattice data for the trajectories Tr M= ¢
(m, ~ 260 MeV), and ms = m2, in comparison with the result of the
global fit.
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Global fit decay constant + phase shift

data

— 1AM (m2, m)

L l 150 Protopopescu
A

m D200 (200) J
150 = D101 (230) =+
= J303 (260)
= N200 (280)

= Estabrooks

50,
50

0

500 600 700 800 900 1000 1200

E(MeV) E(MeV)
Figure 14: Phase shift lattice data for the trajectories Tr M= ¢, and
extrapolation to the physical point in comparison with experimental
data.
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Global fit decay constant
data

o C101, p=34(a)
a D101, p-34(2)
> N200, p=355(0)

i1, 3.45(0)

850- o D200,p-35500)

4203, =3.7(0)

900

0/ cuare(MeV)
oge(MeV)

m,lEs,

e
........ M08
R Y
- w0z
— o

200 ) 500 ) 100 200 300 400 500

(oY) My (MeV)

me(MeV)

Figure 15: Result of the global fit for M, over trajectories ms = k and
TrM= ¢, in comparison with lattice data.

» M,(m,) becomes flatter in TrM= c trajectories.

> Around m, = 450 MeV, the p becomes bounds in near ms = m2
trajectories, while it starts to decay into KK in the TrM= ¢ ones.

» In the chiral limit the mass of the p is ~ 680 MeV.
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Global fit decay

E3 30 g E 10 20 a0 o
M(MeV) mi(MeV) me(MeV)

Figure 16: g, g« and the ratio \/2f, g.~/m, (KSFR).

» The coupling to KK increases when ms
becomes lighter.

» The ratio of the couplings becomes
kit /Grrx = 1/3/2 in the symmetric line.

» The p becomes bound for m, around 430
MeV

100 200 300 0 50

m
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Global
data

Figure 17:

Real part
of the pole
position of
the rho
meson.

Re Eo(MeV)

Re Eg(MeV)

1

Figure 18:
Re(Im)y/s, as a
function of mx over
the m, = ¢,

My = m2
trajectories.
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Ly x 10°

Fitll (me=k)
FitllA (Tr M=c)
Fitllig (Tr M=c)

® FitIV (m, =k, TrM=c)

PACS-CS (mj=k)
JUTWQCD+HS (m,=k)
UKQCD+CA

® Fitl (my=k, TrM=c)

Lip x 10° Ls x 10° Ly x 10°
g
¢ 3 T } 3 *
i .
f S
Ly x 10° Lg x 10° Lg x 10°
: .
{ L]
. { i

0 0 2 4 6 8 0 0 2 4 6 8 -0 0 2 4 6 8
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900

> Langit —— 1AM (7, t =0)
850 © CP-PACS07
< Gwute

© RQCD16

800

mp(MeV)

750

700

150 200 250 300 350 400
myr(MeV)

Figure 20: Result for the p meson
mass when interacting terms
involving kaons and etas are set to
zero in comparison with Ny = 2
lattice data.

900 Langt1 (=)
B CP-PACSO7 (Ni22) $

< WUt (N2 b
o RaCois (Mie2)
—

» ETMC20 (Ni=2)

700)

m,(MeV)

O C101,p=3.4 (Ni=2+1)
O D101, =34 (Ni=2+1)
b N200, =355 (Ni=241)

NAO, 5=3.46 (Ni=2+1)
600 © D200, p=355 (Ni=2+1)
303,537 (Ni=2+1)

98, me= (N=2+1)

m,(MeV)

& ETMC19, =19 (Ni=2+1+1)
O ETMC19, 6=1.95 (Ni=2+11)
© ETMC19, =21 (Ni=2+1+1)
< Bo.

— 1AM, 4=0)

— A (N=241), my ]

Figure 21: Comparison of
Ny =2 + 1 with new Ny = 2 and

N =2+ 1+ 1 data.
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The hidden gauge formalism

Bando, Kugo, Yamawaki, PRL54,1215

£=L%4cy (37)
£® %f2<DM UpD“Ut + xUt + xTU) (38)
1 b1 i
L = =7V V) + §M5<[Vu - §FM]2>
D.U = 8,U—ieQA,U+ ieUQA,,  U=¢ev?F/

Upon expansion of [V, — LT, %,

Lyy = *MagAMV“Q%CVPP = —ig(V"[P,0.P]), Lypp = ieA.(Q[P, 0. P]), ...

’

Fro 1 Gy 1 f My
v Lo _ L Vo, Gy= L, =2
My 29 My 2y2g ’ ’ T2 97 o
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Vector-vector scattering

Lo = — 5 (Vi VI BY) — ig((0,V,, — 8, V,) Vi vY)

\

L) = C(V,V,VeVy — V,V, Vevr)

V, =
g w + *
Vi = atE P A
OuVy — 0 Vy flg[V#,V] p- —Z+ Y KO
g = X K*— K*O QZS
D*O D*+ D;+

D*O
D~
D:~
J/Y
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PB and VB interaction

Lesv = g((Byu[V*, B]) + (By,.B)(V"))

Proea P Vi v,
v tripv = g15FC15F(15 ® 15) (Q1 + Q2)u5#
v =/ =/
ts,5,v = {g1s, C15,(20° ® 20) + gis, Ci5,(20" © 20)
T T 41620 ®20)} O (p2)y - e un(pr)

with g5, = —2V/2g. 915,, 915, and gy are evaluated demanding
1) The couplinga pp — J/v, pp — ¢ should be zero by OZI rules,
2) The coupling pp — p° should be the one obtained in SU(3).

915, = —3; 15, = 2\/§g; g1 =3V5g.

Bethe-Salpeter equation T=[-Vva'v
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Pentaquark states

Wu1 |\/|0|ina’ OSeL Zou (2010) PB resonances (units in MeV)
(1,5 M T r;
v Cap 0 0 (1/2,0) 7N nN n'N KT neN
Ab(P, By — P, By) = e 4261 56.9 3.8 8.1 3.9 17.0 234
(P1B1—P2By) 412 (q g ) 0, —1) KN =X nA n'A K= neh
C 4209 32.4 15.8 2.9 3.2 1.7 2.4 58
_ Lab, 0 O\= = 4394 43.3 0 10.6 7.1 3.3 5.8 163
Vab(v,B,—v,8,) = i (g7 + Q)& - &
VB resonances
(7, S) M T T
(1/2,0) oN wN K*% J/ N
——— = = 4412 47.3 3.2 10.4 13.7 19.2
_ D*¥c D*AZ pN wN ¢N K*E K*A 0, —1) K*N pT  wA oA K¥= J/PA
D¥sc| —1 0 —1/2 3/2 0 1 0 4368 280 139 31 03 40 18 54
D*nf 1 —3/2 —v/3/2 0 0 1 4544 36.6 0 88 91 0 50 138

Ap = Pp+J/p + K™

Cyp for the VB system in the sector / = 1/2, S = 0.
Experimental P¢ states (LHCb, 2019)

M (MeV) r (MeV)
- DiNG D*Zo D*=,  pT  wh A K*N K*= 4311.9£07788 98127157
Ds e 0 —v2 0 0 0 -1 -3 0 4440.3 £ 1.374 1 206 £ 49787,
D*=¢ -1 0 —3/2 —1/2 0 0 /372 o s
! 4457.3 £ 0.6 7% 6.4+ 27
D*=, -1 VB2 Vv3/2 0 0 1/v2 —1.7 —1.9

Pgs states (LHCb, 2020)
a7 8.0
4458.8 29747 173 +65780

Cab for the VB system in the sector / = 0, S = —1.
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Pentaquarks states

LHCb 2015.

P} (4380), M = (4380 + 8 & 29) MeV, I = (205 = 18 + 86) MeV, and
P} (4450), M = (4449.8 + 1.7 +2.5) MeV, I = (39 + 5 + 19) MeV
Assignments: (3/27,5/2~ ) and (5/2",3/2~ ) are possible.

The theoretical analysis of the
Ao — J/PYK™P L Roca, u. Nieves and £
Oset, PRD92, 094003(2015) SUPPOrts the
JP = 3/2~ assignment of the
pentaquark state, and its nature
as D*Y., D*¥; molecule.

In 2019 the new experimental analysis shows one
more pentaquark, P.(4312) and P.(4450) splits
into two.

e
P(a312)

A

430042504300 4350 4400 4450 4500 4550 4600
My [MeV]
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Pentaquark states

Generalized HGF formalism with HQSS Xiao, Nieves, Oset (2013,2019)

I=1/2,¢=0,S= —1,JP = 1/2—

I=1/2,c=0,S=0,J" =1/2—

o
*
Il

J/yN D*=¢ DfAc D*=] D=}

© %

(4306.38 + i7.62)

4429.52 + i7.67

neN J/¢N DA¢ Dxc D*Ac D*3c D*s5}

1gil 0.32 2.77 0.74 0.02 0.06 0.04 1gi 0.67 0.46 0.01 2.09 0.25 0.31 0.16
4506.99 + i1.03 (4452.96 + i11.72)
|9;1 0.27 0.03 0.03 0.03 1.56 0.05 neN J/¥N DAc D¢ D*A¢ D*¥c D*x}

I=1/2,¢=0,S=0,JF =3/2—

19;] 0.25 0.89 0.11 0.13 0.14 2.03 0.19

(4374.33 + i6.87) J/4)N D*Ag D¥3¥¢ DZ’E D*[; Mass ~ Width Main channel JP Experiment
|g;1 0.73 0.18 0.19 1.94 0.30 43064 152 Ds¢ 1/27 Pp(4312)
(4452.48 + i1.49) J/9)N D*Ac D*¥c DX} D*%j 44530 234 D*¥¢ 1/2=  Pg(4440)
19il 0.30 0.07 1.82 0.08 0.19 44525 3.0 D*x¢ 3/27  P(4457)

The heavy quarks are spectators if we exchange light vectors. Heavy
quark spin symmetry is automatically fulfilled.
The exchange of light vectors gives the dominant terms.
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New flavor exotic tetraquark

LHCb (2020): Two states J” = 0,1~ decaying to DK ( DK in the
experiment). First clear example of an heavy-flavor exotic tetraquark,
~csud (C=1,5=-1).

Xo(2866) : M =2866+7 and I =57.2+129MeV,
X1(2900) : M =2904 +£5 and I'=110.3+11.5MeV.

Molina,Branz,Oset, PRD82(2010). HGF

[

Amplitude

Contact

~ Total

0 D*K* — D*K*

1 D*K* — D*K*

2 D*K* — D*K*

4g

—2g

2

0

2

g°(py+pg)-(P2+p3)
2

m
*
Dg

9% (P1+P4) - (Po+P3)
2

m*
Dg

92(Py+P4)-(P2+P3)
2

mD*

V-exchange
i ;g%? - mi%xm +p3)-(p2 + Pg)
i ;g%% - mi/%xm +p3)-(p2 + Pg)
+ ;g%% - mi%m +p3)-(P2 + Pg)

—9.9¢2
—10.2¢2

—15.9¢2

Table:

value of V at threshold.

Tree level amplitudes for D*K* in | = 0. The last column shows the
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D D D* K*
D D

K* K* _ _
K* K*

(a) (0)

StateswithC =1,S=1,/=0

1(JP) M[MeV]  M[MeV] Channels state
0(2T) 2572 23 D'K*.D5é.Diw  Dsp(2572)
o(1t) 2707 D*K*, D} ¢, Dy w ?
0(0™) 2683 71 D*K*, DX ¢, DF w ?
StateswithC =1,S = —1,/=10
/(JP) M[MeV] MMeV] Channels state
0(2T) 2733 36 D*K* ?
o(1t) 2839 D*K* ?
o(0t) 2848 59 D*K* X0 (2866)

1

P = é(euﬁuéuﬁu —epeve’€)
1

P — {é(eueye”fy + epene’e”)

m v
——eucese’} .

3

T=[-va'v
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New flavor exotic tetraquark

Two-meson loop function:
1 M2 ME—M2+s_ M
Gi(s) = 16:2 (a + Log— + TLOgW
s—M2 M? 4+ 2p+/s s+ M5 — M2 +2p\/s
+ L(Log 22+ 12+ pv's Log + 2 12+ pv's ))
NG —s+ M2 — M2+ 2py/s —5— M2+ M2 +2py/s

Form factor (box-diagram):

F(q) = W= =3/"  Navarra, PRD65(2002)
(39)

with go = (s + m5 — m&%)/2v/s, A ~ 1 — 1.3 GeV. Previous work (2010):
o = —1.6 (with » = 1500 MeV) and A = 1200. Recent work: Molina, Oset
PLB811 2020, « = —1.474, A = 1300.

D (p1) D*(ps)

D'(q) G vaf
. L= "6, Voa Vs P
N (6u 5P)

Lvep = —ig([P,0,.PIV")

K*(p2) K*(pa)
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New flavor exotic tetraquark

I(J")  M[MeV] T[MeV] Coupled channels state
0(2%) 2775 38 DK ?
o(1+) 2861 20 D*K* ?
0(0*) 2866 57 D*K*  X,(2866)

Table: New results including the width of the D* K channel.

1=0;=0 1=0;J=1

N=1200 MeV
—  — A=1300 MeV

1100 ——— A=1200MeV * st
— — A=1300MeV -

2800

E[MeV]

E[MeV]

Figure: |T|?forC=1,S=—-1,/=0,J=0and J = 1.
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Hidden-charm strange tetraquark? @
Z

BESIII (2020) has reported a state, Z;5(3985), from the D3~ D°,
Dg D*0 invariant mass distribution of ete~ — K+ (D3~ D° + D5 D*0).

M =3982.57,8 £ 2.1 MeV, I =12.8"53+3.0 MeV. (40)

7 MeV above the D;~D°, D; D*° threshold. It could be the SU(3)
partner of the Z;(3900) state, where a u or d quark has been
replaced by an s quark.

- . 1 S o
J/YK™ (1), K ne (2), E(Ds D*+D;™D°)(3)
v v Mp = 1916 MeV, fp- = 2060 MeV
m P 1 — *0 *— 0
A= —_(D; D + D:D°),
Vo \/é( s s )
o 1 — 0 *— 0
— : 5 B_E(DSD — D:7D°).
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Hidden-charm strange tetraquark? @
Z

1
Vi = ngf/é 3MZy — (mf + mb + mj + m§) — /\Tz(m‘z — m)(mj — mf)} ,
12

where M2, = (p1 + p2)?. @ correction in the propagators: g° = 0 for V; and

. M2, +M? —m?
q° = MP + Mp. — 2EMp., for Vis, Vas, with £ = Zi2 7=
Ikeno, Oset, Molina, PLB(2020) G/ _ / d3q w1 + wo 1
0 0 V2 (2m)3 2wiwz (P?)? — (w1 +w2)? + e
2
D
Cj = 0 2 |. wi=Vm+g®e =M +G?and
7i |Eﬂ < Qmax- Qmax ~ 700-850 MeV in
mi/v‘f Aceti,Oset, PRD90(2014) BS factor, ¢ = 2 + ! (ﬂf (2.8)
3 3 \my

T=[-VvG'v, N2 (s, R MR )
_ ’ " DsD*

ete™ — k(D D0 + D5 D*0) p=
2\/s
d, 1 1/2 2 2 2
- = —— paN [Ty ~ A (MDSD*7mDS7mD*)
dMD D* svV/s q —
: 2Mp, -
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Events/5.0 MeV
>

P S P P
3960 3980 4000 4020 4040

M5, p-[MeV]

Figure: Results of do/dMp,p.. Solid line: Result for the DsD* + D3 D
combination with its coupled channels (c.c.). Dashed line: Result for the
single channel DsD* — D D combination (1 ch.). Dotted line: phase space.
Dashed-dotted line: result folded with the experimental resolution (c.c. conv.).
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Search for hidden-charm pentaquarks

Stimulated by LHCb, BESIII is conducting an analysis for the search of
hidden-strange pentaquarks (decaying to p¢) in A; decays.

» 2014. BESIII collected 567 pb~" close to A:Ac production threshold (4.6
GeV). However the result is limited by statistics and no evidence of a
peak was found.

» 2020. BESIII has collected new data between 4.6 — 4.7 GeV in 2020.

Status as seen in

Paticle J”  overall Ny Nm Az No Ny AK YK

& 1/2% ewnx
%) 1Z' saer kenr kb weee ar
< 3/27 weex weer peec pees wx e
5) 1/27 wekr kmer ke oeee ke
127 eer emk Ress bR K weee %
5) 5/27 weer  kems eeee wkks ke E k k
§ 5/2% wirk weer weee R b F ok
< 3/27 ek w5 mkk Rk *
i 1/2% wex ek RERE % T
¢ BESIII pr /2t wwee e e e 4+ e s
o 5/2F = * ok * *
75) B2 e wwe ke ok x x
1/2F wenx P * PP * e
B T
3/2F wwee e Rk wr % % ke ok
ki 7/2% * P * * *
l 5/2F e P
3/2% *
""""" 52w e we vk xxx
1/27 e - Wk R % %
NeW decay mode p¢ 3/27 ek [ R TR ok
T)2T wwek eeer eeer kees a4k X A %
9/2F wrne x ek L
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Conclusions

» New observed states in the heavy sector are a clear evidence of
exotic hadrons

» The hadron spectrum might be full of these kind of states

» New “model independent” tools should be developed to
investigate the hadron nature

» The combination of Lattice+EFT might be an interesting
technique which can help to elucidate the hadron nature but one
should be careful with lattice systematic errors

Thank you
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