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Motivation

• ζ generated by scalar �elds ⇒
statistical homogeneity and isotropy;

• Some indications both might be
broken:

• alignments of low multipoles ⇒
broken isotropy, i.e. preferred
direction;

• New observable - statistical anisotropy

• Can be dominant in Bζ even if
subdominant in Pζ ;

• O�ers a new parameter space for
in�ationary model building.
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Breaking the Conformal Invariance

• Massless U (1) vector �eld L = −1
4FµνF

µν

is conformally invariant;

1. Introduce �potential�: L = −1
4FµνF

µν + 1
2m

2AµA
µ

2. Non-canonical kinetic function: L = −1
4f (t)FµνF

µν
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Avoiding Large Scale Anisotropy

For massless or light U (1) vector �eld W = (0, 0,W ):

T νµ = diag (ρ,−p,−p,+p)

• Three identical, orthogonal vector �elds;
Armendariz-Picon (2004)

• Many randomly oriented vector �elds - vector
in�ation;
Golovnev, Mukhanov, Vanchurin (2008)

• Vector curvaton scenario;
Dimopoulos (2006)

• End-of-in�ation scenario;
Yokoyama, Soda (2008)
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Statistical Anisotropy

• 2 (massless) or 3 (massive) degrees of freedom;

• Power spectra PL, PR and P|| (circular polarization);
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Observational Constraints

• The power spectrum: Pζ = P iso
ζ

[
1 + gζ

(
k̂ · n̂

)2
]
:

1. gζ = 0.29± 0.031: Hanson, Lewis (2009);

Groeneboom, Ackerman, Wehus, Eriksen (2010);

• preferred direction n̂ = (l, b) = (96, 30) - close to ecliptic pole;

2. |gζ | < 0.07: Hanson, Lewis, Challinor (2010);

• Planck prospects: Ma, Efstathiou, Challinor (2011);

• ∆gζ ∼ 0.01 (2σ);
• gζ ∝ kq to an accuracy ∆q ∼ 0.3 (1σ);

• The non-linearity parameter: fNL = f iso
NL

[
1 + Gζ

(
k̂ · m̂

)2
]

• no constraints; Rudjord et al. (2010);

• can be Gζ� 1 even if gζ� 1; Dimopoulos, MK, Wagsta� (2010);

• If gζ is due to vector �elds: MK, Dimopoulos, Lyth (2010)

1. The same referred direction: n̂ = m̂ = Ŵ;
2. f isoNL ∝ gζ ;
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2. f isoNL ∝ gζ ;



ζ from Vector Fields
Non-Abelian Vector Fields

Summary

The Set Up
Correlators in the In-In Formalism
The End-of-In�ation Scenario

Outline

1 ζ from Vector Fields
Motivation
The Curvature Perturbation From Vector Fields

2 Non-Abelian Vector Fields
The Set Up
Correlators in the In-In Formalism
The End-of-In�ation Scenario

3 Summary



ζ from Vector Fields
Non-Abelian Vector Fields

Summary

The Set Up
Correlators in the In-In Formalism
The End-of-In�ation Scenario

Motivation

1. The non-Abelian vector �elds are ubiquitous in particle physics
models;

2. Several of vector �elds ⇒ suppressed statistical
and random orientation anisotropy;
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The Lagrangian

• The Lagrangian:

L = −1
4f (t)F aµνF

µν
a , F aµν = ∂µA

a
ν − ∂νAaµ + gcfabcAbµA

c
ν

• f = f (t) ⇐ 1. SUGRA; 2. moduli;

• f ∝ a−4

1. �at perturbation spectrum; Dimopoulos, MK, Wagsta� (2010)

2. attractor solution if f (t) is modulated by the in�aton;

2.1 For U (1): Watanabe, Kanno, Soda (2009); Wagsta�, Dimopoulos

(2011); Kanno, Soda, Watanabe (2010);

2.2 For SU (2): Murata, Soda (2011);

3. corresponds to weak coupling;

3.1 The physical, canonically normalized vector �eld:

W a
i ≡
√
f
Aa

i
a
⇒ L ⊃ gc

2

f
fabcfadeW b

iW
c
jW

d
i W

e
j ;

3.2 With f ∝ a−4 self-coupling gc
2

f
is very small;
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Correlators

Using the 'In-In Formalism':

g3 (k1,k2,k3) = − (2π)3 δ (k1 + k2 + k3) 2H6∏3
i 2k3

i

T fghlmn

(
k̂1, k̂2, k̂3

)
I (k1, k2, k3)
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T fghlmn
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I (k1, k2, k3)

1. Anisotropic:

T fghlmn

(
k̂1, k̂2, k̂3

)
≡W b

mT
E
ij

(
k̂1

)
TE
nj

(
k̂3

)(
fabhfagf + faghfabf

)
+

+W b
l T

E
mj

(
k̂2

)
TE
nj

(
k̂3

)(
fabgfafh + fafgfabh

)
+

+W b
nT

E
lj

(
k̂1

)
TE
mj

(
k̂2

)(
fabgfahf + fahgfabf

)
,

where TE
ij

(
k̂
)
≡ δij − k̂ik̂j .
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Using the 'In-In Formalism':

g3 (k1,k2,k3) = − (2π)3 δ (k1 + k2 + k3) 2H6∏3
i 2k3

i

T fghlmn

(
k̂1, k̂2, k̂3

)
I (k1, k2, k3)

2. Classical contribution dominates:

I =
g2
c

f0

k7
tH
−8

4!

[
6e4Nk

(
1

3
−K1 +K2

)
+ 2e2Nk

(
K1 − 3K2 −

1

5

)
−

+ (γ +Nk)

(
1

5
K1 −K2 −

1

35

)
+

1

300

(
625K2 − 137K1 +

1019

49

)]

where K1 ≡
∑3

i>j kikj

k2
t

K2 ≡
∏3

i ki
k3
t
, and Nk ≡ − ln (ktτend)
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The Model

The Lagrangian with local invariance under some symmetry group G:

L = 1
2∂µϕ∂

µϕ+ 1
2Tr

[
(DµΦ)†DµΦ

]
− 1

4f Tr [FµνF
µν ]− V (ϕ,Φ)

• ϕ - in�aton, scalar singlet;

• Φ - Higgs �eld;

• Covariant derivative: Dµ = ∂µ + iλAT
aAaµ;

• Gauge kinetic function: f ∝ a−4,
and F aµν = ∂µA

a
ν − ∂νAaµ + gcf

abcAbµA
c
ν ;

• Hybrid in�ation potential:

V (ϕ,Φ) = 1
4λ
(
χ2 −M2

)2
+ 1

2κ
2ϕ2χ2 + V (ϕ)

in the unitary gauge Φ = χl, with Tr
[
l†l
]

= 1
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in the unitary gauge Φ = χl, with Tr
[
l†l
]

= 1
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End-of-In�ation scenario

L = 1
2∂µϕ∂

µϕ+ 1
2Tr

[
(DµΦ)†DµΦ

]
− 1

4f Tr [FµνF
µν ]− V (ϕ,Φ)

• Hybrid in�ation potential:

V (ϕ,Φ) = 1
4λM

4 + 1
2

(
κ2ϕ2 − λM2

)
χ2 + 1

4λχ
4 + V (ϕ)

• The e�ective mass of χ:
m2

eff = κ2ϕ2 − λM2

meff = meff (x): 1. The function of position;
2. Statistically anisotropic.
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End-of-In�ation scenario

L = 1
2∂µϕ∂

µϕ+ 1
2Tr

[
(DµΦ)†DµΦ

]
− 1

4f Tr [FµνF
µν ]− V (ϕ,Φ)

• Hybrid in�ation potential:

V (ϕ,Φ) = 1
4λM

4 + 1
2

(
κ2ϕ2 − λM2

)
χ2 + 1

4λχ
4 + V (ϕ)

• The e�ective mass of χ:
m2

eff (x) = κ2ϕ2 − λM2−λ2
AA

a
µ (x)Aµb (x) l†TaTbl

meff = meff (x): 1. The function of position;
2. Statistically anisotropic.
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The Anisotropic Spectrum

Only massive vector �elds contribute to ζ and assume W ā ∼W ∀ ā

Pζ (k) ≈ P iso
ζ

[
1− 1

N
∑

ā

(
Ŵā · k̂

)2
]

• Anisotropy is suppressed by the number of massive vector
�elds N ;

• From observational bound:

1. |gζ | < 0.3: N ≥ 4; Groeneboom et al. (2010)

2. |gζ | < 0.07: N ≥ 15; Hanson et al. (2010)

• Assume SU (N)→ SU (N − 1) ⇒ N = 2N − 1:

1. |gζ | < 0.3: SU (3) ⇒ gζ = −0.20;
2. |gζ | < 0.07: SU (8) ⇒ gζ = −0.066;

• Planck precision: ∆gζ ∼ 0.01;
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ā

(
Ŵā · k̂

)2
]

• Anisotropy is suppressed by the number of massive vector
�elds N ;

• From observational bound:

1. |gζ | < 0.3: N ≥ 4; Groeneboom et al. (2010)

2. |gζ | < 0.07: N ≥ 15; Hanson et al. (2010)

• Assume SU (N)→ SU (N − 1) ⇒ N = 2N − 1:

1. |gζ | < 0.3: SU (3) ⇒ gζ = −0.20;
2. |gζ | < 0.07: SU (8) ⇒ gζ = −0.066;

• Planck precision: ∆gζ ∼ 0.01;



ζ from Vector Fields
Non-Abelian Vector Fields

Summary

The Set Up
Correlators in the In-In Formalism
The End-of-In�ation Scenario

The Bispectrum

〈ζ (k1) ζ (k2) ζ (k3)〉 = (2π) δ (k1 + k2 + k3)Bζ (k)

Bζ = Bζself +Bζgr

1. Bζself ∝ all fields ⇐ self interactions;

2. Bζgr ∝ massive fields ⇐ non-linearity of gravity;

• Both Bζself and Bζgr are anisotropic;

• Isotropic parts

Biso
ζgr = −

(
g2
cW

2

12feH2

)−1
Biso
ζself = −4π4 η

2N

(
feκ

2ϕ2
c

λ2
AW

2

) ∑
i k

3
i∏

i k
3
i

(
P iso
ζ

)2
;

• W > H ⇒ Bζgr ≥ Bζself ;
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• Vector �elds can generate or contribute to ζ;
• Generally statistically anisotropic ζ (although can be avoided);
• Present bounds:

• Pζ = P iso
ζ

[
1 + gζ

(
k̂ · n̂

)2
]
: |gζ | < 0.3 or |gζ | < 0.07;

• fNL = f iso
NL

[
1 + Gζ

(
k̂ · n̂

)2
]
: no bound on Gζ ;

Non-Abelian vector �elds:
• Correlators are dominated by the classical evolution of �elds;
• The anisotropy is suppressed by the number of �elds
generating ζ;

• Scenario in which ζ is generated through the covariant
derivative term:
L = 1

2
∂µϕ∂

µϕ+ 1
2
Tr
[
(DµΦ)†DµΦ

]
− 1

4
f Tr [FµνF

µν ]− V (ϕ,Φ)

• SU (3) or SU (8) is enough to avoid WMAP bounds on gζ ;
• Might be observable by the Planck satellite (∆gζ ∼ 0.01);





Avoiding Large Scale Anisotropy

For massless or light U (1) vector �eld W = (0, 0,W ):

T νµ = diag (ρ,−p,−p,+p)

• Three identical, orthogonal vector �elds;
Armendariz-Picon (2004)

• Many randomly oriented vector �elds - vector
in�ation;
Golovnev, Mukhanov, Vanchurin (2008)

• Vector curvaton scenario;
Dimopoulos (2006)

• End-of-in�ation scenario;
Yokoyama, Soda (2008)



Quantization

Temporal gauge: Ŵ a
0 = 0;

δŴ a
i (k) =

∑
λ=L,R

[
eλi

(
k̂
)
w (k, τ) âaλ (k)− eλ∗i

(
−k̂
)
w∗ (k, τ) âa†λ (−k)

]

• Interaction picture ⇒ w = H√
2k3

(1− ikτ) e−ikτ ;



General Equations

〈
δWi (k) δWj

(
k′
)〉

= (2π)3 δ
(
k + k′

) 2π2

k3
×

×
[
T even
ij

(
k̂
)
P+ (k) + iT odd

ij

(
k̂
)
P− + T long

ij

(
k̂
)
P||
]

T even
ij

(
k̂
)

= eL
i

(
k̂
)
eR
j

(
k̂
)

+ eRi

(
k̂
)
eL
j

(
k̂
)

=δij − k̂ik̂j

T odd
(
k̂
)

= i
[
eL
i

(
k̂
)
eR
j

(
k̂
)
− eRi

(
k̂
)
eL
j

(
k̂
)]

= εijkk̂k

T long
ij

(
k̂
)

= e
||
i

(
k̂
)
e
||
j

(
k̂
)

= k̂ik̂j



The In-In Formalism

g3 (x1,x2,x3) =
〈

0
∣∣∣Û−1δŴ a

i (x1) δŴ b
j (x2) δŴ c

l (x3) Û
∣∣∣ 0〉,

where Û = exp
{
−i
∫ τ
τ0
Ĥintdτ

′
}
;

1. Tree level;

2. Third order;

Ĥint ≡ a3 (τ)

∫
d3x

gc√
f

fabc∂iδŴ
a
j δŴ

b
i δŴ

c
j +

+ a4 (τ)

∫
d3x

1

2

g2
c

f

(
fabcfade + fadcfabe

)
W b

iδŴ
c
j δŴ

d
i δŴ

e
j .
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The Curvature Perturbation

• δN formula:

ζe = N ā
i δW

ā
i +N āb̄

ij δW
ā
i δW

b̄
j

where N ā
i = −Ne

M āb̄W b̄
i

κ2feϕc
and Ne = ∂N/∂ϕc =

(
2m2

Plεe
)− 1

2 .

• Require ζe � ζϕ ⇒ ζ only from non-Abelian vector �elds



The Power Spectrum

〈ζ (k1) ζ (k2)〉 = (2π) δ (k1 + k2)Pζ (k1)

• The general expression:

Pζ (k) = P+C
2
(
M2
)āb̄

W āW b̄

[
1− (M2)

āb̄
(Wā·k̂)(Wb̄·k̂)

(M2)āb̄W āW b̄

]
,

where
(
M2
)āb̄ ≡M āc̄M c̄b̄ ∼ λ4

A and C ≡ 1
κ2fe

Ne
ϕc

;

• Angular modulation!

• Assume W ā ∼W ∀ ā

Pζ (k) ≈ P iso
ζ

[
1− 1

N
∑

ā

(
Ŵā · k̂

)2
]
,

where N is the number of massive vector �elds and

P iso
ζ = λ4

ANP+ (CW )2



Some Bounds

• Perturbation from in�aton is subdominant, i.e. ζe � ζϕ:(
λ2
A

fe

W

κ2ϕc

)
� εe

εk
= e−2Neη

• Variation of δfe is negligible:(
M āb̄W ā

i W
b̄
i

κ2feϕcmPl

)
� εe

• These two bounds and W > H give



The Bispectrum

Bζ1 = 4π4

∑
i k

3
i∏

i k
3
i

g2
end

12H2
C3P2

+

(
fabh̄faḡf̄ + faḡh̄fabf̄

)
M ḡc̄M f̄ d̄M h̄ē

(
Wb ·Wc̄

)
× .

×
[(

Wd̄ ·Wē
)
− 2

(
Wd̄ · k̂1

)(
Wē · k̂1

)
+
(
k̂1 · k̂3

)(
Wd̄ · k̂1

)(
Wē · k̂3

)
+ c.p.

]

Bζ2 = −4π4

(
P iso
ζ

)2

NϕcNe

(
λM2

λ2
AW

2/fe

) ∑
i k

3
i∏

i k
3
i

{
1−

1

N
∑
ā

[
k3

2

(
Ŵā · k̂1

)2
− k3

2

(
Ŵā · k̂3

)2
−

−k3
2

(
k̂1 · k̂3

)(
Ŵā · k̂1

)(
Ŵā · k̂3

)
+ c.p.

]
/
∑
i

k3
i

}
,
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