Measuring 0 13:
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Outlook

Oscillation in a "nutshell” .

Long base line vs reactor experiments
Spanish contribution to neutrino oscillations:
e T2K

e Double-Chooz

Conclusions and final remarks



Neutrino oscillation

 Neutrinos are produced always as a flavor neutrino but they
propagate in vacuum as mass eigenstates.

* Mass eigenstates |= flavour eigenstates.
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e If neutrinos 1 & 2 propagate at different speeds (mass) keeping
the quantum coherence at the interaction point the proportions
between 1 & 2 states changes and it might appear other neutrino
flavor.
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Oscillations with 3 v'’s

Mass eigenstates |= flavour eigenstates
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e With 3v, there are 3 angles and 1 imaginary phase (0 ).

 The phase allows for CP violation similar to the quark sector.

e There are also 2 values of Am?, traditionally Am?; &Am?3 with

their signs.

e Qscillations are not sensitive to absolute mass.



Neutrinos in matter

e Neutrino oscillations are altered by interaction with matter.
e This is actually the model for solar neutrino oscillation model.
e Neutrinos can have two types of interaction with matter:

e Incoherent inelastic: o~ 1043 (E/MeV)?

e Coherent. The medium is unchanged and the scattered and un-scattered waves
interfere enhancing the effect.

e It introduces a phase in the propagation, that can be invisible except for the fact
that matter is made of electrons. The matter effects introduce a relative phase
between electrons and other flavours.
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Measurements

012, Am®i2

Natural sources (neutrinos from the sun) : SNO,
SuperKamiokande, Borexino, Gallex, GNO, SAGE,
Homestake.

Man-made sources (nuclear reactors): Kamland.
0 32, Am?43;

Natural sources (atmospheric neutrinos):
SuperKamiokande.

Man-made sources(accelerators): K2K, Minos.




The usual "we know"
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o Still along way to gol. But, it might be closer that we

think!.

e Most urgent: values of 0¢p, 013, absolute mass scale.



Angles and
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0 13: accelerators vs reactors
Accelerator ;I'_Zfl(\ Reactor (0 557

e Appearance experiment. , ,
e Disappearance experiment.

e QOscillation depends on 0 13, 0 23,
: S e Oscillation depends on 0 3.

signAm?, 0 cp and matter effects:

 No degeneracies except for 023

e degeneracies. ,
obtained from accelerators.

e possible signAm? &0
P 9 cP e No access to signAm? &0 cp

e Multipurpose: several oscillation (0 23,
purp ( e Experimental challenges:

steriles) and non-oscillation physics.

e backgrounds
e Experimental challenges:

e systematic uncertainties.
e beam intensity, flavor composition

and flux extrapolation.

o Y N interaction cross-sections.



Reactors
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Reactor principle.

Clean measurement
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Prompt signal
(1-8 MeV)

— O\Y

Delayed signalg
(30 us, 8 MeV)

Prompt photons from e* annihilation:
e Evis ~Ev- (Mn-Mp) + me

Delayed photons from n capture:
e onH:t~200s, E~2 MeV

e onGd:t~30s, E~8 MeV



2 Chooz reactors

Power: 8.5.GW,, ("‘1'0’21 V./S)
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Calibration glove box

Outer veto: plastic scintillator strips
Shielding: 15 cm steel
Inner veto:

— 90 m3 of liquid scintillator & 78 8” PMTs

Buffer:

— 110 m3 of non scintillating mineral oil &
390 10” PMTs

Gamma-catcher:

— 22.3 m3 of liquid scintillator

Target:

— 10.3 m3 of liquid scintillator doped with
1 g/L of Gd




Double Chooz

DETECTOR MECHANICS

* Design and construction of special ' ELECTRONIC.S
tools for acrylics installation * Design, tests, production and

* Design, construction and assembly of installation of PMT HV splitters

PMT mechanical supports
* Installation of PMTs in the detectors

PHOTODETECTION SYSTEM ONLINE SYSTEM
* DAQ Event Builder development

SIMULATION, DATA RECONSTRUCTION

AND PHYSICS ANALYSIS
COMMON EFUND * Detector simulation software
 Data reconstruction algorithms
* Background simulation
 Analysis tools for sys. and sens. estimation
* Coordination of the European cluster

* Filling system

 Buffer and veto liquids
* Safety systems

* Running costs

- 7 &
, "’;’ GOBIERNO  MINISTERIO C'emo

- % DE ESPANA  DE CIENCIA
. E INNOVACION

Centro de Investigaciones
Energéticas, Medioambientales
y Tecnoldgicas




Double Chooz
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~ Neutrino detection

Timing distribution between prompt and delayed signal
n-capture on Gd ~ 30 us

Energy spectrum in the delayed Gd-energy window (6 — 12 MeV)
1000 T T | T

2 » 10°F T T T T —
- = = -
5 Double Chooz preliminary o F Double Chooz Preliminary 3
o 800 + . g :
+ @  F -
——
600— + -

+ 102~

400 . g

+ + -

200 + ~83MeV n ]
- = -

| | ™ gl X
0 100 120 140 160 26 2 %0 %0 T00

PMT charge sum (a.u.)

Vertex position reconstruction of the delayed signal

AR RRARARAARIRARRIRARRERARRERRRRE " ¥ Neutrino candidate rate as function of operation time
£ - Double Chooz Preliminary :l ..................
1500 ] @
> 1 s g Double Choo
1000— J g 1.5
" i 2
- 1 4 ©
500— — o«
C ] 1.0
o— — -3 |\l
-500— E +
: 1 0.5 Hﬂ#
-1000— -
E E 1 0.0 1 |
-1500— — ! . 20 100
u ] 1 reactor operation Days since April 12, 2011
_200c_l 11 I L1l 11 I L1 11 l L1 11 l L1 1.1 [ L1 1.1 I L1 11 I L1l I_ 0
-2000 -1500 -1000 -500 0 500 1000 1500 2000
v v s\




T2K best fit can be addressed with 2011
statistics.

Results are expected very soon.

~ Double Chooz

Double Chooz - sensitivity, no oscillations
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Accelerators
T2k

7 | senior staff, 2 postdocs, 2 phD, | engineer (Pl.: FSanchez)

| senior staff, | postdocs, 2 phD (Pl.:A.Cervera)



T2/K
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Measuring 0 13

Am2, L N }
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* v, —v.compites with the solar

oscillation.

e decoupled only from the L/E value
similar to reactor neutrinos.



INSTITUT DE FISICA
CORPUSCULAR

vy = ve & vy = vy from

high intensity accelerator.
Ev ~ 600 MeV.
Oscillation distance: 295km.

Off-axis technique —
harrow energy spectrum.
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2K T2K: off-axis

« T2K s the first long baseline experiment using
-axis technique

of f

«  Reduced dependence of E, from Ex

E(v) (GeV)

Intense beam where the oscillation effect is
maximum (~0.6 GeV)

Enhance the CCQE sample, reducing the high
energy tails of the beam — reduce the

backgrounds to oscillation signal

Flux x CC cross section

(Arbitrary Unit)

—_ if aNeutrino Survival probability | =
| B

J‘;"
[lfi\'\
B T ...,.EV, .
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T2/K T2K concept

MR
280m p——
p detectors " S~
. off-axis §§_
primary | (e D >
beamline target—— O [--------- T
.~ decavy muon L) oo -
station _dacay B On-axis Super-Kamiokande

pipe monitors

e Beamline:

*  Produce a narrow band neutrino beam (peak energy ~600 MeV) using Off-axis beam technique: center
of the beam ~2.5° off from SK direction

*  Design beam power 750 kW (50 kW in 2010, stable 145 kW in 2011)

* Deftectors:
*  Proton beam profile, position and intensity monitored in several detectors along the beamline
« 2 detectors monitor neutrino beam stability and direction: Muon Monitor and INGRID

. Off-axis Near Detector (ND280): measure v interaction rates and flavors before the oscillation

. Off-axis Far Detector (SK): measure v interaction rates and flavors after the oscillation
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— T2K:beam

; 30 GeV proton accelerator
- Single turn extraction of the protons from the MR to target station (8 bunches)

. Graphite target + 3 Horns: hadrons (m, K) are produced and charge selected

. Decay tunnel (110 m): m—=u+v , (+ other decays from kaons and muons that produce other neutrino species).

- The majority of muons and survived hadrons are stopped by the beam dump

Secondary beam monitors Beam dump Fast extracted beam
= muon profile after beam dump: Hadron absorber = 8 bunches/spill (6<Fall 2010)
ionisation chambers and SiPIN (MUMON) graphlte modules = SCFM for proton transport

= Emulsion exposures (low intensity)

Primary beam monitors

Decay pipe | Intensity (CT), position (ESM),
Helium filled beam profile at target (OTR)

,s"!lm :

i —————
- ]

I
To Super K

direction given by GPS 7

: Helium-cooled
Neutrino near 3 horns @ 250 kA graphite target
detector complex (D=2.6 x L=90 cm)
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Set of detector installed inside the ex-UA1/NOMAD magnet
providing a 0.2 T magnetic field. §FiaE "

Measure v , and v . spectra before the oscillation

Measure cross-sections for backgrounds to oscillation

Dedicated n° detector (POD), EM calorimeter to identify e/
Y (ECAL), side muon range detector for high angle 1 (SMRD)

e Tracker:

2 fine grained detectors (FGD)
Active target for neutrino interactions (carbon and water)
1.6 ton of Fiducial Volume

3 time projection chambers (TPC)*
Instrumented with MicroMEGAS detectors

Reconstruct momentum and charge of the particles produced
In v interactions

PID capabilities measuring dE/dx in the gas

25

T2K: Off-axis ND280

SMRD

UA1 Magnet Yoke

Fine-Grain
Detectors
=

POD Downstream
(- ¥ ECAL

detector) ___,.___.———-—-—"_}
N————————
1 / | — . -
Solenoid Coil

Barrel ECAL

TPC dE/dx vs P for Positive tracks
<8% resolution for MIPs

- =_o - _= ™™ |=— MC muons

MC electrons
= o == MC protons
MC pions

)

10

energy loss (keV/cm

H— 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 11
200 400 600 800 1000 1200 1400 1600 1800 2000
p (MeV/c)

*NIM, A 637 (2011) pp. 25-46
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MicroMegas production quality assessment at CERN.

Data Acquisition.

Electronics for readout. %
TestBeam installation and data analysis. @)
Contributed to MicroMegas (30%) and HV purchase (~20%).

TPC calibration and distortions.

. .. Near detector reconstruction:
Water cooling piping.

kalman filter.

Slow control.
TPC reconstruction.

joude|,|

Shipping and refurbishing. Analvsis tool
nalysis tools.

SUBMIJOS

Calibration framework.

Reconstruction convener

Calibration convener

Juswiseuel,

numu analysis convener

European convener for detector design

INSTITUT DE FISICA
CORPUSCULAR
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T2K far Detector: Super-Kamiokande

50 kton water Cherenkov detector (22.5 kton Fiducial Volume)

Optically divided between an inner detector (ID) and an outer detector (OD)
. 11129 20-inch Hamamatsu PMTs for the inner detector
« 1000 meters underground in the Kamioka mine (295 km from JPARC)

«  Very good PID capabilities: probability of a muon reconstructed as an electron of 1%

S0l elke <> wike
T e 1 % = VM ;.21202— { ]
‘T‘W f 5 ‘ — a :’ Z 100 :— _
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Delivered proton#
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Runl+Run2 data set

]0” — PhySiCS run Proton per pulse(for physics run) 0
xX10 "~ . 10
Delivered proton# Proton per pulse(all runs) 8 @
140 — 5100 3
3 o
120 — 145 kW .F;f,!'t"'so <
» i et o ".“', o
100 12K Run| o o /- &
< > « e
80 . i . ay | J'/ 60
o] r‘ | : . d ':,'. L, - ]
60 — !. ' ot , S
“t . 7 40
40 50 kWIIIII‘IIITH' lpiu:l .f.'-" . ]
- F ~~  T2KRun2
. s {_r,—-" - 20
20p— - el et
S ‘ _#_/—/ . ]
0 : — - 1 _ | l | | | 0
Jan/10 Aug/10 Mar/11
Date

Run | (Jan-Jun 2010) Run 2 (Nov 2010 - Mar 201 I)

3.23 x 10" p.o.t for analysis 11.08 x 10" p.o.t for analysis
50 kW stable beam operation 145 kW stable beam operation

The total number of protons used for this analysis is 1.43x10%° p.o.t =2% of the T2K
final physics goal.



Neutrino event




Inclusive CC v , ©®
T2/K\ UL B
analysis

« Selection of 1t -like tracks requiring dE/dx in the TPC compatible with muons

* (Good agreement between data and MC.

VN _I T T T | IIIIIIIIIIIIIIII | L | T T TT | T T TT | IIIIIIII _] VN : IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
2 200 —] 450
% = Bl v, CCQE = g -
= 1805_ Bl v, CCnon QE E < 4005_ B v, CCQE
= 160 I NC = .ig) 350 Bl Vv, CCnon QE
g/ 140 Hlv, CC - = 200E- ] NC
§ 120:_ " Outside FGD ] - I Vu CC
E . ] 250 B Outside FGD
S 100— ] =
- . 200
80 — =
60E- = 1505—
40F- - 100
201 - 50
o o :IIII|IIII|II
00 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 00 01 02 03 04 05 06 07 08 09 1
Muon Momentum (MeV/c) Muon Cos(0)

R(data/MC) = 1.036 £ 0.028(stat) Tg psr(det. syst) & 0.038(phys. model)
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12K\ Super-Kamiokande event selection

Predefined event selection for v , and V.

First steps that are common:

SK synchronized to beam timing using GPS

Fully contained events in the Inner Detector, minimal activity in the Outer
Detector

Starting in the FV (FCFV)

Number of rings = 1

PID algorithm to distinguish e-like and ( -like events

Number of events

<— —— Data
I Osc. v, CC
e vV, CC
1 v,CC
B NC
Osc. MC:
Am?Z3=2.4x10-3 eV?
sin2(2023)=1
sin2(20,3)=0. 1

e

AN
o
T

N
o
T
——

1 2 3 4 =5
Number of rings

0

Number of events

1Y,

(00]

20

Number of events / 100nsec

s HUN-|
mmm RUN-2

[

0 L L L L L
-1000 0 1000 2000 3000 4000 5000

AT, (nsec)

8 e-like events
33 M-like events

- —¢— Data

- 2 Osc. v, CC
i v, +v, CC
- [ v, CC

- B NC

.2
(MC w/ sin"26,,=0.1)

-10

é

0 10

PID parameter



T 2/K\

2) No decay electrons = N=6

Number of events

0

—
o

(&)

After ring counting 8 single ring e-like events are
selected

SK "tight" cuts are applied to further reject the
background:

« 6 events are selected over a predicted background

of 1.5 (mainly electron neutrinos in the beam).

3) Minv with forced 2nd ring
<105 MeV — N=6

T

C

Y . event reduction

——¢— Data

<

—— Data

I Osc. v, CC - I Osc. v, CC
1 vs+v,CC 4| ] v,+v,CC
. Jv,CC . 1 v,CC
B NC BN NC

i 2
(MC w/ sin"20,,=0.1)

Reject non-CCQE
and invisible

muons

0

Number of events /(15 MeV/cz)

4
Number of decay-e

3 =5

100
Invariant mass (MeV/cz)

L2
(MC w/ sin"26,,=0.1)

Reject NCTT?
background

200

300
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Number of events /(100 MeV)
N

o

0

1000
Visible energy (MeV)

|) E(vis)>100 MeV — N=7

—4— Data

I Osc. v, CC
(N v,+v,CC
. Iv,CC

B NC

(MC w/ sin22613= 0.1)

2000

4) Rec neutrino energy <1250
MeV — N=6

1

<

3000

Number of events /(250 MeV)
N

0
0

[

—

1000
Reconstructed v energy (MeV)

—¢— Data

I Osc. v, CC
(N v,+v, CC
] v,CC
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Reject bean
Ve

—

2000 30
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I_Z/K\ V . appearance analysis

. Probability of observing 6 events if sin?(2 013)=0 — 0.7% (2.5 0 significance)
. For sin?(2 0 23)=1 and Am?23=2.4x1073 eV?:

Normal hierarchy, 0 =0: Published in Ph)’S Rev. Lett. 107, 041801 (20| |)

Best fit — sin?(2 0 13)=0.11 and 0.03<sin?(2 0 13)<0.28 at 90% C.L.
Inverted hierarchy, 0 =0:

Best fit — sin?(2 0 13)=0.14 and 0.04<sin?(2 60 13)<0.34 at 90% C.L.

Y B T TR . T ] 7 B | T T L I
_ 2 ] B 2
: >0 - : <0
w2 — A m — /2 — A m
a, B i A B il
@, = — @ - |
<2 v = _ 2 0 - ]
/2 il Best fit to T2K data ] /2 B T2K ]
i 68% CL T N 1.43 x10* p.o.t.
B 90% CL | - ]
-7 B L o 1% 5, [T | o o o oy ooy | -7t B L P TR AN T 0 ) [ YN T AN TN TN TN TN A T L ]
0 0.1 0.2 0.3 04 0.5 0.6 0 0.1 0.2 03 0.4 0.5 0.6
-2 2 D,
sin“20 . sIn"20,

CP phase degeneracy & Am?sign clearly visible



Number of events
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VY « disappearance

«  Single muon event in SuperKamiokande fiducial volume.

« Observed events at SK satisfying v , disappearance criteria: 31

»  Oescillation parameters extracted from an oscillation fit on E( v )¢

«  The oscillation pattern due to the disappearance of v . is clearly visible in the

reconstructed energy spectrum — advantage of using off-axis configuration

20
T2K preliminary
—e— Data
1 L
STl No oscillation
: Best fit with oscillation
10t P (sin?20, Am?) = (0.99,2.6x10eV?)

& -
Reconstructed neutrino energy(GeV)

ratio

Ratio between data and MC without oscillation

2
TZT preliminary
AT P
+—- —— —e— data / nominal MC
g? best fit / nominal MC
0 N | L | L
0 2 4 6 8 10

Reconstructed neutrino energy(GeV)



T2K\ V .. disappearance

* T2K results are in good agreement with previous results.
» It is not statistically significant but low statistics.

* The sensitivity to the mixing angle is larger than in Minos (off-axis)

-3
4><10
——— T2K 1.43x10°°POT (w/ syst. error fitting), 90% CL  T2K preliminary
--------- T2K 1.43x10°°POT (w/o syst. error fitting), 90% CL
[ ——— MINOS 7.25x10?°POT, 90% CL |
— ———— Super-K Zenith (preliminary, Neutrino2010), 90% CL ]
— ———— Super-K L/IE (preliminary, Neutrino2010), 90% CL —
— ssimssssmms
N
> 3 -
b
] — ]
E
< L "
2
B | | I | |
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Conclusions

e Spanish groups have contributed to neutrinos oscillation efforts since 2002 for
the first confirmation of oscillation in accelerators (K2K experiment).

e Current 013 world leading experiment have strong Spanish contributions.
e Very exciting times: 6 13 might be around the corner.

e Firstindication by T2K this summer!l. (138 citations in Spires in 4 months)

e Double Chooz will deliver results soon.

Coming months will shape the future neutrino physics:

Strong Spanish contribution
Spanish expertise to play leading role in the future (CP)




Backup slides



T2/K\
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Earthquake &

Ground level damages — rapidly repaired
Equipments — no fatal damages

LINAC floor, MR tunnel side pit, Near Detector bottom floor submerged under water
. Fixed in few weeks
e No serious damages on components

Tunnel moved or bent of ~ several cm
: Major alignment of many components need to be done

We plan to resume JPARC beam operation in January 2011, Still on schedule.

Two physics runs (~1 month each) for users before March 2012

Future milestone:
. 0.5 MW x 107 s (1x10% p.o.t.) in Summer 2013
. Conclude 0 13 different from O (more than 5 ¢ at present T2K best fit )
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Superluminal neutrinos & T2K

e Official statement by T2K:

e Based on our initial assessment of our capability, at the
moment T2K cannot make any definitive statement to verify
the Opera measurement of the speed of neutrino (Opera

Anomaly).

e We will assess a possibility to improve our experimental
sensitivity for a measurement to cross-check the OPERA
anomaly in the future.Such a measurement with an improved
system, however, could take a while to achieve.

e Time of flight in T2K :
e Baseline is shorter: 300 km vs 700 km

e Energy is lower: E, <10 GeV vs E, > 20 GeV

e Actual GPS synchronization precission ~100 ns.



Measuring O cp

To measure CP we need:

o) 01340

e IfO0,thisis like a 2 neutrino mixing and the phase is cancelled.

 Neutfrino appearance:

e If welook at disappearance only, this is like two neutrino oscillation and the phase
cancelled out.

 One of the following:

e Compare vand o transitions.

e Compare disappearance (no CP effect) to appearance experiment
(CP effect) so we can derive the phase.

e Measure first and second oscillation maximum.

40



Measuring 0 13

e There are two possibilities explored now:

e VY, V. with atmospheric Am? (long base line: T2K, Nova)

Am?2, L
. — N O 52 31
rote S111 23 S11 13 S1I1 4E
Am?2, L
+ cos? Bo3 cos? B3 sin? Oy sin? Ti?l
Am3, L Am?, L Am?2, L
+8 0082 (913 sin (913 sin 923 COS 923 sin 912 COS 912 sin Tgl sin TE; COS( ZLE? 50]3)
Am3, L Am?2, L Am32, L
—2 SiIl2 912 SiIl2 923 SiIl2 2(913 sin Zlgl sin Tgl COS Z:LE?
Am?2, L
+4 cos? 015 sin? #15 sin 613 sin 623 (sin B3 sin 013 sin 015 — 2 cos 615 cos fa3 cos dop) sin? le?l

e Sensitive to CP and matter effects (not in the formula).

e V. — V. with "atmospheric" Am? ( reactor experiments)
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e TInsensitive to CP phase.
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« We observed 6 v . candidates
7 Total 15+0.3
* The expected number of events
from un-oscillated neutrinos is 1.5 Dominated by hadron production

eIror source Syst. error Dominated by FSI and NCTT0 cross-

v flux +8.5% section uncertainties

v int. cross section +14.0%

Near detector +90.607

—5.2

Far detector +14.7%

Near det. statistics +2.77% \_
. , 122807
Total 55 70




