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Outlook

• Oscillation in a “nutshell” .

• Long base line vs reactor experiments

• Spanish contribution to neutrino oscillations: 

• T2K 

• Double-Chooz

• Conclusions and final remarks
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Neutrino oscillation
• Neutrinos are produced always as a flavor neutrino but they 

propagate in vacuum as mass eigenstates.

• Mass eigenstates != flavour eigenstates.
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• If neutrinos 1 & 2 propagate at different speeds (mass) keeping  
the quantum coherence at the interaction point the proportions 
between 1 & 2 states changes and it might appear other neutrino 
flavor.



Oscillations with 3 ν’s
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• With 3ν, there are 3 angles and 1 imaginary phase (δ).

• The phase allows for CP violation similar to the quark sector. 

• There are also 2 values of Δm2, traditionally Δm212  &Δm231 with 

their signs.

• Oscillations are not sensitive to absolute mass.
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Mass eigenstates != flavour eigenstates



Neutrinos in matter
• Neutrino oscillations are altered by interaction with matter. 

• This is actually the model for solar neutrino oscillation model. 

• Neutrinos can have two types of interaction with matter: 

• Incoherent inelastic: σ~ 10-43 (E/MeV)2

• Coherent. The medium is unchanged and the scattered and un-scattered waves 
interfere enhancing the effect. 

• It introduces a phase in the propagation, that can be invisible except for the fact 
that matter is made of electrons. The matter effects introduce a relative phase 
between electrons and other flavours.
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Measurements
θ12, Δm212

• Natural sources (neutrinos from the sun) : SNO, 
SuperKamiokande, Borexino, Gallex, GNO, SAGE, 
Homestake.

• Man-made sources (nuclear reactors): Kamland.
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θ32, Δm232

• Natural sources (atmospheric neutrinos): 
SuperKamiokande.

• Man-made sources(accelerators): K2K, Minos.



The usual “we know”

• Still a long way to go!. But, it might be closer that we 
think!. 

• Most urgent: values of δCP, θ13,  absolute mass scale.
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∆m2
21 = 7.67+0.22

−0.21 × 10−5eV 2

|∆m2
31| = 2.46± 0.15× 10−3eV 2

θ12 = 34.5o ± 1.4
θ23 = 42.3o ± +5.1−3.3
θ13 < 10.1o(90%C.L.)

δCP ∈ [0o, 360o]
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Angles and 
masses
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θ13: accelerators vs reactors
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• Appearance experiment.

• Oscillation depends on θ13,θ23, 

signΔm2, δCP and matter effects: 

• degeneracies.

• possible signΔm2  &δCP

• Multipurpose: several oscillation (θ23, 

steriles) and non-oscillation physics.

• Experimental challenges:

• beam intensity, flavor composition 
and flux extrapolation.

• νN interaction cross-sections.

• Disappearance experiment.

• Oscillation depends on θ13.

• No degeneracies except for θ23 

obtained from accelerators.

• No access to signΔm2  &δCP

• Experimental challenges:

• backgrounds

• systematic uncertainties.

Accelerator Reactor



Reactors
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3 senior staff, 2 postdocs, 2 phD, 3 engineers, 2 technical staff.

(PI: I.Gil Botella)



Reactor principle.
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Reactor principle

• Prompt photons from e+ annihilation:

• EVIS ~Eν- (Mn-Mp) + me

•  Delayed photons from n capture:

• on H : t ~200 s, E~2 MeV

• on Gd: t ~30 s, E ~8 MeV
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Double Chooz
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Detector design
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Double Chooz
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Double Chooz



Neutrino detection
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Timing distribution between prompt and delayed signal
 n-capture on Gd ~ 30 µsEnergy spectrum in the delayed Gd-energy window (6 – 12 MeV)

Vertex position reconstruction of the delayed signal
Neutrino candidate rate as function of operation time

1 reactor operation



Double Chooz

• T2K best fit can be addressed with 2011 
statistics.
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Results are expected very soon.



Accelerators
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1 senior staff, 2 postdocs, 2 phD, 1 engineer

1 senior staff, 1 postdocs, 2 phD (P.I.: A.Cervera)

(P.I.: F.Sanchez)



Measuring θ13
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• νμ ⟶νe  compites with the solar 

oscillation.

• decoupled only from the L/E value 
similar to reactor neutrinos.

Pνµ,νe = sin2 θ23 sin2 2θ13 sin2 ∆m2
31L

4E
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• υμ ➝ υe & υμ ➝ υμ from 

high intensity accelerator.

• Eυ ~ 600 MeV.

• Oscillation distance: 295km. 

• Off-axis technique ➝ 
narrow energy spectrum.
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Tokyo



T2K: off-axis
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• T2K is the first long baseline experiment using 
off-axis technique

• Reduced dependence of Eν from Eπ 

• Intense beam where the oscillation effect is 
maximum (~0.6 GeV)

• Enhance the CCQE sample, reducing the high 
energy tails of the beam → reduce the 

backgrounds to oscillation signal
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T2K concept

• Beamline: 

• Produce a narrow band neutrino beam (peak energy ~600 MeV) using Off-axis beam technique: center 
of the beam ~2.5° off from SK direction

• Design beam power 750 kW (50 kW in 2010, stable 145 kW in 2011)

• Detectors:

• Proton beam profile, position and intensity monitored in several detectors along the beamline

• 2 detectors monitor neutrino beam stability and direction: Muon Monitor and INGRID

• Off-axis Near Detector (ND280): measure ν interaction rates and flavors before the oscillation

• Off-axis Far Detector (SK): measure ν interaction rates and flavors after the oscillation

p π→ν,µ ν

120m 295km280m

off-axis

on-axis

MR

110m

primary 
beamline target 

station decay 
pipe

beam 
dump

muon 
monitors

280m 
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T2K:beam 
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• 30 GeV proton accelerator

• Single turn extraction of the protons from the MR to target station (8 bunches)

• Graphite target + 3 Horns: hadrons (π, K) are produced and charge selected

• Decay tunnel (110 m): π→μ+νμ  (+ other decays from kaons and muons that produce other neutrino species).

• The majority of muons and survived hadrons are stopped by the beam dump 
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T2K: Off-axis ND280

8

• Set of detector installed inside the ex-UA1/NOMAD magnet 
providing a 0.2 T magnetic field.

• Measure νμ and νe spectra before the oscillation 

• Measure cross-sections for backgrounds to oscillation 

• Dedicated π0 detector (P0D), EM calorimeter to identify e/
γ(ECAL), side muon range detector for high angle μ (SMRD)

• The Tracker:

• 2 fine grained detectors (FGD)

• Active target for neutrino interactions (carbon and water)

• 1.6 ton of Fiducial Volume

• 3 time projection chambers (TPC)*

• Instrumented with MicroMEGAS detectors

• Reconstruct momentum and charge of the particles produced 
in ν interactions

• PID capabilities measuring dE/dx in the gas

TPC dE/dx vs P for Positive tracks
<8% resolution for MIPs

*NIM, A 637 (2011) pp. 25-46

SMRD



T2K
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MicroMegas production quality assessment at CERN. 
Data Acquisition.
Electronics for readout.
TestBeam installation and data analysis.
Contributed to MicroMegas (30%) and HV purchase (~20%). 
TPC calibration and distortions.

Water cooling piping. 

Slow control.

Shipping and refurbishing.

Near detector reconstruction: 

kalman filter.

TPC reconstruction.

Analysis tools. 

Calibration framework.
muon neutrino CC inclusive for 
oscillations.

 electron neutrino CC inclusive for 
oscillations.

 Neutrino cross-secitons: CCQE, NCE, CC-
Coh, CC-Nπ

Reconstruction convener

Calibration convener

numu analysis convener

European convener for detector design

T
PC

Softw
are

M
anagm

ent

M
agnet

A
nalysis



27

T2K far Detector: Super-Kamiokande

• 50 kton water Cherenkov detector (22.5 kton Fiducial Volume)

• Optically divided between an inner detector (ID) and an outer detector (OD)

• 11129 20-inch Hamamatsu PMTs for the inner detector

• 1000 meters underground in the Kamioka mine (295 km from JPARC)

• Very good PID capabilities: probability of a muon reconstructed as an electron of 1%
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Run1+Run2 data set

The total number of protons used for this analysis is 1.43x1020 p.o.t →2% of the T2K 
final physics goal.
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T2K Run 1

T2K Run 2

Run 1 (Jan-Jun 2010)
3.23 x 1019 p.o.t for analysis

50 kW stable beam operation

Run 2 (Nov 2010 - Mar 2011)
11.08 x 1019 p.o.t for analysis

145 kW stable beam operation

50 kW

145 kW



Neutrino event 
29



30Inclusive CC νμ 

analysis
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R(data/MC) = 1.036± 0.028(stat)+0.044
−0.037(det. syst)± 0.038(phys. model)
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• Selection of μ-like tracks requiring dE/dx in the TPC compatible with muons

• Good agreement between data and MC.
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Super-Kamiokande event selection
• Predefined event selection for νμ and νe

• First steps that are common:

• SK synchronized to beam timing using GPS

• Fully contained events in the Inner Detector, minimal activity in the Outer 
Detector

• Starting in the FV (FCFV)

• Number of rings = 1

• PID algorithm to distinguish e-like and μ-like events

41 single ring
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Reject NCπ0 
background
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νe event reduction

• After ring counting 8 single ring e-like events are 
selected

• SK “tight” cuts are applied to further reject the 
background: 

• 6 events are selected over a predicted background 
of 1.5 (mainly electron neutrinos in the beam).
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νe appearance analysis

• Probability of observing 6 events if sin2(2θ13)=0 → 0.7% (2.5σ significance)

• For sin2(2θ23)=1 and Δm223=2.4x10-3 eV2: 

• Normal hierarchy, δ=0: 

• Best fit → sin2(2θ13)=0.11 and 0.03<sin2(2θ13)<0.28 at 90% C.L.

• Inverted hierarchy, δ=0:

• Best fit → sin2(2θ13)=0.14 and 0.04<sin2(2θ13)<0.34 at 90% C.L.
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Published in Phys. Rev. Lett. 107, 041801 (2011)

Normal
hierarchy

Inverse
hierarchy

CP phase degeneracy &  Δm2 sign clearly visible

Δm2 > 0 Δm2 <0
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• Single muon event in SuperKamiokande fiducial volume. 

• Observed events at SK satisfying νμ disappearance criteria: 31

• Oscillation parameters extracted from an oscillation fit on E(ν)rec

• The oscillation pattern due to the disappearance of νμ is clearly visible in the 

reconstructed energy spectrum → advantage of using off-axis configuration

31

Ratio between data and MC without oscillation

T2K preliminary T2K preliminary

νμ disappearance



35

νμ disappearance
• T2K results are in good agreement with previous results.

• It is not statistically significant but low statistics. 

• The sensitivity to the mixing angle is larger than in Minos (off-axis) 

33

T2K preliminary



Conclusions
• Spanish groups have contributed to neutrinos oscillation efforts since 2002 for 

the first confirmation of oscillation in accelerators (K2K experiment). 

• Current θ13   world leading experiment have strong Spanish contributions.

• Very exciting times:θ13 might be around the corner.

• First indication by T2K this summer!. (138 citations in Spires in 4 months) 

• Double Chooz will deliver results soon. 
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Coming months will shape the future neutrino physics:
 Strong Spanish contribution

Spanish expertise to play leading role in the future (CP)



Backup slides
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Earthquake
• Ground level damages → rapidly repaired

• Equipments → no fatal damages

• LINAC floor, MR tunnel side pit, Near Detector bottom floor submerged under water

• Fixed in few weeks

• No serious damages on components

• Tunnel moved or bent of ~ several cm

• Major alignment of many components need to be done

• We plan to resume JPARC beam operation in January 2011. Still on schedule. 

• Two physics runs (~1 month each) for users before March 2012

• Future milestone: 

• 0.5 MW x 107 s (1x1021 p.o.t.) in Summer 2013

• Conclude θ13 different from 0 (more than 5 σ at present T2K best fit )
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Superluminal neutrinos & T2K
• Official statement by T2K : 

• Based on our initial assessment of our capability, at the 
moment T2K cannot make any definitive statement to verify 
the Opera measurement of the speed of neutrino (Opera 
Anomaly).

•  We will assess a possibility to improve our experimental 
sensitivity for a measurement to cross-check the OPERA 
anomaly in the future.Such a  measurement with an improved 
system, however, could take a while to achieve.

39

• Time of flight in T2K : 

• Baseline is shorter: 300 km vs 700 km

• Energy is lower: Eν < 10 GeV vs Eν > 20 GeV

• Actual GPS synchronization precission ~100 ns. 



Measuring δCP
• To measure CP we need: 

• θ13 ≠ 0 . 

• If 0, this is like a 2 neutrino mixing and the phase is cancelled. 

•  Neutrino appearance: 

• If we look at disappearance only, this is like  two neutrino oscillation and the phase 
cancelled out.

• One of the following: 

• Compare  υ and ῡ transitions. 

• Compare disappearance (no CP effect) to appearance experiment 
(CP effect) so we can derive the phase.

• Measure first and second oscillation maximum.
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Measuring θ13
• There are two possibilities explored now:  

• νμ ⟶νe  with atmospheric Δm2  (long base line: T2K, Nova)

• Sensitive to CP and matter effects (not in the formula).

• νe   ⟶ νe  with “atmospheric” Δm2  ( reactor experiments)

• Insensitive to CP phase.

41

Pνe,νe ≈ 1− sin2 2θ13 sin2 ∆m2
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SK dominated by ring counting, PID 
and π0 mass systematics

ND280 dominated by TPC tracking 
efficiency and ionization in the gas

Dominated by FSI and NCπ0 cross-
section uncertainties
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Results

• We observed 6 νe candidates

• The expected number of events 
from un-oscillated neutrinos is 1.5
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Syst for θ13=0 → Nexp = 1.5±0.3 Dominated by hadron production

Source Nexp

Beam νe 0.8

νμ Neutral Current 0.6

νμ Charged Current 0.1

Total 1.5±0.3
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