

The Curvature Perturbation from General non-Abelian Vector Fields

Mindaugas Karčiauskas

Universidad de Granada

MK, arXiv:1104.3629 [astro-ph.CO]

Outline

1 ζ from Vector Fields

- Motivation
- The Curvature Perturbation From Vector Fields

2 Non-Abelian Vector Fields

- The Set Up
- Correlators in the In-In Formalism
- The End-of-Inflation Scenario

3 Summary

Outline

1 ζ from Vector Fields

- Motivation
- The Curvature Perturbation From Vector Fields

2 Non-Abelian Vector Fields

- The Set Up
- Correlators in the In-In Formalism
- The End-of-Inflation Scenario

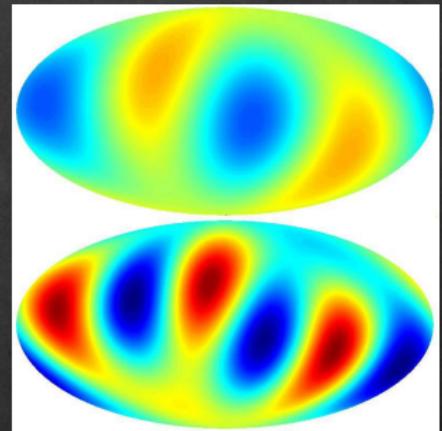
3 Summary

Motivation

- ζ generated by scalar fields \Rightarrow statistical **homogeneity** and **isotropy**;
- Some indications both might be broken:
 - alignments of low multipole
broken isotropy (\rightarrow preferred direction);
- New observable - **statistical anisotropy**
 - Can be dominant in B_ζ even if subdominant in \mathcal{P}_ζ ;
- Offers a **new parameter space** for inflationary model building.

Motivation

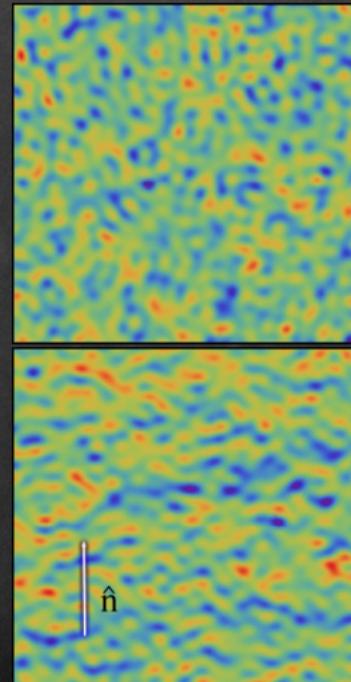
- ζ generated by scalar fields \Rightarrow statistical **homogeneity** and **isotropy**;
- Some indications both might be broken:
 - alignments of low multipoles \Rightarrow broken isotropy, i.e. **preferred direction**;
- New observable - **statistical anisotropy**
 - Can be dominant in B_ζ even if subdominant in \mathcal{P}_ζ ;
- Offers a **new parameter space** for inflationary model building.



Tegmark, de Oliveira-Costa,
Hamilton (2003)

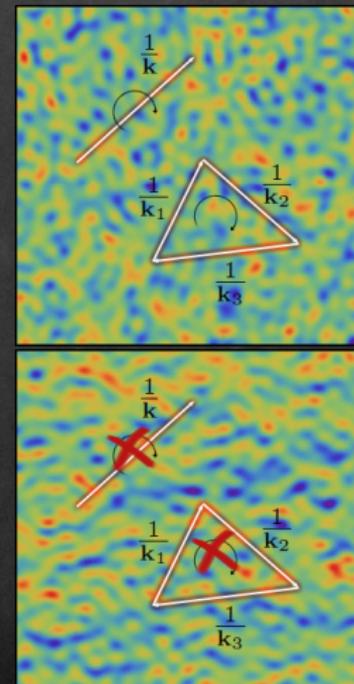
Motivation

- ζ generated by scalar fields \Rightarrow statistical **homogeneity** and **isotropy**;
- Some indications both might be broken:
 - alignments of low multipoles \Rightarrow broken isotropy, i.e. **preferred direction**;
- New observable - **statistical anisotropy**
 - Can be dominant in B_ζ even if subdominant in \mathcal{P}_ζ ;
- Offers a **new parameter space** for inflationary model building.



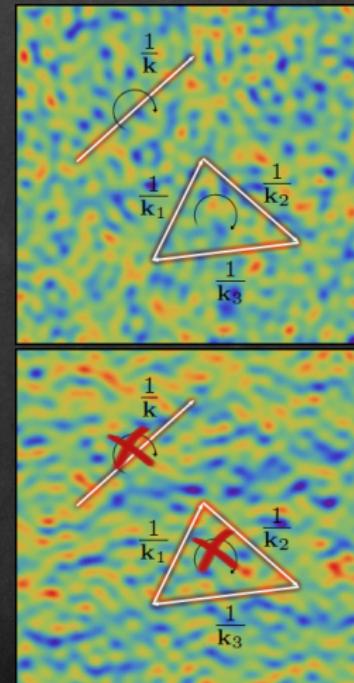
Motivation

- ζ generated by scalar fields \Rightarrow statistical **homogeneity** and **isotropy**;
- Some indications both might be broken:
 - alignments of low multipoles \Rightarrow broken isotropy, i.e. **preferred direction**;
- New observable - **statistical anisotropy**
 - Can be dominant in B_ζ even if subdominant in \mathcal{P}_ζ ;
- Offers a **new parameter space** for inflationary model building.



Motivation

- ζ generated by scalar fields \Rightarrow statistical **homogeneity** and **isotropy**;
- Some indications both might be broken:
 - alignments of low multipoles \Rightarrow broken isotropy, i.e. **preferred direction**;
- New observable - **statistical anisotropy**
 - Can be dominant in B_ζ even if subdominant in \mathcal{P}_ζ ;
- Offers a **new parameter space** for inflationary model building.



Breaking the Conformal Invariance

- Massless $U(1)$ vector field is conformally invariant; $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$
- 1. Introduce “potential”: $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m^2A_\mu A^\mu$
- 2. Non-canonical kinetic function: $\mathcal{L} = -\frac{1}{4}f(t)F_{\mu\nu}F^{\mu\nu}$

Breaking the Conformal Invariance

- Massless $U(1)$ vector field is conformally invariant; $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$
- 1. Introduce “potential”: $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \frac{1}{2}m^2A_\mu A^\mu$
- 2. Non-canonical kinetic function: $\mathcal{L} = -\frac{1}{4}f(t)F_{\mu\nu}F^{\mu\nu}$

Avoiding Large Scale Anisotropy

For massless or light $U(1)$ vector field $\mathbf{W} = (0, 0, W)$:

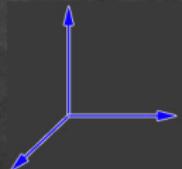
$$T_{\mu}^{\nu} = \text{diag}(\rho, -p, -p, +p)$$

- Three identical, orthogonal vector fields;
Armendariz-Picon (2004)
- Many randomly oriented vector fields - vector inflation;
Golovnev, Mukhanov, Vanchurin (2008)
- Vector curvaton scenario;
Dimopoulos (2006)
- End-of-inflation scenario;
Yokoyama, Soda (2008)

Avoiding Large Scale Anisotropy

For massless or light $U(1)$ vector field $\mathbf{W} = (0, 0, W)$:

$$T_{\mu}^{\nu} = \text{diag}(\rho, -p, -p, +p)$$

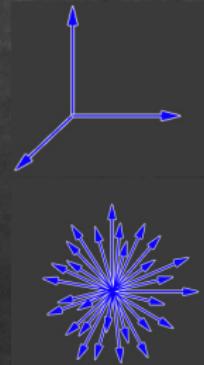


- Three identical, orthogonal vector fields;
Armendariz-Picon (2004)
- Many randomly oriented vector fields - vector inflation;
Golovnev, Mukhanov, Vanchurin (2008)
- Vector curvaton scenario;
Dimopoulos (2006)
- End-of-inflation scenario;
Yokoyama, Soda (2008)

Avoiding Large Scale Anisotropy

For massless or light $U(1)$ vector field $\mathbf{W} = (0, 0, W)$:

$$T_{\mu}^{\nu} = \text{diag}(\rho, -p, -p, +p)$$

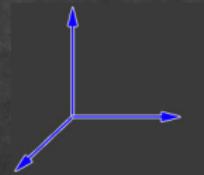


- Three identical, orthogonal vector fields;
Armendariz-Picon (2004)
- Many randomly oriented vector fields - vector inflation;
Golovnev, Mukhanov, Vanchurin (2008)
- Vector curvaton scenario;
Dimopoulos (2006)
- End-of-inflation scenario;
Yokoyama, Soda (2008)

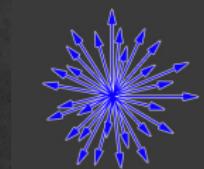
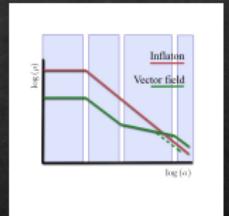
Avoiding Large Scale Anisotropy

For massless or light $U(1)$ vector field $\mathbf{W} = (0, 0, W)$:

$$T_{\mu}^{\nu} = \text{diag}(\rho, -p, -p, +p)$$



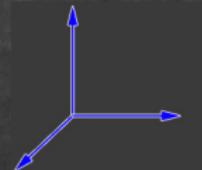
- Three identical, orthogonal vector fields;
Armendariz-Picon (2004)
- Many randomly oriented vector fields - vector inflation;
Golovnev, Mukhanov, Vanchurin (2008)
- Vector curvaton scenario;
Dimopoulos (2006)
- End-of-inflation scenario;
Yokoyama, Soda (2008)



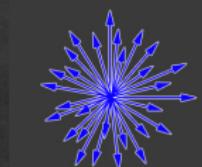
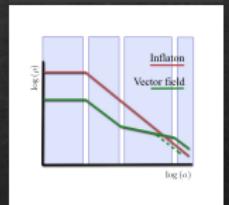
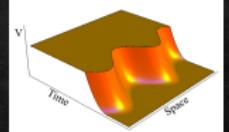
Avoiding Large Scale Anisotropy

For massless or light $U(1)$ vector field $\mathbf{W} = (0, 0, W)$:

$$T_{\mu}^{\nu} = \text{diag}(\rho, -p, -p, +p)$$



- Three identical, orthogonal vector fields;
Armendariz-Picon (2004)
- Many randomly oriented vector fields - vector inflation;
Golovnev, Mukhanov, Vanchurin (2008)
- Vector curvaton scenario;
Dimopoulos (2006)
- End-of-inflation scenario;
Yokoyama, Soda (2008)



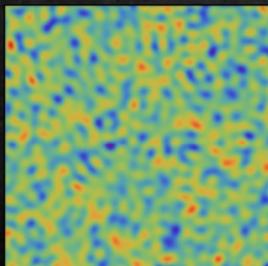
Statistical Anisotropy

- 2 (massless) or 3 (massive) degrees of freedom;
- Power spectra \mathcal{P}_L , \mathcal{P}_R and \mathcal{P}_{\parallel} (circular polarization);

Statistical Anisotropy

- 2 (massless) or 3 (massive) degrees of freedom;
- Power spectra \mathcal{P}_L , \mathcal{P}_R and \mathcal{P}_{\parallel} (circular polarization);

$$\mathcal{P}_L = \mathcal{P}_R = \mathcal{P}_{\parallel}$$

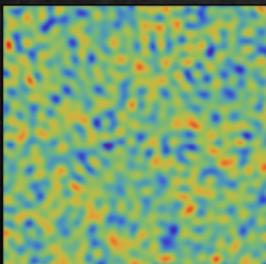
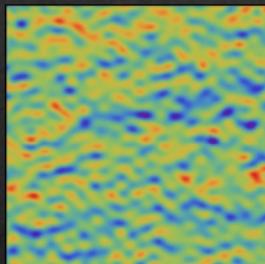
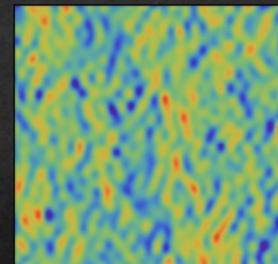


Statistical Anisotropy

- 2 (massless) or 3 (massive) degrees of freedom;
- Power spectra \mathcal{P}_L , \mathcal{P}_R and \mathcal{P}_{\parallel} (circular polarization);

$$\mathcal{P}_L = \mathcal{P}_R = \mathcal{P}_{\parallel}$$

$$\mathcal{P}_L \neq / = \mathcal{P}_R \neq / = \mathcal{P}_{\parallel}$$



Observational Constraints

- The power spectrum: $\mathcal{P}_\zeta = \mathcal{P}_\zeta^{\text{iso}} \left[1 + g_\zeta \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}} \right)^2 \right]$:
 1. $g_\zeta = 0.29 \pm 0.031$: *Hanson, Lewis (2009); Groeneboom, Ackerman, Wehus, Eriksen (2010);*
 2. $|g_\zeta| < 0.07$: *Hanson, Lewis, Challinor (2010);*
 - Planck prospects:
 - $\Delta g_\zeta \sim 0.01$ (2σ);
 - $g_\zeta \propto k^q$ to an accuracy $\Delta q \sim 0.3$ (1σ);
- The non-linearity parameter: $f_{\text{NL}} = f_{\text{NL}}^{\text{iso}} \left[1 + \mathcal{G}_\zeta \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{m}} \right)^2 \right]$
 - no constraints; *Rudjord et al. (2010);*
 - can be $\mathcal{G}_\zeta \gg 1$ even if $g_\zeta \ll 1$; *Dimopoulos, MK, Wagstaff (2010);*
- If g_ζ is due to vector fields: *MK, Dimopoulos, Lyth (2010)*
 1. The same referred direction: $\hat{\mathbf{n}} = \hat{\mathbf{m}} = \hat{\mathbf{W}}$;
 2. $f_{\text{NL}}^{\text{iso}} \propto g_\zeta$;

Observational Constraints

- The power spectrum: $\mathcal{P}_\zeta = \mathcal{P}_\zeta^{\text{iso}} \left[1 + g_\zeta \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}} \right)^2 \right]$:
 1. $g_\zeta = 0.29 \pm 0.031$: *Hanson, Lewis (2009); Groeneboom, Ackerman, Wehus, Eriksen (2010);*
 - preferred direction $\hat{\mathbf{n}} = (l, b) = (96, 30)$ - close to ecliptic pole;
 2. $|g_\zeta| < 0.07$: *Hanson, Lewis, Challinor (2010);*
 - Planck prospects: *Ma, Efstathiou, Challinor (2011);*
 - $\Delta g_\zeta \sim 0.01$ (2σ);
 - $g_\zeta \propto k^q$ to an accuracy $\Delta q \sim 0.3$ (1σ);
- The non-linearity parameter: $f_{\text{NL}} = f_{\text{NL}}^{\text{iso}} \left[1 + \mathcal{G}_\zeta \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{m}} \right)^2 \right]$
 - no constraints; *Rudjord et al. (2010);*
 - can be $\mathcal{G}_\zeta \gg 1$ even if $g_\zeta \ll 1$; *Dimopoulos, MK, Wagstaff (2010);*
- If g_ζ is due to vector fields: *MK, Dimopoulos, Lyth (2010)*
 1. The same referred direction: $\hat{\mathbf{n}} = \hat{\mathbf{m}} = \hat{\mathbf{W}}$;
 2. $f_{\text{NL}}^{\text{iso}} \propto g_\zeta$;

Observational Constraints

- The power spectrum: $\mathcal{P}_\zeta = \mathcal{P}_\zeta^{\text{iso}} \left[1 + g_\zeta \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}} \right)^2 \right]$:
 1. $g_\zeta = 0.29 \pm 0.031$: *Hanson, Lewis (2009); Groeneboom, Ackerman, Wehus, Eriksen (2010);*
 - preferred direction $\hat{\mathbf{n}} = (l, b) = (96, 30)$ - close to ecliptic pole;
 2. $|g_\zeta| < 0.07$: *Hanson, Lewis, Challinor (2010);*
 - Planck prospects: *Ma, Efstathiou, Challinor (2011);*
 - $\Delta g_\zeta \sim 0.01$ (2σ);
 - $g_\zeta \propto k^q$ to an accuracy $\Delta q \sim 0.3$ (1σ);
- The non-linearity parameter: $f_{\text{NL}} = f_{\text{NL}}^{\text{iso}} \left[1 + \mathcal{G}_\zeta \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{m}} \right)^2 \right]$
 - no constraints; *Rudjord et al. (2010);*
 - can be $\mathcal{G}_\zeta \gg 1$ even if $g_\zeta \ll 1$; *Dimopoulos, MK, Wagstaff (2010);*
- If g_ζ is due to vector fields: *MK, Dimopoulos, Lyth (2010)*
 1. The same referred direction: $\hat{\mathbf{n}} = \hat{\mathbf{m}} = \hat{\mathbf{W}}$;
 2. $f_{\text{NL}}^{\text{iso}} \propto g_\zeta$;

Observational Constraints

- The power spectrum: $\mathcal{P}_\zeta = \mathcal{P}_\zeta^{\text{iso}} \left[1 + g_\zeta \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}} \right)^2 \right]$:
 1. $g_\zeta = 0.29 \pm 0.031$: *Hanson, Lewis (2009); Groeneboom, Ackerman, Wehus, Eriksen (2010);*
 - preferred direction $\hat{\mathbf{n}} = (l, b) = (96, 30)$ - close to ecliptic pole;
 2. $|g_\zeta| < 0.07$: *Hanson, Lewis, Challinor (2010);*
 - Planck prospects: *Ma, Efstathiou, Challinor (2011);*
 - $\Delta g_\zeta \sim 0.01$ (2σ);
 - $g_\zeta \propto k^q$ to an accuracy $\Delta q \sim 0.3$ (1σ);
- The non-linearity parameter: $f_{\text{NL}} = f_{\text{NL}}^{\text{iso}} \left[1 + \mathcal{G}_\zeta \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{m}} \right)^2 \right]$
 - no constraints; *Rudjord et al. (2010);*
 - can be $\mathcal{G}_\zeta \gg 1$ even if $g_\zeta \ll 1$; *Dimopoulos, MK, Wagstaff (2010);*
- If g_ζ is due to vector fields: *MK, Dimopoulos, Lyth (2010)*
 1. The same referred direction: $\hat{\mathbf{n}} = \hat{\mathbf{m}} = \hat{\mathbf{W}}$;
 2. $f_{\text{NL}}^{\text{iso}} \propto g_\zeta$;

Observational Constraints

- The power spectrum: $\mathcal{P}_\zeta = \mathcal{P}_\zeta^{\text{iso}} \left[1 + g_\zeta \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}} \right)^2 \right]$:
 1. $g_\zeta = 0.29 \pm 0.031$: *Hanson, Lewis (2009); Groeneboom, Ackerman, Wehus, Eriksen (2010);*
 - preferred direction $\hat{\mathbf{n}} = (l, b) = (96, 30)$ - close to ecliptic pole;
 2. $|g_\zeta| < 0.07$: *Hanson, Lewis, Challinor (2010);*
 - Planck prospects: *Ma, Efstathiou, Challinor (2011);*
 - $\Delta g_\zeta \sim 0.01$ (2σ);
 - $g_\zeta \propto k^q$ to an accuracy $\Delta q \sim 0.3$ (1σ);
- The non-linearity parameter: $f_{\text{NL}} = f_{\text{NL}}^{\text{iso}} \left[1 + \mathcal{G}_\zeta \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{m}} \right)^2 \right]$
 - no constraints; *Rudjord et al. (2010);*
 - can be $\mathcal{G}_\zeta \gg 1$ even if $g_\zeta \ll 1$; *Dimopoulos, MK, Wagstaff (2010);*
- If g_ζ is due to vector fields: *MK, Dimopoulos, Lyth (2010)*
 1. The same referred direction: $\hat{\mathbf{n}} = \hat{\mathbf{m}} = \hat{\mathbf{W}}$;
 2. $f_{\text{NL}}^{\text{iso}} \propto g_\zeta$;

Outline

1 ζ from Vector Fields

- Motivation
- The Curvature Perturbation From Vector Fields

2 Non-Abelian Vector Fields

- The Set Up
- Correlators in the In-In Formalism
- The End-of-Inflation Scenario

3 Summary

Motivation

1. The non-Abelian vector fields are **ubiquitous** in particle physics models;
2. Several of vector fields \Rightarrow **suppressed** statistical anisotropy;

The Lagrangian

- The Lagrangian:

$$\mathcal{L} = -\frac{1}{4} \mathbf{f}(t) F_{\mu\nu}^a F_a^{\mu\nu}, \quad F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + \mathbf{g}_c f^{abc} A_\mu^b A_\nu^c$$

- $f = \mathbf{f}(t) \Leftarrow$
 1. SUGRA; 2. moduli;
 - $f \propto a^{-4}$
 1. flat perturbation spectrum [Kanno, Soda \(2010\)](#)
 2. attractor solution $A_\mu(t)$ is modulated by the inflaton:
 - 2.1 For $U(1)$: [Watanabe, Kanno, Soda \(2009\)](#); [Miyataff, Dimopoulos \(2011\)](#); [Kanno, Soda, Watanabe \(2010\)](#).
 - 2.2 For $SU(2)$: [Murata, Soda \(2011\)](#).
 3. corresponds to weak coupling
 - 3.1 The physical, canonically normalized vector field:

$$W_i^a \equiv \sqrt{F^a_a} \Rightarrow \mathcal{L} \supset \frac{g_c^2}{f} F^{abc} F^{ade} W_i^b W_j^c W_i^d W_j^e;$$
 - 3.2 With $f \propto a^{-4}$ self-coupling $\frac{g_c^2}{f}$ is very small;

The Lagrangian

- The Lagrangian:

$$\mathcal{L} = -\frac{1}{4} \mathbf{f}(t) F_{\mu\nu}^a F_a^{\mu\nu}, \quad F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + \mathbf{g}_c f^{abc} A_\mu^b A_\nu^c$$

- $f = \mathbf{f}(t) \Leftarrow$ 1. SUGRA; 2. moduli;
- $f \propto a^{-4}$
 1. flat perturbation spectrum; *Dimopoulos, MK, Wagstaff (2010)*
 2. attractor solution if $\mathbf{f}(t)$ is modulated by the inflaton;
 - 2.1 For $U(1)$: *Watanabe, Kanno, Soda (2009); Wagstaff, Dimopoulos (2011); Kanno, Soda, Watanabe (2010)*;
 - 2.2 For $SU(2)$: *Murata, Soda (2011)*;
 3. corresponds to weak coupling;
 - 3.1 The physical, canonically normalized vector field:
 $W_i^a \equiv \sqrt{\mathbf{f}} \frac{A_i^a}{a} \Rightarrow \mathcal{L} \supset \frac{g_c^2}{\mathbf{f}} f^{ab\hat{c}} f^{ade} W_i^b W_j^c W_i^d W_j^e$;
 - 3.2 With $\mathbf{f} \propto a^{-4}$ self-coupling $\frac{g_c^2}{\mathbf{f}}$ is very small;

The Lagrangian

- The Lagrangian:

$$\mathcal{L} = -\frac{1}{4} \mathbf{f}(t) F_{\mu\nu}^a F_a^{\mu\nu}, \quad F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + \mathbf{g}_c f^{abc} A_\mu^b A_\nu^c$$

- $f = \mathbf{f}(t) \Leftarrow$ 1. SUGRA; 2. moduli;
- $f \propto a^{-4}$
 1. flat perturbation spectrum; *Dimopoulos, MK, Wagstaff (2010)*
 2. attractor solution if $\mathbf{f}(t)$ is modulated by the inflaton;
 - 2.1 For $U(1)$: *Watanabe, Kanno, Soda (2009); Wagstaff, Dimopoulos (2011); Kanno, Soda, Watanabe (2010)*;
 - 2.2 For $SU(2)$: *Murata, Soda (2011)*;
 3. corresponds to weak coupling;
 - 3.1 The physical, canonically normalized vector field:
 $W_i^a \equiv \sqrt{\mathbf{f}} \frac{A_i^a}{a} \Rightarrow \mathcal{L} \supset \frac{g_c^2}{\mathbf{f}} f^{ab\hat{c}} f^{ade} W_i^b W_j^c W_i^d W_j^e$;
 - 3.2 With $\mathbf{f} \propto a^{-4}$ self-coupling $\frac{g_c^2}{\mathbf{f}}$ is very small;

The Lagrangian

- The Lagrangian:

$$\mathcal{L} = -\frac{1}{4} \mathbf{f}(t) F_{\mu\nu}^a F_a^{\mu\nu}, \quad F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + \mathbf{g}_c f^{abc} A_\mu^b A_\nu^c$$

- $f = \mathbf{f}(t) \Leftarrow$ 1. SUGRA; 2. moduli;
- $f \propto a^{-4}$
 1. flat perturbation spectrum; *Dimopoulos, MK, Wagstaff (2010)*
 2. attractor solution if $\mathbf{f}(t)$ is modulated by the inflaton;
 - 2.1 For $U(1)$: *Watanabe, Kanno, Soda (2009); Wagstaff, Dimopoulos (2011); Kanno, Soda, Watanabe (2010)*;
 - 2.2 For $SU(2)$: *Murata, Soda (2011)*;
 3. corresponds to weak coupling;
 - 3.1 The physical, canonically normalized vector field:
 $W_i^a \equiv \sqrt{\mathbf{f}} \frac{A_i^a}{a} \Rightarrow \mathcal{L} \supset \frac{g_c^2}{\mathbf{f}} f^{ab\hat{c}} f^{ade} W_i^b W_j^c W_i^d W_j^e$;
 - 3.2 With $\mathbf{f} \propto a^{-4}$ self-coupling $\frac{g_c^2}{\mathbf{f}}$ is very small;

The Lagrangian

- The Lagrangian:

$$\mathcal{L} = -\frac{1}{4} \mathbf{f}(t) F_{\mu\nu}^a F_a^{\mu\nu}, \quad F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + \mathbf{g}_c f^{abc} A_\mu^b A_\nu^c$$

- $f = \mathbf{f}(t) \Leftarrow$ 1. SUGRA; 2. moduli;
- $f \propto a^{-4}$
 1. flat perturbation spectrum; *Dimopoulos, MK, Wagstaff (2010)*
 2. attractor solution if $\mathbf{f}(t)$ is modulated by the inflaton;
 - 2.1 For $U(1)$: *Watanabe, Kanno, Soda (2009); Wagstaff, Dimopoulos (2011); Kanno, Soda, Watanabe (2010)*;
 - 2.2 For $SU(2)$: *Murata, Soda (2011)*;
 3. corresponds to weak coupling;
 - 3.1 The physical, canonically normalized vector field:
 $W_i^a \equiv \sqrt{\mathbf{f}} \frac{A_i^a}{a} \Rightarrow \mathcal{L} \supset \frac{\mathbf{g}_c^2}{\mathbf{f}} f^{abc} f^{ade} W_i^b W_j^c W_i^d W_j^e$;
 - 3.2 With $\mathbf{f} \propto a^{-4}$ self-coupling $\frac{\mathbf{g}_c^2}{\mathbf{f}}$ is very small;

Correlators

Using the 'In-In Formalism':

$$g_3(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = -(2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \frac{2H^6}{\prod_i^3 2k_i^3} \mathcal{T}_{lmn}^{fgh}(\hat{\mathbf{k}}_1, \hat{\mathbf{k}}_2, \hat{\mathbf{k}}_3) \mathcal{I}(k_1, k_2, k_3)$$

Correlators

Using the 'In-In Formalism':

$$g_3(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = -(2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \frac{2H^6}{\prod_i^3 2k_i^3} \mathcal{T}_{lmn}^{fgh}(\hat{\mathbf{k}}_1, \hat{\mathbf{k}}_2, \hat{\mathbf{k}}_3) \mathcal{I}(k_1, k_2, k_3)$$

1. Anisotropic:

$$\begin{aligned} \mathcal{T}_{lmn}^{fgh}(\hat{\mathbf{k}}_1, \hat{\mathbf{k}}_2, \hat{\mathbf{k}}_3) \equiv & W_m^b \mathbf{T}_{ij}^E(\hat{\mathbf{k}}_1) \mathbf{T}_{nj}^E(\hat{\mathbf{k}}_3) (f^{abh}f^{agf} + f^{agh}f^{abf}) + \\ & + W_l^b \mathbf{T}_{mj}^E(\hat{\mathbf{k}}_2) \mathbf{T}_{nj}^E(\hat{\mathbf{k}}_3) (f^{abg}f^{afh} + f^{afg}f^{abh}) + \\ & + W_n^b \mathbf{T}_{lj}^E(\hat{\mathbf{k}}_1) \mathbf{T}_{mj}^E(\hat{\mathbf{k}}_2) (f^{abg}f^{ahf} + f^{ahg}f^{abf}), \end{aligned}$$

where $\mathbf{T}_{ij}^E(\hat{\mathbf{k}}) \equiv \delta_{ij} - \hat{k}_i \hat{k}_j$.

Correlators

Using the 'In-In Formalism':

$$g_3(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = -(2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \frac{2H^6}{\prod_i^3 2k_i^3} \mathcal{T}_{lmn}^{fgh}(\hat{\mathbf{k}}_1, \hat{\mathbf{k}}_2, \hat{\mathbf{k}}_3) \mathcal{I}(k_1, k_2, k_3)$$

2. Classical contribution dominates:

$$\begin{aligned} \mathcal{I} = & \frac{g_c^2}{f_0} \frac{k_t^7 H^{-8}}{4!} \left[6e^{4N_k} \left(\frac{1}{3} - K_1 + K_2 \right) + 2e^{2N_k} \left(K_1 - 3K_2 - \frac{1}{5} \right) - \right. \\ & \left. + (\gamma + N_k) \left(\frac{1}{5}K_1 - K_2 - \frac{1}{35} \right) + \frac{1}{300} \left(625K_2 - 137K_1 + \frac{1019}{49} \right) \right] \end{aligned}$$

where $K_1 \equiv \frac{\sum_{i>j}^3 k_i k_j}{k_t^2}$, $K_2 \equiv \frac{\prod_i^3 k_i}{k_t^3}$, and $N_k \equiv -\ln(k_t \tau_{\text{end}})$

Correlators

Using the 'In-In Formalism':

$$g_3(\mathbf{k}_1, \mathbf{k}_2, \mathbf{k}_3) = -(2\pi)^3 \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \frac{2H^6}{\prod_i^3 2k_i^3} \mathcal{T}_{lmn}^{fgh}(\hat{\mathbf{k}}_1, \hat{\mathbf{k}}_2, \hat{\mathbf{k}}_3) \mathcal{I}(k_1, k_2, k_3)$$

2. Classical contribution dominates:

$$\begin{aligned} \mathcal{I} = & \frac{g_c^2}{f_0} \frac{k_t^7 H^{-8}}{4!} \left[6e^{4N_k} \left(\frac{1}{3} - K_1 + K_2 \right) + 2e^{2N_k} \left(K_1 - 3K_2 - \frac{1}{5} \right) - \right. \\ & \left. + (\gamma + N_k) \left(\frac{1}{5}K_1 - K_2 - \frac{1}{35} \right) + \frac{1}{300} \left(625K_2 - 137K_1 + \frac{1019}{49} \right) \right] \end{aligned}$$

where $K_1 \equiv \frac{\sum_{i>j}^3 k_i k_j}{k_t^2}$, $K_2 \equiv \frac{\prod_i^3 k_i}{k_t^3}$, and $N_k \equiv -\ln(k_t \tau_{\text{end}})$

The Model

The Lagrangian with local invariance under some symmetry group G :

$$\mathcal{L} = \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi + \frac{1}{2} \text{Tr} \left[(D_\mu \Phi)^\dagger D^\mu \Phi \right] - \frac{1}{4} f \text{Tr} [F_{\mu\nu} F^{\mu\nu}] - V(\varphi, \Phi)$$

- φ - inflaton, scalar singlet;
- Φ - Higgs field;
- Covariant derivative: $D_\mu = \partial_\mu + i\lambda_A \mathbf{T}^a A_\mu^a$;
- Gauge kinetic function: $f \propto a^{-4}$,
 and $F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + g_c f^{abc} A_\mu^b A_\nu^c$;
- Hybrid inflation potential:

$$V(\varphi, \Phi) = \frac{1}{4} \lambda (\chi^2 - M^2)^2 + \frac{1}{2} \kappa^2 \varphi^2 \chi^2 + V(\varphi)$$

in the unitary gauge $\Phi = \chi \mathbf{l}$, with $\text{Tr} [\mathbf{l}^\dagger \mathbf{l}] = 1$

The Model

The Lagrangian with local invariance under some symmetry group G :

$$\mathcal{L} = \frac{1}{2}\partial_\mu\varphi\partial^\mu\varphi + \frac{1}{2}\text{Tr}\left[(D_\mu\Phi)^\dagger D^\mu\Phi\right] - \frac{1}{4}f\text{Tr}[F_{\mu\nu}F^{\mu\nu}] - V(\varphi, \Phi)$$

- φ - inflaton, scalar singlet;
- Φ - Higgs field;
- Covariant derivative: $D_\mu = \partial_\mu + i\lambda_A \mathbf{T}^a A_\mu^a$;
- Gauge kinetic function: $f \propto a^{-4}$,
 and $F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + g_c f^{abc} A_\mu^b A_\nu^c$;
- Hybrid inflation potential:

$$V(\varphi, \Phi) = \frac{1}{4}\lambda(\chi^2 - M^2)^2 + \frac{1}{2}\kappa^2\varphi^2\chi^2 + V(\varphi)$$

in the unitary gauge $\Phi = \chi \mathbf{l}$, with $\text{Tr}[\mathbf{l}^\dagger \mathbf{l}] = 1$

The Model

The Lagrangian with local invariance under some symmetry group G :

$$\mathcal{L} = \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi + \frac{1}{2} \text{Tr} \left[(D_\mu \Phi)^\dagger D^\mu \Phi \right] - \frac{1}{4} f \text{Tr} [F_{\mu\nu} F^{\mu\nu}] - V(\varphi, \Phi)$$

- φ - inflaton, scalar singlet;
- Φ - Higgs field;
- Covariant derivative: $D_\mu = \partial_\mu + i\lambda_A \mathbf{T}^a A_\mu^a$;
- Gauge kinetic function: $f \propto a^{-4}$,
 and $F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + g_c f^{abc} A_\mu^b A_\nu^c$;
- Hybrid inflation potential:

$$V(\varphi, \Phi) = \frac{1}{4} \lambda (\chi^2 - M^2)^2 + \frac{1}{2} \kappa^2 \varphi^2 \chi^2 + V(\varphi)$$

in the unitary gauge $\Phi = \chi \mathbf{l}$, with $\text{Tr} [\mathbf{l}^\dagger \mathbf{l}] = 1$

The Model

The Lagrangian with local invariance under some symmetry group G :

$$\mathcal{L} = \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi + \frac{1}{2} \text{Tr} \left[(D_\mu \Phi)^\dagger D^\mu \Phi \right] - \frac{1}{4} f \text{Tr} [F_{\mu\nu} F^{\mu\nu}] - V(\varphi, \Phi)$$

- φ - inflaton, scalar singlet;
- Φ - Higgs field;
- Covariant derivative: $D_\mu = \partial_\mu + i\lambda_A \mathbf{T}^a A_\mu^a$;
- Gauge kinetic function: $f \propto a^{-4}$,
 and $F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + g_c f^{abc} A_\mu^b A_\nu^c$;
- Hybrid inflation potential:

$$V(\varphi, \Phi) = \frac{1}{4} \lambda (\chi^2 - M^2)^2 + \frac{1}{2} \kappa^2 \varphi^2 \chi^2 + V(\varphi)$$

in the unitary gauge $\Phi = \chi \mathbf{l}$, with $\text{Tr} [\mathbf{l}^\dagger \mathbf{l}] = 1$

The Model

The Lagrangian with local invariance under some symmetry group G :

$$\mathcal{L} = \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi + \frac{1}{2} \text{Tr} \left[(D_\mu \Phi)^\dagger D^\mu \Phi \right] - \frac{1}{4} f \text{Tr} [F_{\mu\nu} F^{\mu\nu}] - V(\varphi, \Phi)$$

- φ - inflaton, scalar singlet;
- Φ - Higgs field;
- Covariant derivative: $D_\mu = \partial_\mu + i\lambda_A \mathbf{T}^a A_\mu^a$;
- Gauge kinetic function: $f \propto a^{-4}$,
 and $F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + g_c f^{abc} A_\mu^b A_\nu^c$;
- Hybrid inflation potential:

$$V(\varphi, \Phi) = \frac{1}{4} \lambda (\chi^2 - M^2)^2 + \frac{1}{2} \kappa^2 \varphi^2 \chi^2 + V(\varphi)$$

in the unitary gauge $\Phi = \chi \mathbf{l}$, with $\text{Tr} [\mathbf{l}^\dagger \mathbf{l}] = 1$

End-of-Inflation scenario

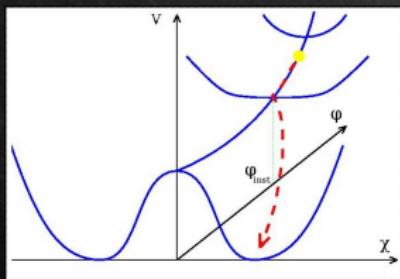
$$\mathcal{L} = \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi + \frac{1}{2} \text{Tr} \left[(D_\mu \Phi)^\dagger D^\mu \Phi \right] - \frac{1}{4} f \text{Tr} [F_{\mu\nu} F^{\mu\nu}] - V(\varphi, \Phi)$$

- Hybrid inflation potential:

$$V(\varphi, \Phi) = \frac{1}{4} \lambda M^4 + \frac{1}{2} (\kappa^2 \varphi^2 - \lambda M^2) \chi^2 + \frac{1}{4} \lambda \chi^4 + V(\varphi)$$

- The effective mass of χ :

$$m_{\text{eff}}^2 = \kappa^2 \varphi^2 - \lambda M^2$$



$m_{\text{eff}} = m_{\text{eff}}(x)$:

1. The function of position;
2. Statistically anisotropic.

End-of-Inflation scenario

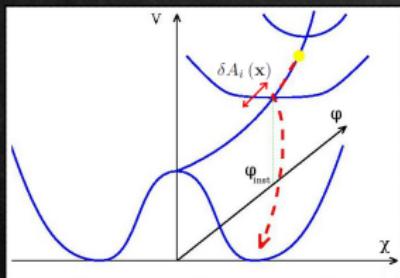
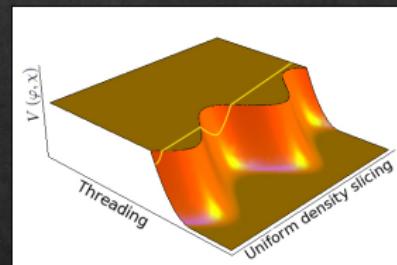
$$\mathcal{L} = \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi + \frac{1}{2} \text{Tr} \left[(D_\mu \Phi)^\dagger D^\mu \Phi \right] - \frac{1}{4} f \text{Tr} [F_{\mu\nu} F^{\mu\nu}] - V(\varphi, \Phi)$$

- Hybrid inflation potential:

$$V(\varphi, \Phi) = \frac{1}{4} \lambda M^4 + \frac{1}{2} (\kappa^2 \varphi^2 - \lambda M^2) \chi^2 + \frac{1}{4} \lambda \chi^4 + V(\varphi)$$

- The effective mass of χ :

$$m_{\text{eff}}^2(\mathbf{x}) = \kappa^2 \varphi^2 - \lambda M^2 - \lambda_A^2 A_\mu^a(\mathbf{x}) A_\nu^a(\mathbf{x}) \mathbf{I}^\dagger \mathbf{T}^a \mathbf{T}^b \mathbf{I}$$



$m_{\text{eff}} = m_{\text{eff}}(\mathbf{x})$: 1. The function of position;
 2. Statistically anisotropic.

The Anisotropic Spectrum

Only massive vector fields contribute to ζ and assume $W^{\bar{a}} \sim W \forall \bar{a}$

$$\mathcal{P}_\zeta(\mathbf{k}) \approx \mathcal{P}_\zeta^{\text{iso}} \left[1 - \frac{1}{\mathcal{N}} \sum_{\bar{a}} \left(\hat{\mathbf{W}}^{\bar{a}} \cdot \hat{\mathbf{k}} \right)^2 \right]$$

- Anisotropy is suppressed by the number of **massive** vector fields \mathcal{N} ;
- From observational bound:
 1. $|g_\zeta| < 0.3$: $\mathcal{N} \geq 4$; *Groeneboom et al. (2010)*
 2. $|g_\zeta| < 0.07$: $\mathcal{N} \geq 15$; *Hanson et al. (2010)*
- Assume $SU(N) \rightarrow SU(N-1) \Rightarrow \mathcal{N} = 2N-1$:
 1. $|g_\zeta| < 0.3$: $SU(3) \Rightarrow g_\zeta = -0.20$;
 2. $|g_\zeta| < 0.07$: $SU(8) \Rightarrow g_\zeta = -0.066$;
- Planck precision: $\Delta g_\zeta \sim 0.01$;

The Anisotropic Spectrum

Only massive vector fields contribute to ζ and assume $W^{\bar{a}} \sim W \forall \bar{a}$

$$\mathcal{P}_\zeta(\mathbf{k}) \approx \mathcal{P}_\zeta^{\text{iso}} \left[1 - \frac{1}{\mathcal{N}} \sum_{\bar{a}} \left(\hat{\mathbf{W}}^{\bar{a}} \cdot \hat{\mathbf{k}} \right)^2 \right]$$

- Anisotropy is suppressed by the number of **massive** vector fields \mathcal{N} ;
- From observational bound:
 1. $|g_\zeta| < 0.3$: $\mathcal{N} \geq 4$; *Groeneboom et al. (2010)*
 2. $|g_\zeta| < 0.07$: $\mathcal{N} \geq 15$; *Hanson et al. (2010)*
- Assume $SU(N) \rightarrow SU(N-1) \Rightarrow \mathcal{N} = 2N-1$:
 1. $|g_\zeta| < 0.3$: $SU(3) \Rightarrow g_\zeta = -0.20$;
 2. $|g_\zeta| < 0.07$: $SU(8) \Rightarrow g_\zeta = -0.066$;
- Planck precision: $\Delta g_\zeta \sim 0.01$;

The Anisotropic Spectrum

Only massive vector fields contribute to ζ and assume $W^{\bar{a}} \sim W \forall \bar{a}$

$$\mathcal{P}_\zeta(\mathbf{k}) \approx \mathcal{P}_\zeta^{\text{iso}} \left[1 - \frac{1}{\mathcal{N}} \sum_{\bar{a}} \left(\hat{\mathbf{W}}^{\bar{a}} \cdot \hat{\mathbf{k}} \right)^2 \right]$$

- Anisotropy is suppressed by the number of **massive** vector fields \mathcal{N} ;
- From observational bound:

$$1. \quad |g_\zeta| < 0.3: \mathcal{N} \geq 4;$$

Groeneboom et al. (2010)

$$2. \quad |g_\zeta| < 0.07: \mathcal{N} \geq 15;$$

Hanson et al. (2010)

- Assume $SU(N) \rightarrow SU(N-1) \Rightarrow \mathcal{N} = 2N-1$:

$$1. \quad |g_\zeta| < 0.3: SU(3) \Rightarrow g_\zeta = -0.20;$$

$$2. \quad |g_\zeta| < 0.07: SU(8) \Rightarrow g_\zeta = -0.066;$$

- Planck precision: $\Delta g_\zeta \sim 0.01$;

The Anisotropic Spectrum

Only massive vector fields contribute to ζ and assume $W^{\bar{a}} \sim W \forall \bar{a}$

$$\mathcal{P}_\zeta(\mathbf{k}) \approx \mathcal{P}_\zeta^{\text{iso}} \left[1 - \frac{1}{\mathcal{N}} \sum_{\bar{a}} \left(\hat{\mathbf{W}}^{\bar{a}} \cdot \hat{\mathbf{k}} \right)^2 \right]$$

- Anisotropy is suppressed by the number of **massive** vector fields \mathcal{N} ;
- From observational bound:

1. $|g_\zeta| < 0.3$: $\mathcal{N} \geq 4$;

Groeneboom et al. (2010)

2. $|g_\zeta| < 0.07$: $\mathcal{N} \geq 15$;

Hanson et al. (2010)

- Assume $SU(N) \rightarrow SU(N-1) \Rightarrow \mathcal{N} = 2N-1$:

1. $|g_\zeta| < 0.3$: $SU(3) \Rightarrow g_\zeta = -0.20$;

2. $|g_\zeta| < 0.07$: $SU(8) \Rightarrow g_\zeta = -0.066$;

- Planck precision: $\Delta g_\zeta \sim 0.01$;

The Bispectrum

$$\langle \zeta(\mathbf{k}_1) \zeta(\mathbf{k}_2) \zeta(\mathbf{k}_3) \rangle = (2\pi) \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) B_\zeta(\mathbf{k})$$

$$B_\zeta = B_{\zeta \text{self}} + B_{\zeta \text{gr}}$$

1. $B_{\zeta \text{self}} \propto$ all fields \Leftarrow self interactions;
2. $B_{\zeta \text{gr}} \propto$ massive fields \Leftarrow non-linearity of gravity;

- Both $B_{\zeta \text{self}}$ and $B_{\zeta \text{gr}}$ are anisotropic;

- Isotropic parts

$$B_{\zeta \text{gr}}^{\text{iso}} = - \left(\frac{g_c^2 W^2}{12 f_e H^2} \right)^{-1} B_{\zeta \text{self}}^{\text{iso}} = -4\pi^4 \frac{\eta}{2\mathcal{N}} \left(\frac{f_e \kappa^2 \varphi_c^2}{\lambda_A^2 W^2} \right) \frac{\sum_i k_i^3}{\prod_i k_i^3} \left(\mathcal{P}_\zeta^{\text{iso}} \right)^2;$$

- $W > H \Rightarrow B_{\zeta \text{gr}} \geq B_{\zeta \text{self}}$

The Bispectrum

$$\langle \zeta(\mathbf{k}_1) \zeta(\mathbf{k}_2) \zeta(\mathbf{k}_3) \rangle = (2\pi) \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) B_\zeta(\mathbf{k})$$

$$B_\zeta = B_{\zeta \text{self}} + B_{\zeta \text{gr}}$$

1. $B_{\zeta \text{self}} \propto$ all fields \Leftarrow self interactions;
2. $B_{\zeta \text{gr}} \propto$ massive fields \Leftarrow non-linearity of gravity;

- Both $B_{\zeta \text{self}}$ and $B_{\zeta \text{gr}}$ are anisotropic;

- Isotropic parts

$$B_{\zeta \text{gr}}^{\text{iso}} = - \left(\frac{g_c^2 W^2}{12 f_e H^2} \right)^{-1} B_{\zeta \text{self}}^{\text{iso}} = -4\pi^4 \frac{\eta}{2\mathcal{N}} \left(\frac{f_e \kappa^2 \varphi_c^2}{\lambda_A^2 W^2} \right) \frac{\sum_i k_i^3}{\prod_i k_i^3} \left(\mathcal{P}_\zeta^{\text{iso}} \right)^2;$$

- $W > H \Rightarrow B_{\zeta \text{gr}} \geq B_{\zeta \text{self}}$

The Bispectrum

$$\langle \zeta(\mathbf{k}_1) \zeta(\mathbf{k}_2) \zeta(\mathbf{k}_3) \rangle = (2\pi) \delta(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) B_\zeta(\mathbf{k})$$

$$B_\zeta = B_{\zeta \text{self}} + B_{\zeta \text{gr}}$$

1. $B_{\zeta \text{self}} \propto$ all fields \Leftarrow self interactions;
2. $B_{\zeta \text{gr}} \propto$ massive fields \Leftarrow non-linearity of gravity;

- Both $B_{\zeta \text{self}}$ and $B_{\zeta \text{gr}}$ are anisotropic;

- Isotropic parts

$$B_{\zeta \text{gr}}^{\text{iso}} = - \left(\frac{g_c^2 W^2}{12 f_e H^2} \right)^{-1} B_{\zeta \text{self}}^{\text{iso}} = -4\pi^4 \frac{\eta}{2\mathcal{N}} \left(\frac{f_e \kappa^2 \varphi_c^2}{\lambda_A^2 W^2} \right) \frac{\sum_i k_i^3}{\prod_i k_i^3} \left(\mathcal{P}_\zeta^{\text{iso}} \right)^2;$$

- $W > H \Rightarrow B_{\zeta \text{gr}} \geq B_{\zeta \text{self}}$

Outline

1 ζ from Vector Fields

- Motivation
- The Curvature Perturbation From Vector Fields

2 Non-Abelian Vector Fields

- The Set Up
- Correlators in the In-In Formalism
- The End-of-Inflation Scenario

3 Summary

Summary

- Vector fields **can generate** or contribute to ζ ;
- Generally **statistically anisotropic** ζ (although can be avoided);
- Present bounds:
 - $\mathcal{P}_\zeta = \mathcal{P}_\zeta^{\text{iso}} \left[1 + \mathbf{g}_\zeta \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}} \right)^2 \right]$: $|\mathbf{g}_\zeta| < 0.3$ or $|\mathbf{g}_\zeta| < 0.07$;
 - $f_{\text{NL}} = f_{\text{NL}}^{\text{iso}} \left[1 + \mathbf{G}_\zeta \left(\hat{\mathbf{k}} \cdot \hat{\mathbf{n}} \right)^2 \right]$: no bound on \mathbf{G}_ζ ;

Non-Abelian vector fields:

- Correlators are dominated by the **classical evolution** of fields;
- The anisotropy is **suppressed** by the number of fields generating ζ ;
- Scenario in which ζ is generated through the **covariant derivative** term:

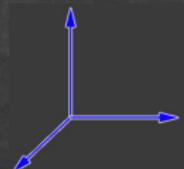
$$\mathcal{L} = \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi + \frac{1}{2} \text{Tr} \left[(D_\mu \Phi)^\dagger D^\mu \Phi \right] - \frac{1}{4} f \text{Tr} [F_{\mu\nu} F^{\mu\nu}] - V(\varphi, \Phi)$$

- $SU(3)$ or $SU(8)$ is enough to avoid WMAP bounds on g_ζ ;
- Might be **observable** by the Planck satellite ($\Delta g_\zeta \sim 0.01$);

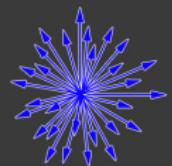
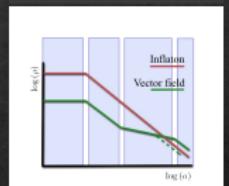
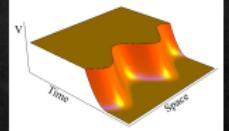
Avoiding Large Scale Anisotropy

For massless or light $U(1)$ vector field $\mathbf{W} = (0, 0, W)$:

$$T_{\mu}^{\nu} = \text{diag}(\rho, -p, -p, +p)$$



- Three identical, orthogonal vector fields;
Armendariz-Picon (2004)
- Many randomly oriented vector fields - vector inflation;
Golovnev, Mukhanov, Vanchurin (2008)
- Vector curvaton scenario;
Dimopoulos (2006)
- End-of-inflation scenario;
Yokoyama, Soda (2008)



Quantization

Temporal gauge: $\hat{W}_0^a = 0$;

$$\delta \hat{W}_i^a(\mathbf{k}) = \sum_{\lambda=L,R} \left[e_i^\lambda(\hat{\mathbf{k}}) \mathbf{w}(k, \tau) \hat{a}_\lambda^a(\mathbf{k}) - e_i^{\lambda*}(-\hat{\mathbf{k}}) \mathbf{w}^*(k, \tau) \hat{a}_\lambda^{a\dagger}(-\mathbf{k}) \right]$$

- Interaction picture $\Rightarrow \mathbf{w} = \frac{H}{\sqrt{2k^3}} (1 - ik\tau) e^{-ik\tau}$;

General Equations

$$\begin{aligned}\langle \delta W_i(\mathbf{k}) \delta W_j(\mathbf{k}') \rangle &= (2\pi)^3 \delta(\mathbf{k} + \mathbf{k}') \frac{2\pi^2}{k^3} \times \\ &\times \left[T_{ij}^{\text{even}}(\hat{\mathbf{k}}) \mathcal{P}_+(k) + iT_{ij}^{\text{odd}}(\hat{\mathbf{k}}) \mathcal{P}_- + T_{ij}^{\text{long}}(\hat{\mathbf{k}}) \mathcal{P}_{||} \right]\end{aligned}$$

$$T_{ij}^{\text{even}}(\hat{\mathbf{k}}) = e_i^L(\hat{\mathbf{k}}) e_j^R(\hat{\mathbf{k}}) + e_i^R(\hat{\mathbf{k}}) e_j^L(\hat{\mathbf{k}}) = \delta_{ij} - \hat{k}_i \hat{k}_j$$

$$T^{\text{odd}}(\hat{\mathbf{k}}) = i \left[e_i^L(\hat{\mathbf{k}}) e_j^R(\hat{\mathbf{k}}) - e_i^R(\hat{\mathbf{k}}) e_j^L(\hat{\mathbf{k}}) \right] = \epsilon_{ijk} \hat{k}_k$$

$$T_{ij}^{\text{long}}(\hat{\mathbf{k}}) = e_i^{||}(\hat{\mathbf{k}}) e_j^{||}(\hat{\mathbf{k}}) = \hat{k}_i \hat{k}_j$$

The In-In Formalism

$$g_3(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \left\langle 0 \left| \hat{U}^{-1} \delta \hat{W}_i^a(\mathbf{x}_1) \delta \hat{W}_j^b(\mathbf{x}_2) \delta \hat{W}_l^c(\mathbf{x}_3) \hat{U} \right| 0 \right\rangle,$$

where $\hat{U} = \exp \left\{ -i \int_{\tau_0}^{\tau} \hat{H}_{\text{int}} d\tau' \right\}$;

1. Tree level;
2. Third order;

$$\begin{aligned} \hat{H}_{\text{int}} \equiv & a^3(\tau) \int d^3 \mathbf{x} \frac{g_c}{\sqrt{f}} f^{abc} \partial_i \delta \hat{W}_j^a \delta \hat{W}_i^b \delta \hat{W}_j^c + \\ & + a^4(\tau) \int d^3 \mathbf{x} \frac{1}{2} \frac{g_c^2}{f} \left(f^{abc} f^{ade} + f^{adc} f^{abe} \right) \mathbf{W}_i^b \delta \hat{W}_j^c \delta \hat{W}_i^d \delta \hat{W}_j^e. \end{aligned}$$

The In-In Formalism

$$g_3(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3) = \left\langle 0 \left| \hat{U}^{-1} \delta \hat{W}_i^a(\mathbf{x}_1) \delta \hat{W}_j^b(\mathbf{x}_2) \delta \hat{W}_l^c(\mathbf{x}_3) \hat{U} \right| 0 \right\rangle,$$

where $\hat{U} = \exp \left\{ -i \int_{\tau_0}^{\tau} \hat{H}_{\text{int}} d\tau' \right\}$;

1. Tree level;
2. Third order;

$$\begin{aligned} \hat{H}_{\text{int}} \equiv & a^3(\tau) \int d^3\mathbf{x} \frac{g_c}{\sqrt{f}} f^{abc} \partial_i \delta \hat{W}_j^a \delta \hat{W}_i^b \delta \hat{W}_j^c + \\ & + a^4(\tau) \int d^3\mathbf{x} \frac{1}{2} \frac{g_c^2}{f} \left(f^{abc} f^{ade} + f^{adc} f^{abe} \right) \mathbf{W}_i^b \delta \hat{W}_j^c \delta \hat{W}_i^d \delta \hat{W}_j^e. \end{aligned}$$

The Curvature Perturbation

- δN formula:

$$\zeta_e = N_i^{\bar{a}} \delta W_i^{\bar{a}} + N_{ij}^{\bar{a}\bar{b}} \delta W_i^{\bar{a}} \delta W_j^{\bar{b}}$$

where $N_i^{\bar{a}} = -N_e \frac{M^{\bar{a}\bar{b}} W_i^{\bar{b}}}{\kappa^2 f_e \varphi_c}$ and $N_e = \partial N / \partial \varphi_c = (2m_{Pl}^2 \epsilon_e)^{-\frac{1}{2}}$.

- Require $\zeta_e \gg \zeta_\varphi \Rightarrow \zeta$ only from non-Abelian vector fields

The Power Spectrum

$$\langle \zeta(\mathbf{k}_1) \zeta(\mathbf{k}_2) \rangle = (2\pi) \delta(\mathbf{k}_1 + \mathbf{k}_2) \mathcal{P}_\zeta(\mathbf{k}_1)$$

- The general expression:

$$\mathcal{P}_\zeta(\mathbf{k}) = \mathcal{P}_+ C^2 (M^2)^{\bar{a}\bar{b}} W^{\bar{a}} W^{\bar{b}} \left[1 - \frac{(M^2)^{\bar{a}\bar{b}} (\mathbf{W}^{\bar{a}} \cdot \hat{\mathbf{k}}) (\mathbf{W}^{\bar{b}} \cdot \hat{\mathbf{k}})}{(M^2)^{\bar{a}\bar{b}} W^{\bar{a}} W^{\bar{b}}} \right],$$

where $(M^2)^{\bar{a}\bar{b}} \equiv M^{\bar{a}\bar{c}} M^{\bar{c}\bar{b}} \sim \lambda_A^4$ and $C \equiv \frac{1}{\kappa^2 f_e} \frac{N_e}{\varphi_c}$;

- Angular modulation!

- Assume $W^{\bar{a}} \sim W \forall \bar{a}$

$$\mathcal{P}_\zeta(\mathbf{k}) \approx \mathcal{P}_\zeta^{\text{iso}} \left[1 - \frac{1}{\mathcal{N}} \sum_{\bar{a}} \left(\hat{\mathbf{W}}^{\bar{a}} \cdot \hat{\mathbf{k}} \right)^2 \right],$$

where \mathcal{N} is the number of massive vector fields and

$$\mathcal{P}_\zeta^{\text{iso}} = \lambda_A^4 \mathcal{N} \mathcal{P}_+ (CW)^2$$

Some Bounds

- Perturbation from inflaton is subdominant, i.e. $\zeta_e \gg \zeta_\varphi$:

$$\left(\frac{\lambda_A^2}{f_e} \frac{W}{\kappa^2 \varphi_c} \right) \gg \frac{\epsilon_e}{\epsilon_k} = e^{-2N_e \eta}$$

- Variation of δf_e is negligible:

$$\left(\frac{M^{\bar{a}\bar{b}} W_i^{\bar{a}} W_i^{\bar{b}}}{\kappa^2 f_e \varphi_c m_{Pl}} \right) \ll \epsilon_e$$

- These two bounds and $W > H$ give

The Bispectrum

$$\begin{aligned} B_{\zeta 1} = & 4\pi^4 \frac{\sum_i k_i^3}{\prod_i k_i^3} \frac{g_{\text{end}}^2}{12H^2} C^3 \mathcal{P}_+^2 \left(f^{ab\bar{h}} f^{a\bar{g}\bar{f}} + f^{a\bar{g}\bar{h}} f^{ab\bar{f}} \right) M^{\bar{g}\bar{c}} M^{\bar{f}\bar{d}} M^{\bar{h}\bar{e}} \left(\mathbf{W}^b \cdot \mathbf{W}^{\bar{c}} \right) \times . \\ & \times \left[\left(\mathbf{W}^{\bar{d}} \cdot \mathbf{W}^{\bar{e}} \right) - 2 \left(\mathbf{W}^{\bar{d}} \cdot \hat{\mathbf{k}}_1 \right) \left(\mathbf{W}^{\bar{e}} \cdot \hat{\mathbf{k}}_1 \right) + \left(\hat{\mathbf{k}}_1 \cdot \hat{\mathbf{k}}_3 \right) \left(\mathbf{W}^{\bar{d}} \cdot \hat{\mathbf{k}}_1 \right) \left(\mathbf{W}^{\bar{e}} \cdot \hat{\mathbf{k}}_3 \right) + \text{c.p.} \right] \\ B_{\zeta 2} = & -4\pi^4 \frac{\left(\mathcal{P}_\zeta^{\text{iso}} \right)^2}{\mathcal{N} \varphi_c N_e} \left(\frac{\lambda M^2}{\lambda_A^2 W^2 / f_e} \right) \frac{\sum_i k_i^3}{\prod_i k_i^3} \left\{ 1 - \frac{1}{\mathcal{N}} \sum_{\bar{a}} \left[k_2^3 \left(\hat{\mathbf{W}}^{\bar{a}} \cdot \hat{\mathbf{k}}_1 \right)^2 - k_2^3 \left(\hat{\mathbf{W}}^{\bar{a}} \cdot \hat{\mathbf{k}}_3 \right)^2 \right. \right. \\ & \left. \left. - k_2^3 \left(\hat{\mathbf{k}}_1 \cdot \hat{\mathbf{k}}_3 \right) \left(\hat{\mathbf{W}}^{\bar{a}} \cdot \hat{\mathbf{k}}_1 \right) \left(\hat{\mathbf{W}}^{\bar{a}} \cdot \hat{\mathbf{k}}_3 \right) + \text{c.p.} \right] / \sum_i k_i^3 \right\}, \end{aligned}$$