

# First observation and polarization of $B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$ at LHCb

Paula Álvarez Cartelle

Universidade de Santiago de Compostela

III Jornadas CPAN, Barcelona  
November 3, 2011



# Outline

## 1 Introduction

## 2 Observation at LHCb

- LHCb features
- Event selection
- Signal evidence

## 3 Selection of control channel

## 4 $K^{*0}$ Polarization

## 5 Determination of $\mathcal{B}(B_s^0 \rightarrow K^{*0} \bar{K}^{*0})$

## 6 Conclusions



# Outline

## 1 Introduction

## 2 Observation at LHCb

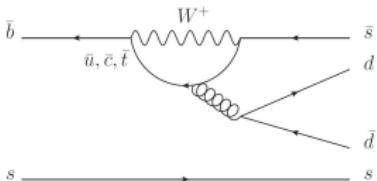
- LHCb features
- Event selection
- Signal evidence

## 3 Selection of control channel

## 4 $K^{*0}$ Polarization

## 5 Determination of $\mathcal{B}(B_s^0 \rightarrow K^{*0} \bar{K}^{*0})$

## 6 Conclusions


## Introduction

- $B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$  is a pure  $b \rightarrow s$  penguin decay which has never been observed so far.

Loops are particularly sensitive to New Physics. Penguin are dominated by the heaviest particles in SM:  $t$ ,  $W^\pm$ ,  $Z^0$ ...

Are there more heavy particles interfering?

- $b \rightarrow d$  and  $b \rightarrow s$  only allowed in SM by loops.  $b \rightarrow d$  have been explored at B-factories but very little is known about  $b \rightarrow s$  transitions ( $B_s^0 \rightarrow \mu^+ \mu^-$  is an example). This is the arena of LHCb.
- U-spin rotations,  $d \leftrightarrow s$ , are genuine flavour symmetries. Standard EW and QCD physics predict small breaking ( $\lesssim 10\%$ )
- Very interesting for precision CP-violation studies, where  $B^0 \rightarrow K^{*0} \bar{K}^{*0}$  channel is used to control the theoretical error.





# Introduction

- $B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$  is a decay into two light vector mesons

$$H_0 \gg H_{+1} \gg H_{-1}, \quad \mathcal{O}\left(\frac{\Lambda_{QCD}}{m_b}\right)^{0,1,2}$$

- Predictions in the framework of QCD factorization are  $(9.1_{-6.8}^{+11.3}) \times 10^{-6}$  for the branching fraction and  $f_L = 0.63_{-0.29}^{+0.42}$  for the longitudinal fraction (improved to  $(7.9_{-3.9}^{+4.3}) \times 10^{-6}$  and  $f_L = 0.72_{-0.21}^{+0.16}$  when experimental input is used)<sup>1</sup>.
- Recently updated SM prediction for the ratio of the longitudinal BR of  $B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$  and its U-spin rotated channel  $B^0 \rightarrow K^{*0} \bar{K}^{*0}$ . (See *New Physics mixing angles from penguin decays* by Javier Virto, Red de Física del sabor)

<sup>1</sup>Beneke et al. arXiv:hep-ph/0612290v2 [hep-ph] Dec 21, 2006



# Introduction

- Searched for at SLD  $\rightarrow \mathcal{B}(B_s^0 \rightarrow K^{*0} \bar{K}^{*0}) < 1.68 \times 10^{-3}$  (90% CL).
- $B^0 \rightarrow K^{*0} \bar{K}^{*0}$  was observed by BaBar

$$\mathcal{B}(B^0 \rightarrow K^{*0} \bar{K}^{*0}) = (1.28_{-0.30}^{+0.35} \pm 0.11) \times 10^{-6}$$

$$f_L(B^0 \rightarrow K^{*0} \bar{K}^{*0}) = 0.80_{-0.12}^{+0.10} \pm 0.06$$

- LHCb paper ready for publication in Physics Letters B



LHCb-ANA-2011-035  
October 20, 2011  
Version 1.1

## First observation of the decay $B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$

B. Adeva<sup>1</sup>, P. Álvarez Cartelle<sup>1</sup>, L. Carson<sup>1</sup>, X. Cid Vidal<sup>1</sup>, A. Dosil Suárez<sup>1</sup>, D. Martínez Santos<sup>2</sup>, J.J. Saborido Silva<sup>1</sup>, C. Santamarina<sup>1</sup>

<sup>1</sup>University of Santiago de Compostela, Spain

<sup>2</sup>European Organization for Nuclear Research (CERN), Geneva, Switzerland



# Outline

1 Introduction

2 Observation at LHCb

- LHCb features
- Event selection
- Signal evidence

3 Selection of control channel

4  $K^{*0}$  Polarization

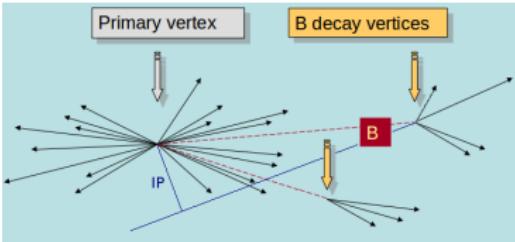
5 Determination of  $\mathcal{B}(B_s^0 \rightarrow K^{*0} \bar{K}^{*0})$

6 Conclusions



# LHCb key features

- **VELO:**


Provides precise information of PV and SV.  
 Good IP resolution ( $16 \text{ } \mu\text{m} + 30 \text{ } \mu\text{m}/p_T$  ( $\text{GeV}/c$ )).

- **Tracking System & Magnet:**

Momentum resolution 0.3%-0.5%  
 (3-100  $\text{GeV}/c$ ).

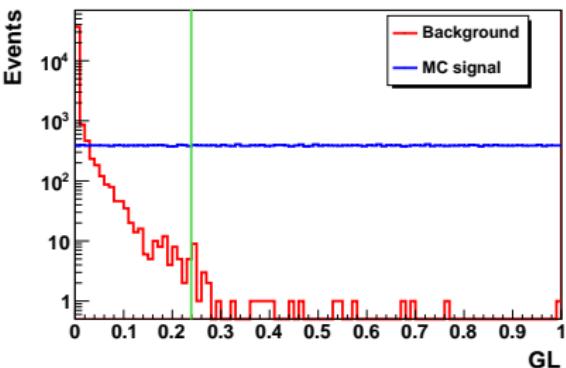
- **RICH detectors:**

Allows  $K - \pi$  separation.





# Data sample and Event Selection


- $35 \text{ pb}^{-1}$  collected in the 2010 run by LHCb (7 TeV).
- $B_s^0 \rightarrow K^{*0}(K^+\pi^-)\bar{K}^{*0}(K^-\pi^+)$

- Loose cuts

| Selection cuts                    |                       |
|-----------------------------------|-----------------------|
| All tracks $p_T$                  | $> 500 \text{ MeV}$   |
| All tracks $\text{IP}\chi^2$      | $> 9$                 |
| All tracks $\chi^2$               | $< 5$                 |
| $K^\pm$ PID $_{K-\pi}$            | $> 0$                 |
| $\pi^\pm$ PID $_{K-\pi}$          | $< 0$                 |
| $K^{*0}$ mass window              | $\pm 150 \text{ MeV}$ |
| $K^{*0}$ $p_T$                    | $> 900 \text{ MeV}$   |
| $K^{*0}$ vertex $\chi^2$          | $< 9$                 |
| $\cos(K^{*0})$                    | $> 0$                 |
| $B_s$ mass window                 | $\pm 500 \text{ MeV}$ |
| $B_s$ DOCA                        | $< 0.3mm$             |
| $B_s$ vertex $\chi^2/\text{ndof}$ | $< 5$                 |
| $B_s$ $\text{IP}\chi^2$           | $< 25$                |
| GL                                | $> 0.24$              |

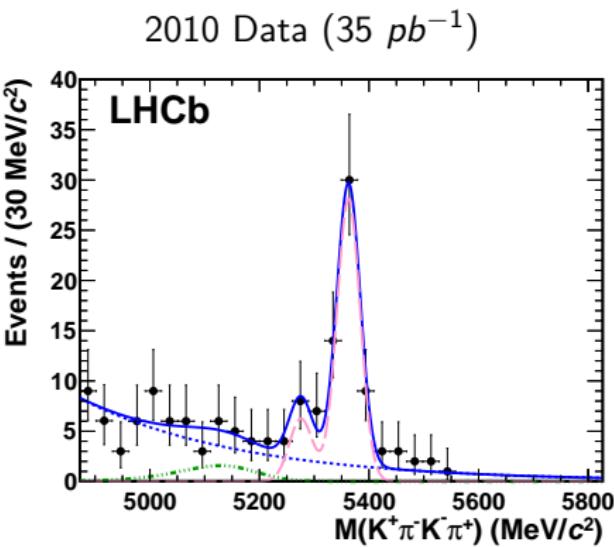
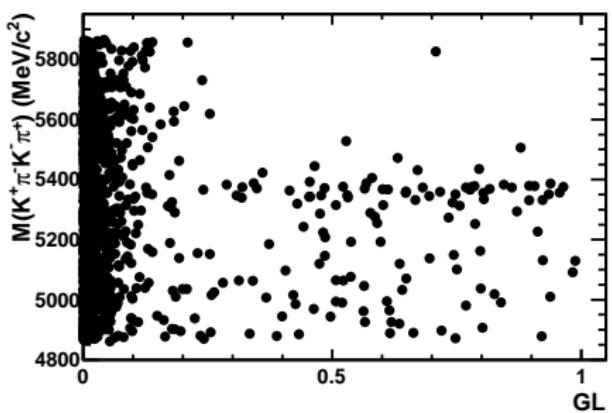
- Geometrical Likelihood (GL)

- Minimum  $\text{IP}\chi^2$  of the four tracks
- $B_s^0$   $\text{IP}\chi^2$
- $B_s^0$  proper time
- $B_s^0$   $p_T$





# $M(K^+\pi^-K^-\pi^+)$ distribution



Signal:

$$N_{B_s^0 \rightarrow K^{*0}\bar{K}^{*0}} = 50.1 \pm 7.5$$

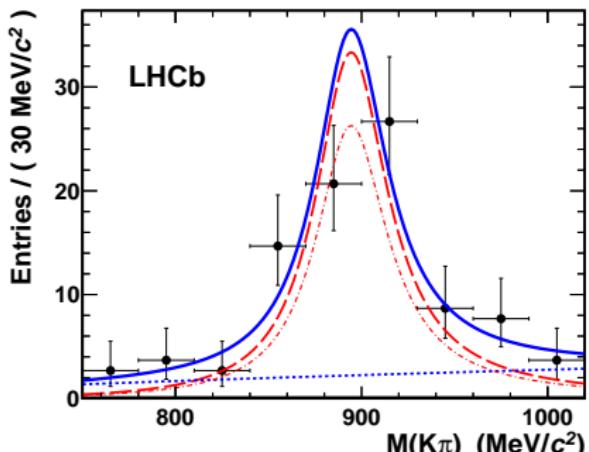
$$N_{B^0 \rightarrow K^{*0}\bar{K}^{*0}} = 11.2 \pm 4.3$$

Impressive background conditions:

- Combinatorial
- Partially reconstructed  $B$  decays



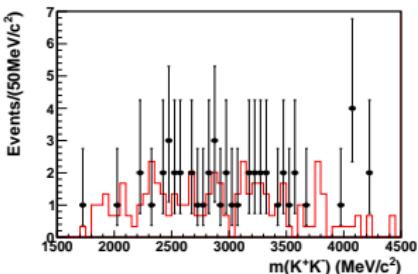
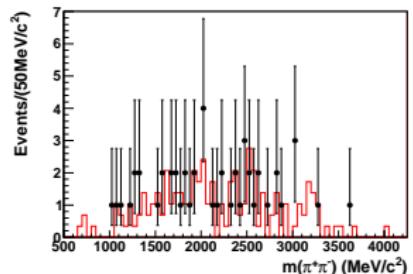
**10.9 $\sigma$  significance**



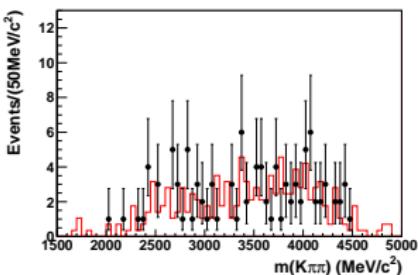
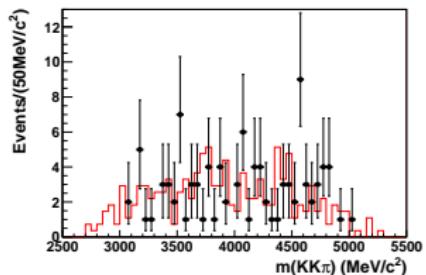

# $K^+\pi^-$ and $K^-\pi^+$ mass distribution

- 2D maximum likelihood fit  
 $M(K^+\pi^-) \times M(K^-\pi^+)$  to data with  
 $|M(K^+\pi^- K^-\pi^+) - m_{B_s^0}| < 50$  MeV/ $c^2$ :  
 $(62 \pm 18)\%$  of  $K^{*0}\bar{K}^{*0}$
- Background subtracted using shape from the sidebands of the  $B_s^0$  mass spectrum.
- Nonresonant component (linear  $\times$  phase space)

$$S(m) = (1 + bm)P(m)$$



$$\mathcal{L} = \alpha BW(m_1)BW(m_2) + \beta(1 - \beta)(BW(m_1)S(m_2) + BW(m_2)S(m_1)) + \beta^2 S(m_1)S(m_2)$$




# Further signal evidence

$K^+K^-$  and  $\pi^+\pi^-$  mass distributions: No resonant structure ( $J/\psi$  or other) is observed, which might be indicative of a specific background or reflection channel.



$K^+K^-\pi^\pm$  spectrum starts above any known charm resonance. In particular,  $\bar{B}_s^0 \rightarrow D_s^+\pi^-$  is ruled out as a possible background for our signal.





# Outline

1 Introduction

2 Observation at LHCb

- LHCb features
- Event selection
- Signal evidence

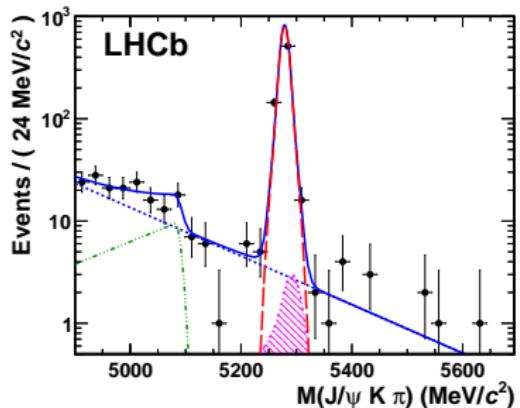
3 Selection of control channel

4  $K^{*0}$  Polarization

5 Determination of  $\mathcal{B}(B_s^0 \rightarrow K^{*0} \bar{K}^{*0})$

6 Conclusions




# Determination of the BR

- Measure the  $\mathcal{B}(B_s^0 \rightarrow K^{*0} \bar{K}^{*0})$  using  $B^0 \rightarrow J/\psi K^{*0}$  as a control channel for normalization.

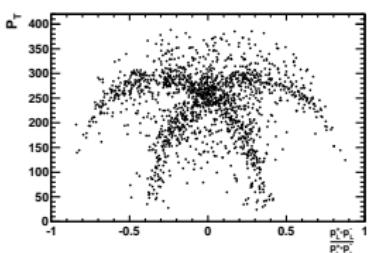
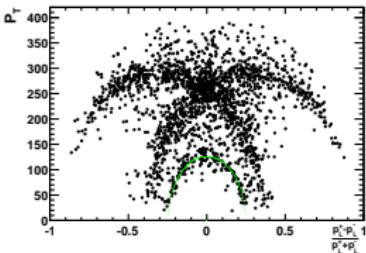
$$\begin{aligned} \mathcal{B}(B_s^0 \rightarrow K^{*0} \bar{K}^{*0}) &= \lambda_{f_L} \times \frac{\epsilon_{B_s^0 \rightarrow J/\psi K^{*0}}^{sel}}{\epsilon_{B_s^0 \rightarrow K^{*0} \bar{K}^{*0}}^{sel}} \times \frac{\epsilon_{B^0 \rightarrow J/\psi K^{*0}}^{trig}}{\epsilon_{B_s^0 \rightarrow K^{*0} \bar{K}^{*0}}^{trig}} \\ &\times \frac{N_{B_s^0 \rightarrow K^{*0} \bar{K}^{*0}}}{N_{B^0 \rightarrow J/\psi K^{*0}}} \times \mathcal{B}_{vis}(B^0 \rightarrow J/\psi K^{*0}) \times \frac{f_d}{f_s} \times \frac{9}{4}, \end{aligned}$$

- $\mathcal{B}_{vis}(B^0 \rightarrow J/\psi K^{*0}) = \mathcal{B}(B^0 \rightarrow J/\psi K^{*0}) \times \mathcal{B}(J/\psi \rightarrow \mu^+ \mu^-) \times \mathcal{B}(K^{*0} \rightarrow K^+ \pi^-)$
- $\frac{f_s}{f_d} = 0.253 \pm 0.017 \pm 0.017 \pm 0.020$   
(LHCb recent measurement accepted in P.R.L.)
- Rely on MC to estimate the ratios of selection and trigger efficiencies.
- No flat acceptance in the  $K^{*0}$  polarization angle  $\Rightarrow$  Polarization dependent overall acceptance ( $\lambda_{f_L}$ ).

# Selection of control channel



- Similar topology to the signal → Selection criteria harmonization easy. Same cuts when possible and use the same GL as for the signal.
- Higher trigger efficiency due to muon triggers → Consider only hadron triggers.



| Variable                           | Cut           |
|------------------------------------|---------------|
| All tracks $p_T$                   | $>500$ MeV    |
| $K$ and $\pi$ IP $\chi^2$          | $>9$          |
| $\mu^-$ and $\mu^+$ IP $\chi^2$    | $>25$         |
| $K^\pm$ PID $K-\pi$                | $>2$          |
| $\pi^\pm$ PID $K-\pi$              | $<0$          |
| $K^{*0}$ $p_T$                     | $>900$ MeV    |
| $K^{*0}$ vertex $\chi^2$           | $< 9$         |
| $K^{*0}$ mass window               | $\pm 150$ MeV |
| $J/\psi$ $p_T$                     | $>900$ MeV    |
| $J/\psi$ flight distance $\chi^2$  | $>169$        |
| $J/\psi$ DOCA                      | $<0.3$ mm     |
| $J/\psi$ vertex $\chi^2$           | $<9$          |
| $J/\psi$ mass window               | $\pm 60$ MeV  |
| $B^0$ IP $\chi^2$                  | $<25$         |
| $B^0$ vertex $\chi^2/\text{ndof}$  | $< 5$         |
| $B^0$ flight distance $\chi^2$     | $>225$        |
| $B^0 \rightarrow J/\psi K^{*0}$ GL | $>0.24$       |



# Ratio of selection efficiencies

|                                       | $\epsilon^{sel} (\%)$ |
|---------------------------------------|-----------------------|
| $B^0 \rightarrow K^{*0} \bar{K}^{*0}$ | $0.370 \pm 0.005$     |
| $B^0 \rightarrow J/\psi K^{*0}$       | $0.547 \pm 0.007$     |
| ratio                                 | $0.678 \pm 0.013$     |

- Systematic effects:
  - Data/MC discrepancies in vertex and track quality (smeared MC): 2%
  - $K$  PID cuts: Comparison data/MC using  $B^0 \rightarrow J/\psi K^{*0}$  data (tighter  $K^{*0}$  mass cut)  $\Rightarrow k_{PID} = 1.098 \pm 0.019$   
Systematic error: 1.7%





# Ratio of trigger efficiencies

- $B^0 \rightarrow J/\psi K^{*0}$ : Accept events only when the trigger decisions were not initiated by muon-tagged tracks from the signal.
- Data driven method to determine trigger efficiencies<sup>2</sup> for  $B^0 \rightarrow J/\psi K^{*0} \Rightarrow -9\%$  correction
- Systematic uncertainty: 11%
- Detector occupancies are larger by a 10% in the real data  $\Rightarrow +4.5\%$  correction

|                                       | $\epsilon^{trig}$ (%) |
|---------------------------------------|-----------------------|
| $B^0 \rightarrow K^{*0} \bar{K}^{*0}$ | $37.12 \pm 0.39$      |
| $B^0 \rightarrow J/\psi K^{*0}$       | $31.16 \pm 0.63$      |
| ratio                                 | $1.191 \pm 0.027$     |

<sup>2</sup>E. Lopez Asamar et al.,  
LHCb-PUB-2007-073



# Correction for nonresonant signal

- $B^0 \rightarrow J/\psi K^{*0}$ :
  - $\sim 8\%$  S-wave observed by BaBar.
  - LHCb measurement yields a  $(9 \pm 4)\%$  contribution (extrapolating to our  $\pm 150$  MeV/ $c^2$  window).
- $B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$ :
  - Contribution is doubled
  - Our direct measurement of  $(17 \pm 8)\%$  is still lacking precision
- Assume a 9% S-wave for each  $K^{*0}$  or  $\bar{K}^{*0}$  and compute the correction to the BR:

$$\frac{f_{K^* \bar{K}^{*0}}}{f_{J/\psi K^*}} = \frac{(1 - 0.09)^2}{1 - 0.09} = 0.910$$

- Assign a 50% error to this hypothesis  $\Rightarrow 5\%$  systematic uncertainty in  $\mathcal{B}$



# Outline

## 1 Introduction

## 2 Observation at LHCb

- LHCb features
- Event selection
- Signal evidence

## 3 Selection of control channel

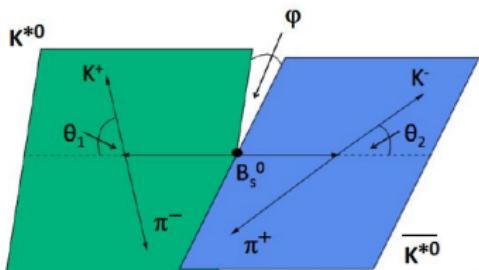
## 4 $K^{*0}$ Polarization

## 5 Determination of $\mathcal{B}(B_s^0 \rightarrow K^{*0} \bar{K}^{*0})$

## 6 Conclusions



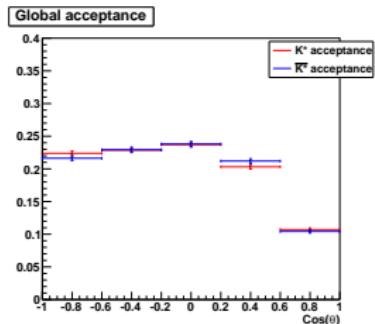
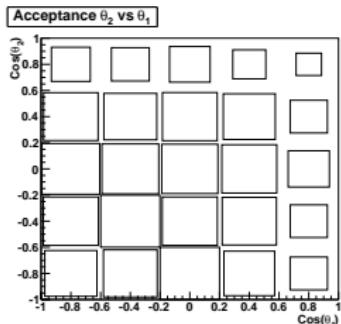
# Angular distribution


$$I(\theta_1, \theta_2, \varphi) = \frac{d^3\Gamma}{d \cos \theta_1 d \cos \theta_2 d\varphi} = \left( \begin{array}{lll} \frac{1}{\Gamma_L} & |A_0|^2 & \cos^2 \theta_1 \cos^2 \theta_2 + \\ \frac{1}{\Gamma_L} & |A_{\parallel}|^2 & \frac{1}{2} \sin^2 \theta_1 \sin^2 \theta_2 \cos^2 \varphi + \\ \frac{1}{\Gamma_H} & |A_{\perp}|^2 & \frac{1}{2} \sin^2 \theta_1 \sin^2 \theta_2 \sin^2 \varphi + \\ \frac{1}{\Gamma_L} & |A_0| & |A_{\parallel}| \cos \delta_{\parallel} \frac{1}{2\sqrt{2}} \sin 2\theta_1 \sin 2\theta_2 \cos \varphi \end{array} \right)$$

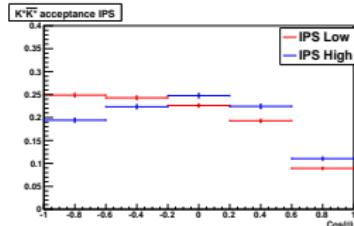
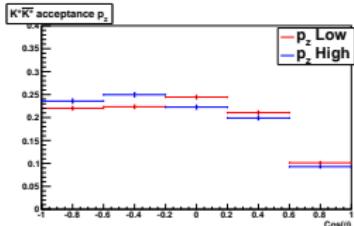
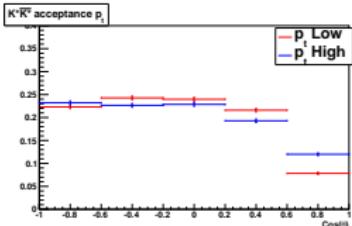
$$A_0 = H_0$$

$$A_{\parallel} = \frac{1}{\sqrt{2}}(H_{+1} + H_{-1})$$

$$A_{\perp} = \frac{1}{\sqrt{2}}(H_{+1} - H_{-1})$$



$$\text{Normalization} \Rightarrow |A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2 = 1$$

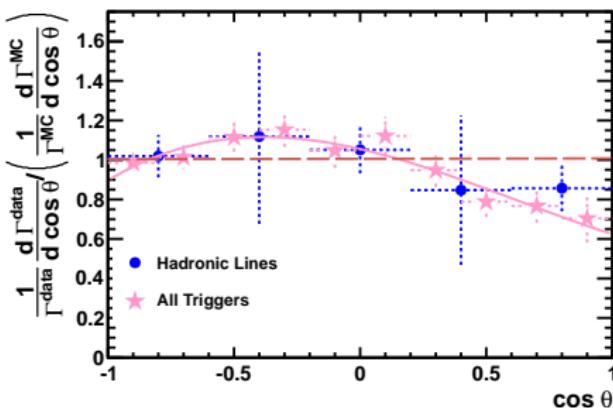



# Angular Acceptance

- Flat acceptance in  $\varphi$ .
- Acceptance in  $\theta_{1,2}$  drops to zero as  $\cos\theta \rightarrow 1$ .




- $\epsilon(\theta)$  depends significantly on  $K^{*0}$  momentum ( $p_T, p_z$ ) and on the IP of the daughters.



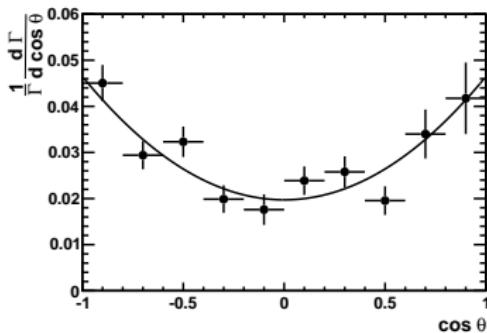
# Angular Acceptance correction

- Acceptance ratio  $B^0 \rightarrow J/\psi K^{*0}$  data/MC

With high statistics sample (adding muon triggers) a 10% discrepancy is detected.






# Validation with $B^0 \rightarrow J/\psi K^{*0}$

- We reproduce BaBar and CDF measurements on  $B^0 \rightarrow J/\psi K^{*0}$  data

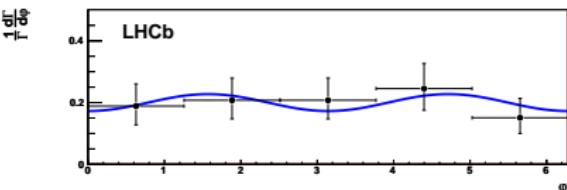
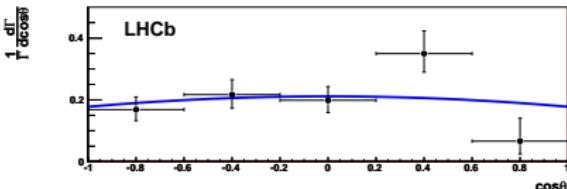
$$PDF(\cos\theta) = A (2f_L \cos^2 \theta + (1 - f_L) \sin^2 \theta)$$

- Angular acceptance from MC cross-checked with  $B^0 \rightarrow J/\psi K^{*0}$  data.
- Measured longitudinal polarization fraction

$$f_L = 0.541 \pm 0.033$$



BaBar:  $0.569 \pm 0.009 \pm 0.009$



CDF:  $0.531 \pm 0.02 \pm 0.007$

# Fit results

- Fit to  $B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$  data in the signal region ( $m_{B_s} \pm 50$  MeV/c<sup>2</sup>)

$$\text{PDF} = (1 - \alpha)\epsilon_\theta(\theta_1)\epsilon_\theta(\theta_2) I(\theta_1, \theta_2, \varphi) + \alpha(1 + \beta \cos \theta_1)(1 + \beta \cos \theta_2)\epsilon_\theta(\theta_1)\epsilon_\theta(\theta_2)$$

- Background fraction,  $\alpha$ , determined from the  $B_s^0$  mass fit. Background shape from the  $B_s^0$  mass sidebands.



| Parameter            | Value           |
|----------------------|-----------------|
| $f_L =  A_0 ^2$      | $0.30 \pm 0.12$ |
| $ A_{\parallel} ^2$  | $0.30 \pm 0.10$ |
| $\delta_{\parallel}$ | $1.47 \pm 1.85$ |



# Systematics on $f_L$

- Angular acceptance: Fit in various regions of the  $K^{*0}$  phase space, and IP of the daughters. (10%)
- Non uniform proper time acceptance: 3%
- Correction data/MC: Change the correction by 100% and check the effect in  $f_L$  (7%)
  - Experimental error not accounted for in the simulation.
  - Interference with other partial waves in the  $K\pi$  system.

$$f_L = 0.30 \pm 0.12(\text{stat}) \pm 0.04(\text{syst})$$



# Outline

## 1 Introduction

## 2 Observation at LHCb

- LHCb features
- Event selection
- Signal evidence

## 3 Selection of control channel

## 4 $K^{*0}$ Polarization

## 5 Determination of $\mathcal{B}(B_s^0 \rightarrow K^{*0} \bar{K}^{*0})$

## 6 Conclusions



# Determination of BR

$$\begin{aligned} \mathcal{B}(B_s^0 \rightarrow K^{*0} \bar{K}^{*0}) &= \lambda_{f_L} \times \frac{\epsilon_{B_s^0 \rightarrow J/\psi K^{*0}}^{sel}}{\epsilon_{B_s^0 \rightarrow K^{*0} \bar{K}^{*0}}^{sel}} \times \frac{\epsilon_{B_s^0 \rightarrow J/\psi K^{*0}}^{trig}}{\epsilon_{B_s^0 \rightarrow K^{*0} \bar{K}^{*0}}^{trig}} \\ &\times \frac{N_{B_s^0 \rightarrow K^{*0} \bar{K}^{*0}}}{N_{B_s^0 \rightarrow J/\psi K^{*0}}} \times \mathcal{B}_{vis}(B_s^0 \rightarrow J/\psi K^{*0}) \times \frac{f_d}{f_s} \times \frac{9}{4}, \end{aligned}$$

$$\mathcal{B}(B_s^0 \rightarrow K^{*0} \bar{K}^{*0}) = (2.81 \pm 0.46(stat) \pm 0.45(syst) \pm 0.34(f_s/f_d)) \times 10^{-5}$$

| Systematic effect                                                                                | Error (%)   |
|--------------------------------------------------------------------------------------------------|-------------|
| Background subtraction                                                                           | 4.7         |
| Selection efficiency                                                                             | 3.4         |
| Trigger efficiency                                                                               | 11.0        |
| $K^{*0} \bar{K}^{*0}$ purity                                                                     | 5.0         |
| Global angular acceptance                                                                        | 7.2         |
| $\mathcal{B}(B_s^0 \rightarrow J/\psi K^{*0})$ and $\mathcal{B}(J/\psi \rightarrow \mu^+ \mu^-)$ | 4.6         |
| <b>Total</b>                                                                                     | <b>15.9</b> |



# Outline

## 1 Introduction

## 2 Observation at LHCb

- LHCb features
- Event selection
- Signal evidence

## 3 Selection of control channel

## 4 $K^{*0}$ Polarization

## 5 Determination of $\mathcal{B}(B_s^0 \rightarrow K^{*0} \bar{K}^{*0})$

## 6 Conclusions



# Conclusions

- Clear  $B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$  signal has been discovered ( $10.9\sigma$ ) with  $35 \text{ pb}^{-1}$ . Analysis of the  $K^+ \pi^- (K^- \pi^+)$  mass distribution shows that most of the signal comes from  $B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$ , with some S-wave contribution.
- The  $K^{*0}$  longitudinal polarization fraction has been measured:

$$f_L = 0.30 \pm 0.12(\text{stat}) \pm 0.04(\text{syst})$$

Remarkable difference between  $B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$  and  $B^0 \rightarrow K^{*0} \bar{K}^{*0}$ , which are strict U-spin partners (BaBar:  $f_L = 0.80^{+0.10}_{-0.12}(\text{stat}) \pm 0.04(\text{syst})$ ).

- Sizeable  $f_{\perp}$  (CP-odd) contribution ( $f_{\perp} = 0.38 \pm 0.11(\text{stat.}) \pm 0.04(\text{syst.})$ ).
- A measurement of the branching fraction has been performed using as normalisation reference the channel  $B^0 \rightarrow J/\psi K^{*0}$ ,

$$\mathcal{B}(B_s^0 \rightarrow K^{*0} \bar{K}^{*0}) = (2.81 \pm 0.46(\text{stat}) \pm 0.45(\text{syst}) \pm 0.34(f_s/f_d)) \times 10^{-5}$$



# $\Delta\Gamma$ in the BR measurement

- $BR \sim \mathcal{A}_0^2 + \mathcal{A}_{\parallel}^2 + \mathcal{A}_{\perp}^2$
- Two mass eigenstates involved, with  $\Delta\Gamma/\Gamma = \Gamma_L - \Gamma_H$  ( $\sim 16\%$ ).  
Interesting LHCb preliminary measurement  $\Delta\Gamma$  from  $B_s^0 \rightarrow J/\psi \phi$  (See *LHCb* by Cibran Santamarina, Plenary session).
- Time integration enhances CP-even spin factors:

$$f_K = f_k^0 \left( 1 + \eta_k \frac{\Delta\Gamma}{2\Gamma} \right)$$

where  $\eta_k = +1, +1, -1$  for  $f = L, \parallel, \perp$ .

- Therefore BR becomes sensitive to  $\Delta\Gamma$ :

$$(BR)_{theo} = (BR)_{exp} \left( 1 + \frac{\Delta\Gamma}{2\Gamma} (|A_0|^2 + |A_{\parallel}|^2 - |A_{\perp}|^2) \right)$$

only  $\sim 3\%$  correction for SM values, apply on theory side.



# Future analysis with proper time and flavour tagging

- Next step is time-dependent angular analysis to extract the mixing phase,  $\phi_S$ .

$$\lambda_{B_s} = e^{i\phi_S} \frac{A(\bar{B}_s \rightarrow K^{*0} \bar{K}^{*0})}{A(B_s \rightarrow K^{*0} \bar{K}^{*0})}$$

- Eventually (LHCb upgrade) we want to measure all the direct  $C_{kl}$  and mixing  $S_{kl}$  asymmetries (12 of them), including interference terms<sup>3</sup>:

$$C_{kl} = \frac{f(1 - \lambda_k^* \lambda_l)}{f(1 + \lambda_k^* \lambda_l)} \quad S_{kl} = \frac{f(i(1 - \lambda_k^* \lambda_l))}{f(1 + \lambda_k^* \lambda_l)}$$

where  $f = \text{Re}$  ( if  $k = L$  ,  $l = \parallel$  ) or  $f = \text{Im}$  ( if  $k = L$  ,  $\parallel$  ,  $l = \perp$  ).

<sup>3</sup>R.Fleischer, M.Gronau arXiv:0709.4013v2 [hep-ph] (2007)



*Thank you for your attention.*



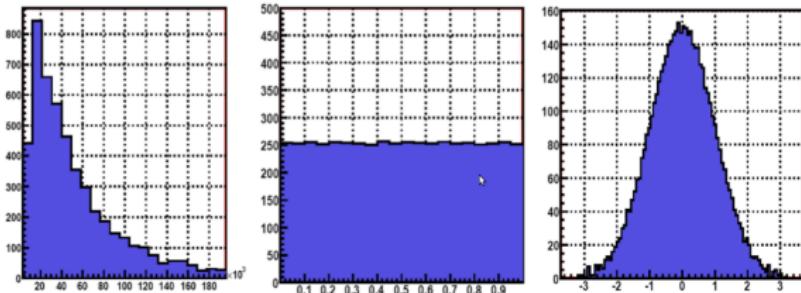
# BACKUP



# Geometrical Likelihood (I)

Training:

- Gaussianization:

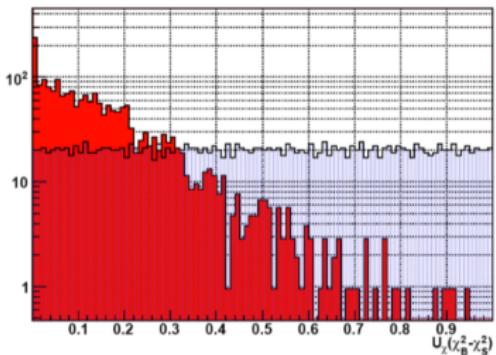

- Transform the variables  $X_i$  in  $[0,1]$  uniform distributed  $U_i(X_i)$
- Transform them into gaussian distributed:  $G_i(X_i)$ .

$$U_i(X_i) = \frac{\int_{X_{min}}^{X_i} \rho(x'_i) dx'_i}{\int_{X_{min}}^{X_{max}} \rho(x'_i) dx'_i}$$

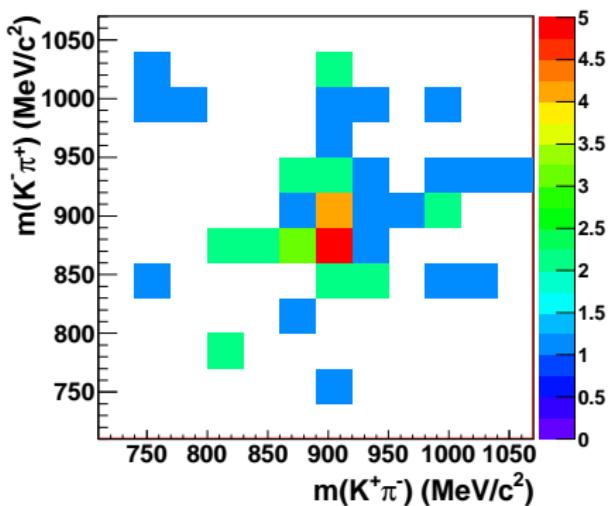
- Decorrelate and re-gaussianize:

- Rotate to the symmetry axis and gaussianize again
- Produce a set  $\{S_i\}$  of uncorrelated gaussian distributed variables for the signal, and another different set  $\{B_i\}$  for the background.

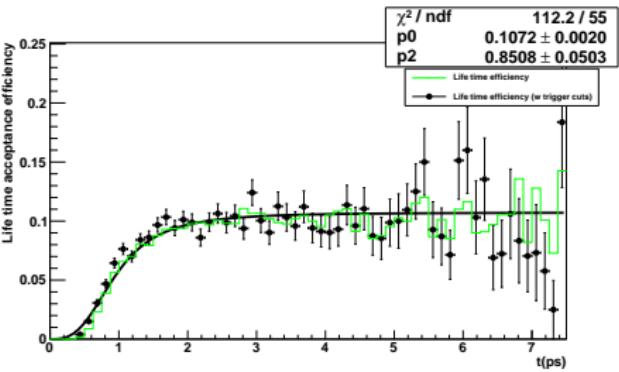
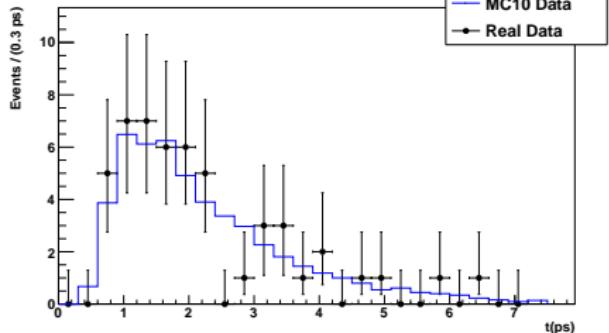
$$G_i(X_i) = \sqrt{2} \operatorname{erf}^{-1}(2U_i(X_i) - 1)$$




# Geometrical Likelihood (II)


Apply the method to the signal and background samples.

For each event:



- Calculate the  $\chi^2$  for the signal hypothesis,  $\chi_S^2 = \sum S_i^2$ .
- Calculate the  $\chi^2$  for the background hypothesis,  $\chi_B^2 = \sum B_i^2$ .
- Calculate  $\Delta\chi^2 = \chi_B^2 - \chi_S^2$  and transform it into a uniform variable  $U_{\chi^2}(\Delta\chi^2)$  in  $[0,1]$  for the signal, so that the background will cluster near 0.



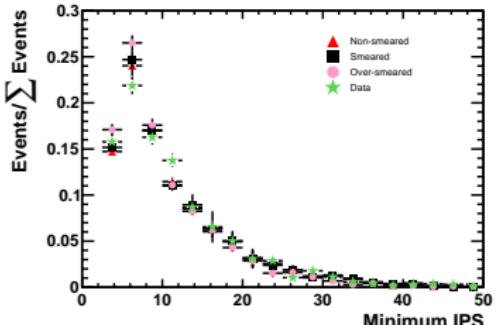
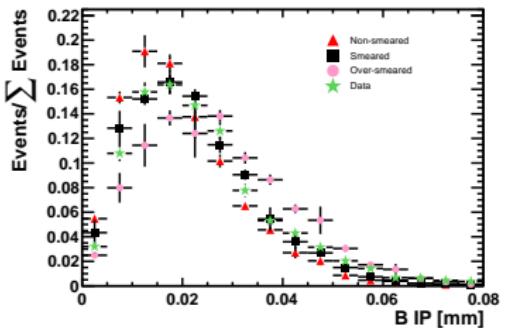
# $K^+\pi^-$ and $K^-\pi^+$ mass distribution



# $B_s^0$ propertime

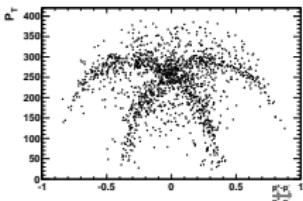
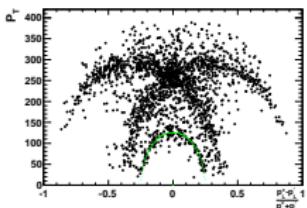


Effect of selection cuts in lifetime acceptance.



$$\varepsilon(t) = p_0 \left( \frac{t^3}{t^3 + p_2} \right)$$



# Ratio of selection efficiencies (I)



- Smeared MC: Change initial state of the tracks.
- Data always bound by non-smeared and over-smeared MC.
- Systematic uncertainty: 2%

|                                       | $\epsilon^{sel}$ (%) |
|---------------------------------------|----------------------|
| $B^0 \rightarrow K^{*0} \bar{K}^{*0}$ | $0.370 \pm 0.005$    |
| $B^0 \rightarrow J/\psi K^{*0}$       | $0.547 \pm 0.007$    |
| ratio                                 | $0.678 \pm 0.013$    |



# Ratio of selection efficiencies (II)

- $K$  PID cuts → Comparison data/MC using  $B^0 \rightarrow J/\psi K^{*0}$  data (tighter  $K^{*0}$  mass cut).

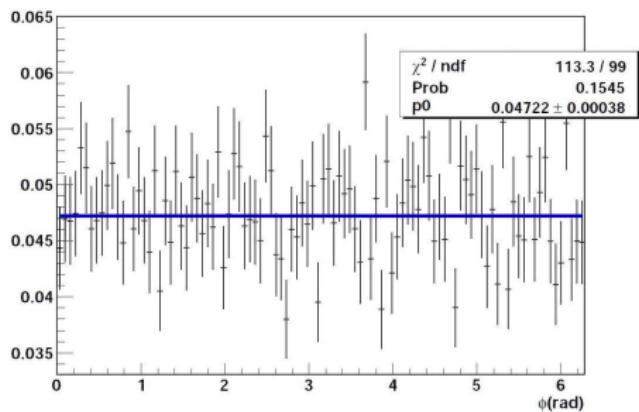


| $K^{*0} P_T$ range ( GeV/c ) | $\frac{\epsilon_{data}}{\epsilon_{MC}}$ with $\Delta_{LL}(K - \pi)_K > 0$ | $\frac{\epsilon_{data}}{\epsilon_{MC}}$ with $\Delta_{LL}(K - \pi)_K > 2$ |
|------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------|
| 0-2.5                        | $0.920 \pm 0.015$                                                         | $0.934 \pm 0.019$                                                         |
| 2.5-5                        | $0.897 \pm 0.013$                                                         | $0.888 \pm 0.014$                                                         |
| > 5                          | $0.944 \pm 0.026$                                                         | $0.915 \pm 0.031$                                                         |

- $\mathcal{B}$  correction factor due to PID discrepancies:  $k_{PID} = 1.098 \pm 0.019$
- Kaon PID systematic: 1.7%
- Total systematic uncertainty from selection efficiencies: 3.4%

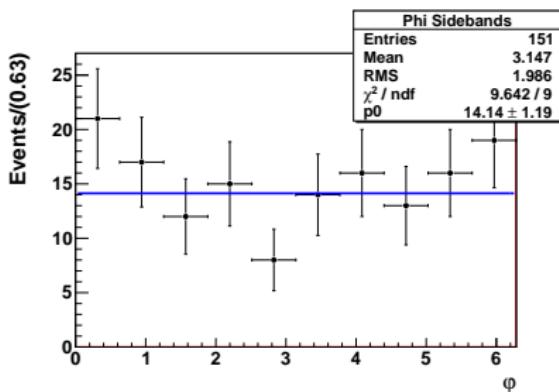
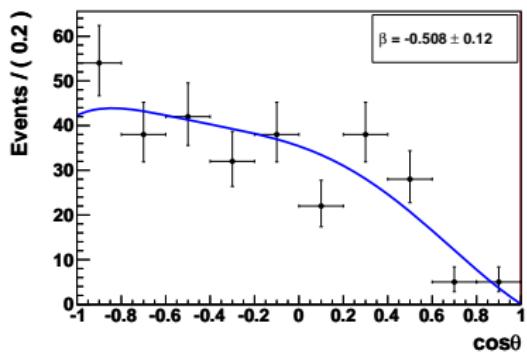


# Ratio of trigger efficiencies


- $B^0 \rightarrow J/\psi K^{*0}$ : Accept events only when the trigger decisions were not initiated by muon-tagged tracks from the signal.
- Data driven method to determine trigger efficiencies<sup>4</sup> for  $B^0 \rightarrow J/\psi K^{*0} \Rightarrow -9\%$  correction
- Systematic uncertainty: 11%
- Detector occupancies are larger by a 10% in the real data  $\Rightarrow +4.5\%$  correction

|                                       | $\epsilon^{trig}$ (%) |
|---------------------------------------|-----------------------|
| $B^0 \rightarrow K^{*0} \bar{K}^{*0}$ | $37.12 \pm 0.39$      |
| $B^0 \rightarrow J/\psi K^{*0}$       | $31.16 \pm 0.63$      |
| ratio                                 | $1.191 \pm 0.027$     |

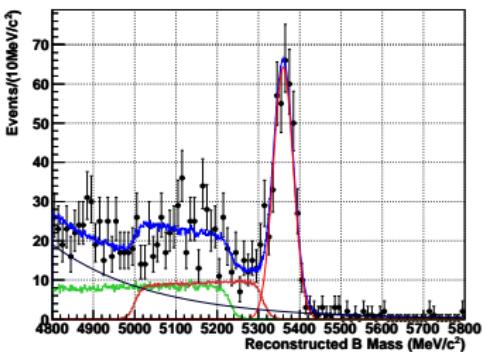
<sup>4</sup>E. Lopez Asamar et al.,  
LHCb-PUB-2007-073



# Angular acceptance

- Flat acceptance in  $\varphi$



# Background


- Two side bands of 200  $MeV/c^2$  width each, left and right to the signal window ( $m_{B_s} \pm 50$   $MeV/c^2$ ).
- $\cos\theta$  dependence was parametrized as  $\epsilon_\theta \times (1 + \beta \cos\theta)$
- Flat  $\varphi$  distribution is consistent with the data.





# BR: Cross-Check using $B_s \rightarrow D_s \pi$

- Same final state ( $K^+ \pi^- K^- \pi^+$ ) but different topology.
- Selection harmonized, where possible, the  $B_s^0 \rightarrow K^{*0} \bar{K}^{*0}$  one. Efficiency evaluated from MC10  $\epsilon^{sel/gen} = 2.16\%$ .
- Trigger efficiency evaluated from MC  $\epsilon^{trig/sel} = 42.3\%$
- Generator efficiency  $\epsilon^{gen} = 16.1\%$



$$\mathcal{B}(B_s^0 \rightarrow K^{*0} \bar{K}^{*0}) = [2.45 \pm 0.41(\text{stat.}) \pm 0.37(\text{B.R.})] \times 10^{-5}$$

- Systematic error dominated by the knowledge of  $\mathcal{B}(B_s \rightarrow D_s \pi)$ .