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Jets in Heavy Ion Collisions

• Jets are strongly modified in a heavy ion environment

2

FIG. 1: Event display of a highly asymmetric dijet event, with one jet with ET > 100 GeV and no evident recoiling jet, and
with high energy calorimeter cell deposits distributed over a wide azimuthal region. By selecting tracks with pT > 2.6 GeV
and applying cell thresholds in the calorimeters (ET > 700 MeV in the electromagnetic calorimeter, and E > 1 GeV in the
hadronic calorimeter) the recoil can be seen dispersed widely over azimuth.

|η| < 3.2. The hadronic calorimetry in the range |η| < 1.7
is provided by a sampling calorimeter made of steel and
scintillating tiles. In the end-caps (1.5 < |η| < 3.2),
LAr technology is also used for the hadronic calorime-
ters, matching the outer |η| limits of the electromag-
netic calorimeters. To complete the η coverage, the LAr
forward calorimeters provide both electromagnetic and
hadronic energy measurements, extending the coverage
up to |η| = 4.9. The calorimeter (η,φ) granularities are
0.1 × 0.1 for the hadronic calorimeters up to |η| = 2.5
(except for the third layer of the Tile calorimeter, which
has a segmentation of 0.2×0.1 up to |η| = 1.7), and then
0.2× 0.2 up to |η| = 4.9. The EM calorimeters are longi-
tudinally segmented into three compartments and feature
a much finer readout granularity varying by layer, with
cells as small as 0.025×0.025 extending to |η| = 2.5 in the
middle layer. In the data taking period considered, ap-
proximately 187,000 calorimeter cells (98% of the total)
were usable for event reconstruction.

The bulk of the data reported here were triggered
using coincidence signals from two sets of Minimum
Bias Trigger Scintillator (MBTS) detectors, positioned
at z = ±3.56 m, covering the full azimuth between
2.09 < |η| < 3.84 and divided into eight φ sectors and two
η sectors. Coincidences in the Zero Degree Calorimeter
and LUCID luminosity detectors were also used as pri-
mary triggers, since these detectors were far less suscep-
tible to LHC beam backgrounds. These triggers have a
large overlap and are close to fully efficient for the events
studied here.

In the offline analysis, events are required to have a
time difference between the two sets of MBTS counters
of ∆t < 3 ns and a reconstructed vertex to efficiently
reject beam-halo backgrounds. The primary vertex is
derived from the reconstructed tracks in the Inner De-
tector (ID), which covers |η| < 2.5 using silicon pixel and

strip detectors surrounded by straw tubes. These event
selection criteria have been estimated to accept over 98%
of the total lead-lead inelastic cross section.
The level of event activity or “centrality” is char-

acterized using the total transverse energy (ΣET ) de-
posited in the Forward Calorimeters (FCal), which cover
3.2 < |η| < 4.9, shown in Fig. 2. Bins are defined in cen-
trality according to fractions of the total lead-lead cross
section selected by the trigger and are expressed in terms
of percentiles (0-10%, 10-20%, 20-40% and 40-100%) with
0% representing the upper end of the ΣET distribution.
Previous heavy ion experiments have shown a clear cor-
relation of the ΣET with the geometry of the overlap
region of the colliding nuclei and, correspondingly, the
total event multiplicity. This is verified in the bottom
panel of Fig. 2 which shows a tight correlation between
the energy flow near mid-rapidity and the forward ΣET .
The forward ΣET is used for this analysis to avoid biasing
the centrality measurement with jets.
Jets have been reconstructed using the infrared-safe

anti-kt jet clustering algorithm [9] with the radius pa-
rameter R = 0.4. The inputs to this algorithm are “tow-
ers” of calorimeter cells of size ∆η×∆φ = 0.1× 0.1 with
the input cells weighted using energy-density dependent
factors to correct for calorimeter non-compensation and
other energy losses. Jet four-momenta are constructed
by the vectorial addition of cells, treating each cell as an
(E, #p) four-vector with zero mass.

The jets reconstructed using the anti-kt algorithm con-
tain a mix of genuine jets and jet-sized patches of the un-
derlying event. For each event, we estimate the average
transverse energy density in each calorimeter layer in bins
of width ∆η = 0.1, and averaged over azimuth. In the
averaging, we exclude jets with D = ET (max)/〈ET 〉, the
ratio of the maximum tower energy over the mean tower
energy, greater than 5. The value Dcut = 5 is chosen

• Interactions in the collision lead to a large energy loss

〈∆E〉 ∼ 20 GeV (0.1)
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• However, the fragmentation patter is unmodified. 

(JCS, G. Milhano & U. Wiedemann 10)

(at least for relatively narrow jet cones)



• In vacuum most of the fragmentation happens at large distances
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• Jet energy loss is produced by extra interactions

• These must be emitted at large angles, not to affect the 
fragmentation pattern. 

 Large Angle Radiation
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Single Source in Vacuum
θf

• We focus on soft gluons of frequency ω<<E. 

• Gluon emission rate at an angle  Θf  from the source:

〈∆E〉 ∼ 20 GeV (0.1)
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• τf is the time scale within which vacuum gluons are formed

• After  the quark and gluon decohere and behave as 
independent objects

• Vacuum radiation is mostly collinear.

τf
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Single Source in Medium

• Gluons are emitted with a typical angle Θs
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• Gluons are emitted with a typical angle Θs
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• Gluons are emitted with a typical angle Θs

• Emissions occur all along the medium: dN ∝ L
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Single Source in Medium

• Gluons are emitted with a typical angle Θs

• Emissions occur all along the medium: dN ∝ L

• Soft gluons are formed (decohered) at a short time τf
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Single Source in Medium

• Gluons are emitted with a typical angle Θs

• Emissions occur all along the medium: dN ∝ L

• Soft gluons are formed (decohered) at a short time τf

• There is a minimum value for emissions ΘC
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Angular Ordering in Vacuum

• Single gluon emission is not enough to describe jets

• In vacuum, successive radiations are not independent.

• More than one QCD emitter leads to angular ordering

• Does something similar happen in the medium?
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Singlet Antenna in Vacuum

• The emissions from two sources can interfere.

• In cone emissions:

⇒Two color charges are resolved⇒ Independent emissionλ⊥< r⊥

• Emissions are confined to inside of the cone (A.O.)

⇒Gluons feel the total (neutral) charge⇒ no radiation
• Out of cone emissions:

λ⊥>r⊥



Color Rotation of the Antenna

• In vacuum, the color state of the pair is preserved. 
• In the medium, interactions lead to color precession

•  The survival probability of the color state after a time τ is 
(within the dipole model)
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• How is the emission process affected by this rotation?

• In the dense limit:  JCS & Iancu 11, Mehtar-Tani, Salgado, Tywoniuk 11

• In the dilute limit:  Mehtar-Tani, Salgado, Tywoniuk 10
Armesto, Ma, Mehtar-Tani, Salgado, Tywoniuk 11
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Two Partons: Very Large Angles

• Radiation from two sources propagating in plasma.

• Θqq >> Θs the two fronts do not overlap
No interference between BDMPS gluons

• “Vacuum-Medium” interference is possible
{

The interference time. In the second scenario, the quantum coherence between the two

emitters is ensured at the time t1 when the gluon formation is initiated. To that aim, the

emission angle at t1 should be at least as large as the dipole angle θqq̄, for the reasons explained

in relation with Eq. (2.10). In turn, this implies an upper limit on t1 : t1 ! τint, where τint

(the interference time) is the vacuum–like emission time for a gluon with emission angle equal

to θqq̄ :

τint =
2

ωθ2
qq̄

= τf

(

θf

θqq̄

)2

. (2.13)

Of course, such a large angle emission in the context of the interference problem is by no means

specific to medium–induced radiation: a gluon with this kinematics would also contribute to

the vacuum–like radiation at large angles and, where it would contribute to the destructive

interference in the bremsstrahlung spectrum outside the dipolar cone (cf. the discussion around

Eqs. (2.10) and (2.11)). What is however important for the problem at hand, is that the same

gluon can also interfere with the medium–induced radiation by the other parton from the qq̄

pair. To be specific, assume that the virtual gluon is emitted at time t1 by the antiquark and it

makes an angle ∼ θqq̄ with respect to the latter. Then the direction of propagation of the gluon

can be adjusted in such a way to match that of the quark (this fine-tuning entails a reduction

in phase–space but still allows for a non–trivial result, as we shall see in Sect. 5). When this

happens, this gluon will behave in the same way as a typical gluon from the quark wavefunction:

it will follow the formation process for in–medium radiation by the quark and eventually emerge

(at time t1 + τf ) at an angle θf w.r.t. the latter. Formally, this second scenario for quantum

coherence applies for any value of the dipole angle θqq̄, larger or smaller than θf . But in practice,

this can be distinguished from the previous scenario only for relatively large angles θqq̄ > θf .

(i.b) Color coherence. In addition to quantum coherence, the existence of interference

effects between the two partonic emitters demands the preservation of color coherence of the

qq̄ state. In the vacuum, the color state of the dipole is conserved until a gluon emission takes

place and the interference pattern is governed solely by quantum coherence. In the medium,

on the contrary, the interactions with the medium constituents change the color of each of the

propagating parton (via ‘color rotation’). For a very energetic parton, this rotation amounts

to multiplying the respective wavefunction by a SU(Nc) matrix–valued phase — a Wilson line

— which involves the random color field generated by the charged constituents of the medium

evaluated along the trajectory of the particle.

For the qq̄ pair we have two such Wilson lines which diverge from each other (since so do the

quark and the antiquark) at constant angle θqq̄. The color coherence is measured by the 2–point

correlation function of these Wilson lines, as obtained after averaging over the fluctuations of

the background field. Within the ‘multiple soft scattering approximation’ the quark and the

antiquark loose any trace of their original color correlation after the decoherence time

τcoh =
2

(q̂θ2
qq̄)1/3

= τf

(

θf

θqq̄

)2/3

. (2.14)

Accordingly, there is no interference between the two partonic sources for the gluons whose

emission is initiated at a time t1 larger than τcoh.

– 11 –

• Interference contribution scales with dI∝τint

(quantum coherence)
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L

θf

• The two fronts overlap at formation: they can interfere.

• The qq pair rotates color before emission.  At
time τcoh is still much smaller than L so long as θqq̄ ! θc ; one has indeed

τcoh =

(

θc

θqq̄

)2/3

L . (2.18)

Accordingly, in this regime too, the interference contribution to spectrum of medium–induced

radiation is strongly suppressed:

R =
τcoh

L
=

(

θc

θqq̄

)2/3

" 1 . (2.19)

Note that, in this case, the medium–induced radiation by the dipole (the incoherent sum of

the two corresponding spectra by the quark and the antiquark) is distributed at large angles

θq # θq̄ ! θf ! θqq̄, that is, well outside the dipole cone.

3. Very small dipoles angles θqq̄ " θc. We have just noticed that the medium–induced

radiation produced by a dipole with angle θqq̄ < θf is necessarily localized far outside the dipole.

One may wonder why the total radiation in that case is not simply zero (as it would be for a

color–singlet dipole in the vacuum). The reason is that, so long as θqq̄ ! θc, a qq̄ pair immersed

in the medium is not a ‘color singlet’ anymore, except for a very brief period of time ∼ τcoh.

However, when the dipole angle is even smaller, θqq̄ " θc, this coherence time τcoh becomes as

large as the medium size L, as clear from Eq. (2.18). In that case, the qq̄ pair preserves its color

and quantum coherence during the entire history of its propagation, so the interference effects

are maximal and they precisely cancel the effects due to direct emissions (as generally the case

for the emissions at large angles). In this regime, the total medium–induced radiation by the

dipole vanishes.

Note that, although so far we have focused on gluons with relatively soft energies, ω " ωc,

our main conclusion on the suppression of interference effects remains valid when ω approaches

the limiting value ωc, as one can check by inspection of the previous results. When ω ∼ ωc,

one has τf ∼ L and θf ∼ θc, so the intermediate regime of ‘relatively small dipole angles’

ceases to exist. Yet, Eq. (2.16) implies that, so long as θqq̄ ! θf (ωc) = θc, the interference

effects are relatively small even for ω ∼ ωc. This is so because the time scale τint which limits

quantum coherence is still much smaller than L in this regime. Hence, when ω ∼ ωc, the case of

‘relatively large dipole angles’ defined above extends all the way down to θc. This being said, in

our subsequent analysis we shall still concentrate on gluons with ω " ωc, because such gluons

have relatively large emission angles θq ! θf (ω) ! θc and short formation times τf " L, and

they dominate over the bremsstrahlung gluons for the given kinematics; hence these gluons are

the most efficient ones in spreading the jet energy in the transverse plane. The restriction to

ω " ωc also entails some simplifications in the calculations, which will permit us to obtain final

results in analytic form.

In summary, we have argued that in all the situations where there is some non–trivial

medium–induced radiation by the dipole, meaning for dipole angles θqq̄ ! θc, the associated

interference effects are negligible and the total spectrum is the incoherent sum of two BDMPS–

Z spectra produced by the quark and the antiquark. The purpose of the remaining part of this

paper will be to demonstrate the previous, qualitative, arguments via explicit calculations.

– 13 –

The color of each quark is randomized ⇒ No interference

• Interference contribution scales with dI∝τcoh

τcoh

(color coherence)



Two Partons: Very Small Angles

!
qq

!
f

!
c

"
f

• Interference is possible.  Antenna color remains almost constant

• Interference occurs as in vacuum up to corrections Θ2qq/Θ2C

The dipole interacts as a single charge

• The corrections Θ2qq/Θ2C may lead to non-trivial distribution

Natural limit for connecting to the dilute limit
(Mehtar-Tani, Salgado, Tywoniuk 10)



Summary 

• Medium induced radiation scales with the medium L

• Large angles Θf<Θqq “vacuum medium” interference leads to:

• Small angles Θc<<Θqq<Θf “medium-medium” interference :

• Very small angles Θqq<Θc the medium interacts with the whole 
dipole charge

Interference is suppressed

Interference is suppressed
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Figure 4: The standard representation of the Feynman graph for direct emission by the quark (amplitude
times the complex conjugate amplitude).
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Figure 5: A folded version of the Feynman graph for direct emission where the amplitude and the
complex conjugate amplitude are represented on top of each other, to more clearly exhibit the qg and gg
dipoles. The (quark and gluon) Wilson lines are indicated with thick lines.

the initial ones, and performing the medium average over the background field. This yields

P(in)
q (k) = 2g2CF Re

∫ L+

0
dx+

∫ x+

0
dy+ eik+u−(x+−y+)

×
∫

dz1⊥

∫

dz2⊥ e−ik⊥ ·(z1⊥−z2⊥)
(

ui + i∂i
x/k+

)(

ui − i∂i
y/k

+
)

(4.1)

×
1

N2
c − 1

〈

TrG(L+,z1⊥;x+,x⊥; k+)Uq(x
+, y+)G†(L+,z2⊥; y+,y⊥; k+)

〉

,

where Uq(x+, y+) is given by Eq. (3.7) with r⊥(z+) = u⊥z+ and it is understood that after the

performing the transverse derivatives ∂i
x and ∂i

y one sets x⊥= u⊥x+ and y⊥= u⊥y+. In writing

Eq. (4.1) we have restricted the time integrals to 0 < y+ < x+ < L+ and multiplied the result

by a factor of 2. The Feynman graph representing this emission is shown in Fig. 4.

Note that the quark Wilson lines prior to the first emission time y+ have canceled each

other between the direct and the complex conjugate amplitude. The color trace in the last line
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Figure 6: A Feynman graph for interference (amplitude times the complex conjugate amplitude).
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Figure 7: A folded version of the Feynman graph for interference where the amplitude and the complex
conjugate amplitude are represented on top of each other, to more clearly exhibit the qq̄, qg and gg
dipoles. The (quark and gluon) Wilson lines are indicated with thick lines.

in Fig. 7, in such a way to superpose direct and conjugate amplitudes, one can view y+ as the

‘first emission time’, for an emission off the antiquark, and x+ as the ‘second emission time’,

for an emission by the quark. Although somewhat formal, this perspective allows one to easily

visualise the effective ‘color dipoles’ encoded in Eq. (5.1), that we now discuss.

The subsequent manipulations are rather similar to those in Sect. 4. Once again, one splits

the quark Wilson line as Uq(x+, 0) = Uq(x+, y+)Uq(y+, 0) and one breaks the last gluon propa-

gator into two pieces — from y+ to x+ and from x+ to L+ —, by introducing an intermediate

integration point z⊥. Then one uses the locality of the medium correlations in time to factorize

the color trace into effective dipole contributions (cf. Eq. (4.2)). This procedure now generates

three dipole S–matrices: a quark–antiquark (qq̄) dipole which extends in time from 0 up to

y+, a quark–gluon (qg) dipole from y+ to x+, and a gluon–gluon (gg) dipole from x+ to L+.

The integrations over z1⊥ and z2⊥ are again performed as in Eq. (4.5) and the outcome can be

– 31 –
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Additional source of Radiation
(Mehtar-Tani, Salgado, Tywoniuk 11)

τf

• Very soft (or collinear) radiation has long formation time.

• For τf >>L most of the radiation happens outside the medium

• Dense medium ⇒ L>> τcoh  ⇒ color of sources are randomized

• Radiation at large angles is aloud

• The two quarks behave as independent sources!

• Extra emission, as compared to the vacuum



Conclusions
• Unless Θqq is very small

Each source induces gluons independently from each other

BDMPS-Z gluons are NOT angular ordered
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⇒( )
• In addition to BDMPS-Z gluons, color decoherence of the 

antenna leads to additional gluon radiation.

• Typical sources for in-medium antennas

In-medium radiations ⇒ θqq ~ θf

Vacuum splittings (QCD evolution) ⇒ θqq takes any value
but

• These effects are important to understand the source for large 
angle emissions in heavy ions collisions.


