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Motivation

e ( generated by scalar fields =
statistical homogeneity and isotropy;

e Some indications both might be
broken:

e alignments of low multipoles =
broken isotropy, i.e. preferred
direction;

Tegmark, de Oliveira-Costa,
Hamilton (2003)
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Motivation

e ( generated by scalar fields =
statistical homogeneity and isotropy;

e Some indications both might be
broken:

e alignments of low multipoles =
broken isotropy, i.e. preferred
direction;

e New observable - statistical anisotropy

e Can be dominant in B¢ even if
subdominant in P¢;

e Offers a new parameter space for
inflationary model building.
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Breaking the Conformal Invariance

e Massless U (1) vector field L£L=-1F, Fm
is conformally invariant;

1. Introduce “potential”: L= —iFw,F/“’ + %mQA#A“
2. Non-canonical kinetic function: L= —}If (0)F, Bt
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For massless or light U (1) vector field W = (0,0, W):

T}, = diag(p, p, p, D)
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Avoiding Large Scale Anisotropy

For massless or light U (1) vector field W = (0,0, W):

T}, = diag(p, p, p, D)

e Three identical, orthogonal vector fields;
Armendariz-Picon (2004)



¢ from Vector Fields

i 9 Motivation
NopeSbensnaVeatp el The Curvature Perturbation From Vector Fields
Summary

Avoiding Large Scale Anisotropy

For massless or light U (1) vector field W = (0,0, W):

T}, = diag(p, p, p, D)

e Three identical, orthogonal vector fields;
Armendariz-Picon (2004)

e Many randomly oriented vector fields - vector
inflation;
Golovnev, Mukhanov, Vanchurin (2008)
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Avbiding Large Scale Anisotropy

For massless or light U (1) vector field W = (0,0, W):

T}, = diag(p, p, p, D)

e Three identical, orthogonal vector fields;
Armendariz-Picon (2004)

e Many randomly oriented vector fields - vector
inflation;
Golovnev, Mukhanov, Vanchurin (2008)

e Vector curvaton scenario;
Dimopoulos (2006)
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Avoiding Large Scale Anisotropy

For massless or light U (1) vector field W = (0,0, W):

T}, = diag(p, p, p, D)

A\

/,

e Three identical, orthogonal vector fields;
Armendariz-Picon (2004)

|
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e Many randomly oriented vector fields - vector
inflation;
Golovnev, Mukhanov, Vanchurin (2008)

e Vector curvaton scenario;
Dimopoulos (2006)

e End-of-inflation scenario;
Yokoyama, Soda (2008)
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Statistical Anisotropy

e 2 (massless) or 3 (massive) degrees of freedom;

o Power spectra P, Pr and P (circular polarization);

PL="Pr =P PL#/=Pr# /=P
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Observational Constraints
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* The power spectrum: P, = loas [1 e <k . ﬁ) ]:

1. g =0.29 £0.031: Hanson, Lewis (2009);
Groeneboom, Ackerman, Wehus, Eriksen (2010);

e preferred direction i = (I,b) = (96, 30) - close to ecliptic pole;

2. |ge| < 0.07: Hanson, Lewis, Challinor (2010);
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* The power spectrum: P, = loas [1 e <k . ﬁ) ]:

1. g =0.29 £0.031: Hanson, Lewis (2009);
Groeneboom, Ackerman, Wehus, Eriksen (2010);

e preferred direction i = (I,b) = (96, 30) - close to ecliptic pole;

2. |ge| < 0.07: Hanson, Lewis, Challinor (2010);
e Planck prospects: Ma, Efstathiou, Challinor (2011);

e Agc ~0.01 (20);
e gc o< k? to an accuracy Aq ~ 0.3 (10);
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Observational Constraints
1 e 2
* The power spectrum: P, = loas [1 e <k . ﬁ) ]:

1. g =0.29 £0.031: Hanson, Lewis (2009);
Groeneboom, Ackerman, Wehus, Eriksen (2010);

e preferred direction i = (I,b) = (96, 30) - close to ecliptic pole;

2. |ge| < 0.07: Hanson, Lewis, Challinor (2010);

e Planck prospects: Ma, Efstathiou, Challinor (2011);
e Agc ~0.01 (20);
e gc o< k? to an accuracy Aq ~ 0.3 (10);

; : 2
e The non-linearity parameter: fni, = [T [1 e (k . rh) ]

e no constraints; Rudjord et al. (2010);
e can be G:> 1 even if o< 1;  Dimopoulos, MK, Wagstaff (2010);
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Observational Constraints
1 e 2
* The power spectrum: P, = loas [1 g <k . ﬁ) ]:

1. g =0.29 £0.031: Hanson, Lewis (2009);
Groeneboom, Ackerman, Wehus, Eriksen (2010);

e preferred direction i = (I,b) = (96, 30) - close to ecliptic pole;

2. |ge| < 0.07: Hanson, Lewis, Challinor (2010);
e Planck prospects: Ma, Efstathiou, Challinor (2011);

e Agc ~0.01 (20);
e gc o< k? to an accuracy Aq ~ 0.3 (10);

; : 2
e The non-linearity parameter: fni, = [T [1 e (k . rh) ]
e no constraints; Rudjord et al. (2010);
e can be G:> 1 even if o< 1;  Dimopoulos, MK, Wagstaff (2010);
e If g¢ is due to vector fields: MK, Dimopoulos, Lyth (2010)

1. The same referred direction: n = m = W;
2. ¥ o< gc;
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Motivation

1. The non-Abelian vector fields are ubiquitous in particle physics
models;

2. Several of vector fields = suppressed statistical
and random orientation anisotropy;
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L= _%lf (f) F;;lyFliLya
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1. flat perturbation spectrum;

Dimopoulos, MK, Wagstaff (2010)
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The Lagrangian
e The Lagrangian:

L= _%f (f) FSI/FéLya

Fo, = 8,A% — 8, A% + g oAb AS

e [ =[(t) < 1. SUGRA; 2. modul;;

o fx a

1. flat perturbation spectrum;

Dimopoulos, MK, Wagstaff (2010)

2. attractor solution if [ (¢) is modulated by the inflaton;

2.1 For U (1): Watanabe, Kanno, Soda (2009); Wagstaff, Dimopoulos
(2011); Kanno, Soda, Watanabe (2010);
2.2 For SU (2): Murata, Soda (2011);
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The Lagrangian
e The Lagrangian:

L =—7F (1) FaRg Fo, =5, Az L HE R glrat A2

e f=f(t) « 1. SUGRA; 2. moduli;
e fxa?
1. flat perturbation spectrum; Dimopoulos, MK, Wagstaff (2010)
2. attractor solution if [ (¢) is modulated by the inflaton;
2.1 For U (1): Watanabe, Kanno, Soda (2009); Wagstaff, Dimopoulos
(2011); Kanno, Soda, Watanabe (2010);
2.2 For SU (2): Murata, Soda (2011);
3. corresponds to weak coupling;
3.1 The physical, canonically normalized vector field:
QP <A;‘1 c2 abcpeade b C d e,
We=VIE S LD S et wiwiws,

3.2 With f o< a* self-coupling # is very small;



¢ from Vector Fields The Set Up
Non-Abelian Vector Fields Correlators in the In-In Formalism
Summary The End-of-Inflation Scenario

Correlators

Using the 'In-In Formalism':
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Correlators

Using the 'In-In Formalism':

6 ~ ~ &
93 (k1 ko, k) = = (2m)° 8 (k1 + ko + ka) L T (K, ko, Kes) 1 (K, o)

1. Anisotropic:

Tigh (121,&2,1}3) =W (iq) T (123) (fa"hfagf +f”9hf"bf) JE

Imn
i WZbT7Enj (*2> TSJ' (R?)) (fabgfafh +fafgfabh> i
k

where 7% (k) = 8i; - kik;.
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Correlators

Using the 'In-In Formalism':

g3 (kl,kQ,kg) (271')3 5(1{1 + ko + k3) l_[3 2k:3 T{;Z’:l (1;1,122,123> I (kl,kg,kg)

2. Classical contribution dominates:

2 1.7 y—8
gc ki H 4N 1 2N, 1
I== 6e”"k | — — K K 2 E|K; —3Kg— = | —
e e 3 1+ K2 ) +2e il 27y

o +N)(1K K. 1)+ - (625K 137K +1019>}
TR B 300 2 BT

3
25> kiky

Where —— k? (kt'rend)

L BE
3
kt 3
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Correlators

Using the 'In-In Formalism':

g3 (k1, ko, ks) = — (2)3 8 (k1 + ko + k3) i (1;1,122,123) I (k1,k2,k3)

H3 2k3 Imn

2. Classical contribution dominates:

i 8
o4 k A 6e ENg — K1+ Ko
fo BIa 3

3 i kiky 3 k.
Where K1 = D>kj7t2] Ko = lei;i, and Np=—1In (kt'rend)
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The Model

The Lagrangian with local invariance under some symmetry group G:
£=10,00M0+ 1Tx [(D,ﬂ))T Dr®| — L Te[F,, F] — V (¢, )

e ¢ - inflaton, scalar singlet;
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The Model

The Lagrangian with local invariance under some symmetry group G:
£ = 18,000 + JTr |(D,®)! DIO| — 1 Tr [F F*] - V (i, @)

e ¢ - inflaton, scalar singlet;
e & - Higgs field;
e Covariant derivative: D, = 0, + iAAT*AY;
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The Model

The Lagrangian with local invariance under some symmetry group G:

£ = §0up0Pp + 1Tt [(D, @) DHO| — 1F Tx [Fu F™] = V (o, @)

e ¢ - inflaton, scalar singlet;
e & - Higgs field;
e Covariant derivative: D, = 0, + iAAT*AY;

Gauge kinetic function: f o R

af a a abc Ab Ac.
and F2, = 8, A% — 9, A% + g fe AL AS;
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The Model

The Lagrangian with local invariance under some symmetry group G:
£ = 10,900 + ITx (D, @) D0| — L Tx [ F#] - V (p, @)

e ¢ - inflaton, scalar singlet;
® - Higgs field;
Covariant derivative: D,, = 0, + iAaT*A%;

Gauge kinetic function: f o R

T i a a abc Ab pc.
and F2, = 0,45 = GFA £ gt e Al E,
Hybrid inflation potential:

Vg, @) = 1A (6 — M?)* + 352022 + V (¢)

in the unitary gauge ® = I, with Tr [lTl] =]
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End-of-Inflation scenario

£ = 10,000 + LTr [(D“@)T D%} — LfTY[F P2 — V (, D)

e Hybrid inflation potential:
V (i, ®) = PAM* + 5 (5%0% = AM?) X* + 10 +V (¢)

e The effective mass of x:
T = e = NI
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End-of-Inflation scenario

L= 10,0000 + 1Tr [(DM<I>)T Ducb} — I Tr[FuF™] = V (o, D)

e Hybrid inflation potential:
V(p, @) = i)\M4 -+ % (/i2<,02 - )\MZ) e i)\x‘l +V(p)

e The effective mass of y:
m2g (%) = k2% — AM2-23 A% () A () 1I'T*T"1

Mo = Meg (+): 1. The function of position;
2. Statistically anisotropic.
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The Anisotropic Spectrum

Only massive vector fields contribute to ¢ and assume W2 ~ W Va
: 1 S Sl A
P (k) = PF° [1 = ok (W“ ' k) ]

o Anisotropy is suppressed by the number of massive vector
fields \/;
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The Anisotropic Spectrum

Only massive vector fields contribute to ¢ and assume W2 ~ W Va
: 1 S Sl A
P (k) = PF° [1 = ok (W“ ' k) ]

o Anisotropy is suppressed by the number of massive vector
fields \V/;
e From observational bound:

L |ge| <0.3: N 2> 4 Groeneboom et al. (2010)
25 |9C| < 0.0 N5 Hanson et al. (2010)
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The Anisotropic Spectrum

Only massive vector fields contribute to ¢ and assume W2 ~ W Va
: 1 S Sl A
P (k) = PF° [1 = ok (W“ ' k) ]

o Anisotropy is suppressed by the number of massive vector
fields \/;

e From observational bound:

L |ge| <0.3: N 2> 4 Groeneboom et al. (2010)
25 |9C| < 0.0 N5 Hanson et al. (2010)

e Assume SU (N) = SU(N —1) = N =2N —1:

1. |ge| <0.3: SU(3) = g = —0.20;
2. |g¢] <0.07: SU (8) = g = —0.066;
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The Anisotropic Spectrum

Only massive vector fields contribute to ¢ and assume W2 ~ W Va

P (k) ~ P [1 ~2a (W R)Q]

Anisotropy is suppressed by the number of massive vector
fields \/;

e From observational bound:
L |ge| <0.3: N 2> 4 Groeneboom et al. (2010)
2. |g¢| <0.07: N > 15; Hanson et al. (2010)

Assume SU (N) - SU (N —1) = N =2N — 1:

1. |ge| <0.3: SU(3) = g = —0.20;
2. |g¢| <0.07: SU (8) = g = —0.066;

Planck precision: Age ~ 0.01;
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The Bispectrum
(¢ (k1) ¢ (ka) ¢ (k3)) = (2m) 6 (ky + ko + ks) B (k)

B¢ = Beself + Beer

1. Besarr o all fields <= self interactions;

2. By o< massive fields < non-linearity of gravity;
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The Bispectrum
(¢ (k1) ¢ (ka) ¢ (k3)) = (2m) 6 (ky + ko + ks) B (k)

B¢ = Beself + Beer

1. Besarr o all fields <= self interactions;

2. By o< massive fields < non-linearity of gravity;

e Both B¢yt and B, are anisotropic;
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The Bispectrum
(¢ (k1) ¢ (ka) ¢ (k3)) = (2m) 6 (ky + ko + ks) B (k)

B¢ = Beselt + Begr

1. Besarr o all fields <= self interactions;

2. By o< massive fields < non-linearity of gravity;

e Both B¢yt and B, are anisotropic;

e Isotropic parts

-1
5o, At =ty gng Bisu i —471'4"1' fe"iz‘Pzg Zz k?
GeriEg 12 f5H2 Cself — 2N )\iwz II; k3

(e



# Motivatio
® The Curva

® Non-Abelian Vector
» The Set Up
« Correlators in the In
o The End-of-Inflation Sct

i

©® Summary LA




¢ from Vector Fields
Non-Abelian Vector Fields
Summary

SUmmary

e Vector fields can generate or contribute to ¢;
o Generally statistically anisotropic ¢ (although can be avoided);
e Present bounds:

; 4 2
o PP {1—|—g< (kﬁ) ]: lgc] < 0.3 or |ge| < 0.07;

o fnL = P {1+(]¢ (l}.ﬁ)ﬂ: no bound on G;

Non-Abelian vector fields:
e Correlators are dominated by the classical evolution of fields;
e The anisotropy is suppressed by the number of fields
generating ¢;
e Scenario in which ¢ is generated through the covariant
derivative term:
£= 10,000 + 1Tt [(D, @) D*®] = Lf Tr[F F*] - V (p, @)

e SU (3) or SU (8) is enough to avoid WMAP bounds on g¢;
o Might be observable by the Planck satellite (Ag¢e ~ 0.01);






|
1

i

Avoiding Large Scale Anisotro-py

For massless or light U (1) vector field W = (0,0, W):

T3, = diag(p, —p, P, +p)

e Three identical, orthogonal vector fields;
Armendariz-Picon (2004)

e Many randomly oriented vector fields - vector
inflation;
Golovnev, Mukhanov, Vanchurin (2008)

e Vector curvaton scenario;
Dimopoulos (2006)

e End-of-inflation scenario;
Yokoyama, Soda (2008)




Quantization

Temporal gauge: Wé’ =0;

SWe (k) = Chin [e; (k) w (k, ) a8 (k) — e (—12) w* (k,7) &t (—k)]

o Interaction picture = w = Hk3 (1 —kr)e

ﬁ



General Equations

2
- ena e ) 2

(Wi (k) 6W; (k')

Okd

long

x [15 (&) Py (k) +i75% (K) P-+ T

)



1. Tree level;
2. Third order;

A

+a'(r )/d3

Hint = CL3 (T) d3

g f“bca 5Wa5

V_
1gc
2.f

(fabcf_ad.e . fadc ;f'abe) WeSWEsWasWe.



The In-In Formalism
gs (Xl,Xg,Xg < ‘U 15Wa (Xl)(SVAVJb (XQ)CSI/T/ZC (X3)Uv‘0>,

where U = exp {—szo ﬁinth'};

1. Tree level;
2. Third order;

Hue = a?(7) | d3x ﬁif“bca SWESTLSW e+

19 abe cade adcgabe \ 1170 sT57C STX 17e
+a4(7)/d3x2; (fe0egade 4 gadegore) whsweswiswy.



The Curvature Perturbation

e ON formula:

(o = NESWE + NPSWasW?

Mabyyb

where N? = —N, - and N, =0ON/0pc = (2mprec) 2.

HzfeSpc

e Require (. > (, = ¢ only from non-Abelian vector fields

N



The Power Spectrum
(¢ (k1) ¢ (k2)) = (2m) 6 (k1 + ko) Pc (k)

e The general expression:

Pe (k) = P.C2 (M2) ™ wew? [1 el zzg)abw)év

where (M2)® = M**M® ~ 34 and C = iR

e Angular modulation!

o Assume W2 ~ W V a
S
Pl ~ P |1 £ 5, (W k)|,
where A is the number of massive vector fields and

P = XANPL (CW)?



Some Bounds

e Perturbation from inflaton is subdominant, i.e. (. > (o:

)\?4 w €e —2Nen
(fe H%c) iy

e Variation of ¢ f, is negligible:

(MabWiaWib>
TEET |

K2 fepempl

e These two bounds and W > H give



The Bispectrum

Zi k? gSnd
[L; k3 12H2

x [(W‘Z-Wé) e (Wd_-fc1> (Wé : 121) b (121 -123) (Wd_-f(1> (Wé : 123) +C.p.]

By = 4nt C3P3 (£ebheenl 4 goghgadd) poepgFdpghe (Wb . we) x .

4 2
'PISO
Bgz = —4n' <M§13 <A3AWM22/f> % ]1:2 {1 5 % Za: {kg (Wﬁ ' 121)2 ¥ (Wa : §3)2’

3 () (W) (W) e 3002}
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