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Ratios of azimuthal angle correlations between two jets produced at large rapidity separation are

studied in the N ¼ 4 maximally supersymmetric Yang-Mills (MSYM) theory. It is shown that these

observables, which directly prove the SLð2; CÞ symmetry present in gauge theories in the Regge limit,

exhibit an excellent perturbative convergence. They are compared to those calculated in QCD for different

renormalization schemes concluding that the momentum-substraction scheme with the Brodsky-Lepage-

Mackenzie scale-fixing procedure captures the bulk of the MSYM results.
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Introduction.—N ¼ 4 maximally supersymmetric
Yang-Mills (MSYM) theory is considered ‘‘the harmonic
oscillator of the 21st century’’ (In a similar fashion, black
holes can be thought of as the ‘‘hydrogen atom’’ of quan-
tum gravity [1] since it seems to be, in the planar limit, a
solvable theory in 4 dimensions. The simplicity of its
scattering amplitudes [2] and the AdS/CFT duality [3]
support this reasoning. In this work, it is considered as a
theoretical laboratory to establish links with QCD. It is
known that MSYM contributions to QCD amplitudes pro-
vide the ‘‘highest degree of trascendentality’’ terms. This is
a key ingredient to calculate all-orders anomalous dimen-
sions using integrability [4,5]. MSYM observables have
been proposed in [6]. Energy flow in terms of correlation
functions of the energy-momentum tensor is an example
[7]. In this work the study of ratios of azimuthal angle
correlations in inclusive dijet production when the two
tagged jets are well separated in rapidity, first introduced
in [8], is carried out. Note that, in order to further explore
the AdS/CFT correspondence, it is important to identify
scaling laws in the weak coupling limit of MSYM theory
and try to find their gravitational counterparts. A key
ingredient of the duality is conformal invariance and the
observables chosen in this Letter capture the bulk of this
symmetry present in the plane transverse to the colliding
particles at high energies.

In the section of this Letter on azimuthal angle correla-
tion ratios in MSYM theory and QCD, dijet production in
the Balitsky-Fadin-Kuraev-Lipatov (BFKL) framework [9]
at next-to-leading order [10] (NLO) in QCD (already
known [8,11]) and MSYM theory (a new calculation) in

the minimal subtraction renormalization scheme (MS) is
introduced. In the section on physical renormalization
schemes and BLM procedure, the momentum-subtraction
(MOM) scheme [12] with Brodsky-Lepage-Mackenzie
(BLM) scale fixing [13] is applied to QCD to challenge
the statement that it captures the conformal contributions

to all orders (see [14] for a recent discussion). If this is
correct it should give a similar result to that in MSYM
theory. In the section on comparing MSYM theory with
QCD results, it is shown that this is indeed the case, in
particular, for the ratios of azimuthal angle correlations.
Azimuthal angle correlation ratios in MSYM theory and

QCD.—The configuration under study is that of Mueller-
Navelet jets [8,15], where two forward jets with similar
transverse momenta p2

1;2 are produced with a relative ra-

pidity separation Y, and a relative azimuthal angle #. If x1;2
are the fractions of longitudinal momentum from the par-
ent hadrons carried by the partons generating the jets then

Y ’ lnðx1x2s=
ffiffiffiffiffiffiffiffiffiffiffi
p2
1p

2
2

q
Þ. For large rapidity separation,

Oðð�YÞnÞ terms must be resummed to all orders, with �
being the ’t Hooft coupling in MSYM theory and ��s �
�sNc=� in QCD. This Regge limit, where s �

ffiffiffiffiffiffiffiffiffiffiffi
p2
1p

2
2

q
, is

treated using the BFKL formalism.
QCD azimuthal angle correlation ratios are insensitive

to parton distribution functions at large Y [8]; hence, the
focus will be on partonic cross sections. These are written
as a convolution of the partonic cross section with, for

simplicity, LO jet vertices �jetiðq;piÞ ’ �ð0Þ
jeti
ðq;piÞ ¼

�ðq2 � p2
i Þ:

�̂ðp1;p2; YÞ ¼
Z

d2q1
Z

d2q2�jet1ðq1;p1Þ

� d�̂

d2q1d
2q2

�jet2ðq2;p2Þ; (1)

p2
i is the resolution scale for the transverse momentum

of the jet. Considering the Green function, f, at NLO,
the gluon-gluon differential partonic cross section is
d�̂=ðd2q1d2q2Þ ¼ ð�2 ��2

s=2Þfðq1; q2; YÞ=ðq21q22Þ. Using

fðq1; q2; YÞ ¼
R

d!
2�i e

!Y ~fðq1; q2; !Þ the BFKL integral

equation reads !~fðq1; q2; !Þ ¼ �ð2Þðq1 � q2Þ þR
d2�Kðq1;�Þ~fð�; q2; !Þ. At LO accuracy:
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~fðq1;q2;!Þ¼ X1
n¼�1

Z 1

�1
d�

2�2

ðq21=q22Þi�ffiffiffiffiffiffiffiffiffiffi
q21q

2
2

q einð#1�#2Þ

!� ��s�0ðjnj;�Þ ;

(2)

where �0ðn; �Þ ¼ 2c ð1Þ � c ð1þn
2 þ i�Þ � c ð1þn

2 � i�Þ.

The transverse momentum operator q̂jqii ¼
qijqii; hq1j1̂jq2i ¼ �ð2Þðq1 � q2Þ, introduces the basis of
eigenfunctions jn; �i in Eq. (2), satisfying hn0; �0jn; �i ¼
�ð�� �0Þ�n;n0 , as hqjn; �i ¼ 1

�
ffiffi
2

p ðq2Þi��1=2ein# . At NLO in

QCD [4,8]:

hn; �jK̂j�0; n0i ¼ ��s;MS

�
�0

�
jn0j; 1

2
þ i�0

��
1� ��s;MS�0

8Nc

�
i
@

@�
� i

@

@�0 � 2 ln	2

��
þ ��s;MS�1

�
jn0j; 1

2
þ i�0

�
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8Nc

�
@

@�0 �0
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2
þ i�0

���
�n;n0�ð�� �0Þ; (3)

where �1 [with � ¼ ið12 � 
Þ] is of the form (� can be found in [4])

�1ðn; 
Þ ¼
�
4� �2 þ 5�0

Nc

�
�0ðn; 
Þ

12
þ 3

2
�ð3Þ � �0

8Nc

�2
0ðn; 
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Þ � �2 cosð�
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4sin2ð�
Þð1� 2
Þ
�

��
3þ
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N3
c
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2þ 3
ð1� 
Þ

ð3� 2
Þð1þ 2
Þ
�
�n;0 �

�
1þ Nf

N3
c

�

ð1� 
Þ

2ð3� 2
Þð1þ 2
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�
: (4)

In MSYM theory the absence of running of the coupling,
now named �, leads to [4]

hn; �jK̂MSYMj�0; n0i ¼ �

�
�0

�
jn0j; 1

2
þ i�0

�

þ ��MSYM
1

�
jn0j; 1

2
þ i�0

��

� �n;n0�ð�� �0Þ; (5)

�MSYM
1 ðn;
Þ ¼ ½1� �ð2Þ�

12
�0ðjnj;
Þ þ 3

2
�ð3Þ þ�ðjnj; 
Þ:

(6)

(MSYMcalculations are presented in theMS scheme, other
renormalization approaches give very similar results.)
The differential cross section in azimuthal angle � ¼

#1 � #2 � �, with #i for each jet, is [8]

d�̂ðp2
1;2; YÞ

d�
¼ �2 ��2

s

4
ffiffiffiffiffiffiffiffiffiffi
p2
1p

2
2

q X1
n¼�1

ein�CnðYÞ; (7)

C nðYÞ ¼
Z 1

�1
d�

2�

e ��sðp2ÞYð�0ðjnj;�Þþ ��sðp2Þð�1ðjnj;�Þ�ðð�0Þ=ð8NcÞð�0ðjnj;�ÞÞ=ð1=4þ�2ÞÞÞÞ
1
4 þ �2

; (8)

where p2
1 ’ p2

2 ’ p2 has been taken. In the MSYM case,
with �0 ¼ 0, these are

C nðYÞ ¼
Z 1

�1
d�

2�

e�Yð�0ðjnj;�Þþ��MSYM
1

ðjnj;�ÞÞ
1
4 þ �2

: (9)

The total cross section is �̂ðp2
1;2; YÞ ¼ �3 ��2

s

2
ffiffiffiffiffiffiffiffi
p2
1
p2
2

p C0ðYÞ. To

study higher conformal spins n, which is one of the main
goals of this work, ratios of azimuthal angle correlations
are introduced:

hcosðm�Þi ¼ CmðYÞ
C0ðYÞ ;

Rm;nðYÞ � hcosðm�Þi
hcosðn�Þi ¼

CmðYÞ
CnðYÞ :

(10)

(The discrete parameter n, in elastic scattering, is the
conformal spin of a SL(2,C) symmetry [16]. When

studying observables sensitive to the azimuthal angle,
this Möbius invariance is under scrutiny.) MSYM coeffi-

cients of Eq. (9) will be denoted by CMSYM
n . For QCD, when

computed as in Eq. (8), CNLLn will be used, keeping CLLn for

LO. The scale invariant coefficient CSIn are given by putting
�0 ¼ 0 in Eq. (8). The ’t Hooft limit ofNc ! 1with�sNc

fixed, will also be investigated.
Physical renormalization schemes and BLM proce-

dure.—The NLO BFKL kernel [10] has collinear instabil-
ities [17]. Resummation of the leading collinear
contributions improves its convergence [18]. Short-range
in rapidity correlations also stabilize the expansion [19].
Another approach is that in [20] which, instead of using a

MS scheme with arbitrary renormalization scale, uses a
physical scheme like MOM [12] with optimal scale set by
the BLM procedure [13]. In this way the NLO corrections
have a milder behavior and the Pomeron intercept has a
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weak dependence on the hard scale, leading to scale in-
variance. This is a good motivation to compare this ap-
proach with MSYM theory, which enjoys four-dimensional
conformal invariance.

The transition fromMS to MOM is equivalent, at LO, to
[12] �MOM ¼ �MSð1þ TMOM�MS=�Þ, where TMOM has

the gauge parameter 
: TMOM ¼ Tconf
MOM þ T�

MOM, T
conf
MOM ¼

ðNc=8Þð17I=2þ 
ð3=2ÞðI � 1Þ þ 
2ð1� I=3Þ � 
3=6Þ,
T�
MOM ¼ �ð�0=2Þð1þ 2I=3Þ, with I ’ 2:3439. At NLO

this is equivalent to 	 ! �	 ¼ 	 expð�TMOM=2�0Þ. A
suitable choice of renormalization scheme and scale should
render higher order coefficients small [21]. A physically
motivated scheme is BLM, where the coupling redefinition
absorbs charge renormalization corrections in such a way
that the coefficients of the perturbative series are identical
to those of the conformally invariant theory with � ¼ 0.
The BLM scheme was applied to the BFKL description of
the 
�
� cross section [20]. To enhance the effect of the
BLM scheme in gluon dominated processes, it is appro-
priate to use a physical scheme for non-Abelian interac-
tions, such as MOM, based on the 3-gluon vertex [12] or

the � scheme based on � ! ggg decay. This procedure is
not free from complications since it has an unnaturally high
scale at � ¼ 0 [22].
Here the BLM setting for dijet production is explored for

the Pomeron intercept and, very importantly, also for azi-
muthal correlations. To generalize it to n � 0 conformal
spins one writes

!MSðq2; n; �Þ ¼ �0ðn; �Þ
�MSðq2ÞNc

�

�
�
1þ rMSðn; �Þ

�MSðq2Þ
�

�
: (11)

The NLO coefficient rMS is decomposed into �-dependent
and conformal (�-independent) parts:

rMSðn; �Þ ¼ r�
MS

ðn; �Þ þ rconf
MS

ðn; �Þ;

r�
MS

ðn; �Þ ¼ ��0

4

�
�0ðn; �Þ

2
� 5

3

�
;

(12)

rconf
MS

ðn; �Þ ¼ � Nc

4�0ðn; �Þ
�ð�2 � 4Þ

3
�0ðn; �Þ � 6�ð3Þ þ �2

2�
sechð��Þ tanhð��Þ �

�
c 00
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nþ 1

2
þ i�

�

þ c 00
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nþ 1

2
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�
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1

2
þ i�

�
� 2�

�
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1

2
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�
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3þ

�
1þ Nf
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c
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3

4
� 1

16ð1þ �2Þ
��
�n;0

�
�
1þ Nf

N3
c

��
1

8
� 3

32ð1þ �2Þ
�
�n;2

��
: (13)

The NLO BFKL intercept in the MOM scheme, at the
optimal BLM scale can be written as

!MOMðq2MOM
BLM ; n; �Þ ¼ �MSðq2MOM

BLM ÞNc

�
�0ðn; �Þ

�
�
1þ rMOMðn; �Þ�MSðq2MOM

BLM Þ
�

�
;

(14)

where rMOMðn; �Þ ¼ rMSðn; �Þ þ TMOM. If r�MOMðn; �Þ ¼
r�
MS

ðn; �Þ þ TMOM then

q 2MOM
BLM ðn; �Þ ¼ q2 exp

�
� 4r�MOMðn; �Þ

�0

�

¼ q2 exp

�
1

2
�0ðn; �Þ þ 1þ 4I

3

�
: (15)

Comparing MSYM theory with QCD results.—In Fig. 1
(left) the intercept of Eq. (14) for n ¼ 0 in the MOM
scheme with BLM is confronted with the MSYM intercept
and the results at LO and NLO with no BLM scale fixing.
The MSYM coupling is between � ¼ ��sðq2=4Þ (MSYM�)
and ��sð4q2Þ (MSYMþ) (yellow band). This plot agrees
with the 
�
� total cross section in [20] since the scale

invariance, with respect to the photon virtualities in that
case and the jet transverse momentum now, of the intercept
in MOM is manifest. This intercept for the conformal
invariant MSYM theory at NLO is very close to the LO
one, indicating a better convergence than QCD. Results for
QCD in the ’t Hooft limit are also shown. It is important to
note that the MOM-BLM scheme is the closest to MSYM
theory of all renormalization schemes in QCD. This is
natural since the BLM scheme collects the conformal
contributions to the observable.
The n ¼ 0 coefficient drives the cross section. The rise

of C0 with Y is shown in Fig. 1 (right). There is a faster
growth of the MSYM cross section showing that the NLO
real emission in MSYM theory dominates over the virtual
contributions in a much stronger fashion than in QCD, for
any renormalization scheme. This also indicates that the
effect of introducing the extra fields in the supersymmetric
multiplet increases the minijet multiplicity in the final
state. In future works it will be worth looking into these
details of the final state using event generator Monte Carlo

techniques [23]. For small Y the QCD result in the MS
scheme is lower than in the MOM-BLM scheme, with the
latter being closer to MSYM theory. This is consistent
with a renormalization scheme which resums conformal
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contributions. However, from Y ’ 10 the calculation inMS
is now closer to the MSYM theory. This hints at the
instability of the n ¼ 0 component, which is very sensitive
to collinear radiation, not fully included in the BFKL
kernel. It is natural to predict a similar crossing of behavior
at some Y for any quantity sensitive to n ¼ 0. This is found
when the average of cosðn�Þ is calculated as in Eq. (10)
(left). Examples with a crossover of lines are plotted in
Fig. 2 for n ¼ 1, 2. It is also interesting to note that dijets
are less correlated in the azimuthal angle in MSYM theory
than in QCD, which corresponds to a higher multiplicity of
parton radiation in the supersymmetric case. The main
conclusion of this analysis is that to define observables
only sensitive to conformal dynamics it is needed to re-
move the n ¼ 0 contribution. One way of doing this is to
use the ratios of azimuthal angle averages Rm;nðYÞ in

Eq. (10) (right). R2;1 and R3;2 are calculated in Fig. 3. It

is important to note that all MSYM ratios are very close to
those calculated in QCD, indicating that these observables
capture the bulk of the conformal dynamics in QCD.
Moreover, among all renormalization schemes, it is the
MOM-BLM scheme which gives the closest to all MSYM
ratios, independently of the separation in rapidity between

the two tagged jets. Having removed the n ¼ 0 depen-
dence, the crossover of lines does not take place anymore.
Conclusions.—Dijet production has been studied when

the tagged jets are largely separated in rapidity. This has
been done in MSYM theory and QCD, investigating what
renormalization procedures in QCD best reproduce the
conformal dynamics of the MSYM theory. Ratios of azi-
muthal angle correlations, which are known to have an
excellent perturbative convergence, capture the bulk of the
conformal contributions. In QCD these ratios are insensi-
tive to parton distribution functions and are calculated at
the parton level, allowing for a direct comparison with
MSYM theory. For them the results calculated in QCD
with the MOM-BLM scheme are very similar to those
obtained in MSYM theory. The two tagged jets are less
correlated in the azimuthal angle in MSYM theory than in
QCD, indicating that in MSYM theory there is a larger
final state multiplicity. The fact that QCD in the BLM
scheme is so close to MSYM theory for well chosen
quantities brings hope that the AdS/CFT correspondence
could well help when describing collider phenomenology.
For future work it will be useful to study other multijet
configurations and different observables at a more

FIG. 2 (color online). Evolution of the average of cos� (left) and cosð2�Þ (right) with jet rapidity separation in MSYM theory and
QCD for different renormalization schemes.

FIG. 1 (color online). Left: Intercept vs jet resolution p2 for different renormalization schemes in QCD and MSYM theory. Right:
Growth with dijet rapidity separation of the cross section in MSYM theory and QCD.
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exclusive level. It will be interesting to investigate if the
kinematical window of the present work, where the center-
of-mass energy dominates making the dependence on the
other scales subleading and where the BLM scheme repro-
duces the MSYM prediction, can be broadened beyond
multi-Regge kinematics.
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