
J u a n j o  L o p e z - V i l l a r e j o  ( C E R N  &  D p t o .  F í s i c a  Te ó r i c a ,  U A M )

V I N C I A : M C  e v e n t  g e n e r a t o r  f o r  t h e  L H C

1

Factorization Scale

H
ad

ro
ni

za
tio

n

Perturbative Evolution

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

PYTHIA

Collider 
Observables

Confrontation 
with Data

Pa
rto

n 
Sh

ow
er

s
Le

ad
ing

 Lo
g

Le
ad

ing
 C

olo
r

V I N C I A  c o l l a b o r a t i o n :  P.  S k a n d s ,  W.  G i e l e ,  D .  K o s o w e r ,  J .  L o p e z - V i l l a r e j o , 
A .  G e h r m a n n - d e - R i d d e r ,  M .  R i t z m a n n ,  E .  L a e n e n ,  L .  H a r t g r i n g

Slides from P. Skands & J.J. Lopez Villarejo, TH-LPCC workshop, August 2011, CERN

jeudi, 3 novembre 2011

http://indico.ific.uv.es/indico/contributionDisplay.py?contribId=40&sessionId=5&confId=433
http://indico.ific.uv.es/indico/contributionDisplay.py?contribId=40&sessionId=5&confId=433


J u a n j o  L o p e z - V i l l a r e j o  ( C E R N  &  D p t o .  F í s i c a  Te ó r i c a ,  U A M )

V I N C I A : M C  e v e n t  g e n e r a t o r  f o r  t h e  L H C

1

Factorization Scale

H
ad

ro
ni

za
tio

n

Perturbative Evolution

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

PYTHIA

Collider 
Observables

Confrontation 
with Data

Pa
rto

n 
Sh

ow
er

s
Le

ad
ing

 Lo
g

Le
ad

ing
 C

olo
r

V I N C I A  c o l l a b o r a t i o n :  P.  S k a n d s ,  W.  G i e l e ,  D .  K o s o w e r ,  J .  L o p e z - V i l l a r e j o , 
A .  G e h r m a n n - d e - R i d d e r ,  M .  R i t z m a n n ,  E .  L a e n e n ,  L .  H a r t g r i n g

Slides from P. Skands & J.J. Lopez Villarejo, TH-LPCC workshop, August 2011, CERN

jeudi, 3 novembre 2011

http://indico.ific.uv.es/indico/contributionDisplay.py?contribId=40&sessionId=5&confId=433
http://indico.ific.uv.es/indico/contributionDisplay.py?contribId=40&sessionId=5&confId=433


J u a n j o  L o p e z - V i l l a r e j o  ( C E R N  &  D p t o .  F í s i c a  Te ó r i c a ,  U A M )

V I N C I A : M C  e v e n t  g e n e r a t o r  f o r  t h e  L H C

1

Factorization Scale

H
ad

ro
ni

za
tio

n

Perturbative Evolution

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

PYTHIA

Collider 
Observables

Confrontation 
with Data

Pa
rto

n 
Sh

ow
er

s
Le

ad
ing

 Lo
g

Le
ad

ing
 C

olo
r

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

V I N C I A  c o l l a b o r a t i o n :  P.  S k a n d s ,  W.  G i e l e ,  D .  K o s o w e r ,  J .  L o p e z - V i l l a r e j o , 
A .  G e h r m a n n - d e - R i d d e r ,  M .  R i t z m a n n ,  E .  L a e n e n ,  L .  H a r t g r i n g

Slides from P. Skands & J.J. Lopez Villarejo, TH-LPCC workshop, August 2011, CERN

jeudi, 3 novembre 2011

http://indico.ific.uv.es/indico/contributionDisplay.py?contribId=40&sessionId=5&confId=433
http://indico.ific.uv.es/indico/contributionDisplay.py?contribId=40&sessionId=5&confId=433


J u a n j o  L o p e z - V i l l a r e j o  ( C E R N  &  D p t o .  F í s i c a  Te ó r i c a ,  U A M )

V I N C I A : M C  e v e n t  g e n e r a t o r  f o r  t h e  L H C

1

Factorization Scale

H
ad

ro
ni

za
tio

n

Perturbative Evolution

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

2Re
�

M
(1)

H
M

(0)∗
H

�

2Re
�

M
(1)

H+1
M

(0)∗
H+1

�

2Re
�

M
(1)

H+2
M

(0)∗
H+2

�

|M
(0)

H
|2

|M
(0)

H+1
|2

|M
(0)

H+2
|2

|M
(0)

H+3
|2

1

2Re
�

M
(1)

H
M

(0)∗
H

�

2Re
�

M
(1)

H+1M
(0)∗
H+1

�

2Re
�

M
(1)

H+2M
(0)∗
H+2

�

|M
(0)

H
|2

|M
(0)

H+1|
2

|M
(0)

H+2|
2

|M
(0)

H+3|
2

1

High
er

-O
rd

er

Sin
gu

lar
 St

ru
ctu

re
s

PYTHIA

Collider 
Observables

Confrontation 
with Data

Pa
rto

n 
Sh

ow
er

s
Le

ad
ing

 Lo
g

Le
ad

ing
 C

olo
r

2Re
�
M (1)

H
M (0)∗

H

�

2Re
�
M (1)

H+1M
(0)∗
H+1

�

2Re
�
M (1)

H+2M
(0)∗
H+2

�

|M (0)
H

|2

|M (0)
H+1|2

|M (0)
H+2|2

|M (0)
H+3|2

1

V I N C I A  c o l l a b o r a t i o n :  P.  S k a n d s ,  W.  G i e l e ,  D .  K o s o w e r ,  J .  L o p e z - V i l l a r e j o , 
A .  G e h r m a n n - d e - R i d d e r ,  M .  R i t z m a n n ,  E .  L a e n e n ,  L .  H a r t g r i n g

Slides from P. Skands & J.J. Lopez Villarejo, TH-LPCC workshop, August 2011, CERN

jeudi, 3 novembre 2011

http://indico.ific.uv.es/indico/contributionDisplay.py?contribId=40&sessionId=5&confId=433
http://indico.ific.uv.es/indico/contributionDisplay.py?contribId=40&sessionId=5&confId=433


P. Skands & J. Lopez-Villarejo

VINCIA

What is it?
Plug-in to PYTHIA 8 http://projects.hepforge.org/vincia

What does it do?
“Matched Markov antenna showers”

Improved parton showers

+ Re-interprets tree-level matrix elements as 2→n antenna functions
+ Extends matching to soft region (no “matching scale”)

Extensive (and automated) uncertainty estimates

Systematic variations of shower functions, evolution variables, μR , etc. 

→ A vector of output weights for each event (central value = unity = unweighted)

Who is doing it?
Giele, Kosower, Skands (GKS)
+ Collaborations with Gehrmann-de-Ridder & Ritzmann (mass effects), Lopez-Villarejo (“sector showers”), 
Hartgring & Laenen (NLO multileg), Diana (ISR), Larkoski (Polarization), Bravi & Volunteers (Tuning) 

2

The VINCIA Code 
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P. Skands & J. Lopez-Villarejo

What is new ?

For matching to the first emission:
= PYTHIA scheme 

For matching to the first loop:
= POWHEG scheme

What is new (apart from antennae):
Repeating this for the next emission, and the next, … 

GKS ~ multileg scheme (unitary) that reduces to PYTHIA/POWHEG at 1st order

Unitarity → No “matching scale” needed

Substantially faster than MLM, CKKW (no initialization, no separate n-parton phase-spaces)

The calculation also yields ~10 automatic uncertainty estimates at a moderate 
speed penalty (less than running the program twice)

3

Sjöstrand & Bengtsson, Phys.Lett. B185 (1987) 435, Nucl.Phys. B289 (1987) 810

Nason, JHEP 0411 (2004) 040;   Nason, Ridolfi, JHEP 0608 (2006) 077;   … 

Giele, Kosower, Skands, arXiv:1102.2126 (accepted, PRD)

(real-emission part same as PYTHIA, hence compatible)

(reformulated for antennae)
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The Denominator    v

5

In a traditional parton shower, you would face 
the following problem:

Existing parton showers are not really Markov Chains
Further evolution (restart scale) depends on which branching happened last 
→ proliferation of terms 

Number of histories contributing to nth branching ∝ 2nn!

~ + + + j = 2
→ 4 terms

j = 1
→ 2 terms~( + )
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ai →
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1

(+ parton showers have complicated and/or frame-dependent phase-space mappings, especially at the multi-parton level)
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Matched Markovian Antenna Showers

+ Change “shower restart” to Markov criterion:

Given an n-parton configuration, “ordering” scale is 

Qord = min(QE1,QE2,...,QEn)

Unique restart scale, independently of how it was produced

+ Matching: n! → n
Given an n-parton configuration, its phase space weight is:

|Mn|2 : Unique weight, independently of how it was produced

6

(+ generic Lorentz-
invariant and on-shell 
phase-space factorization)

Antenna showers: one term per parton pair 2nn! → n!
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Matched Markovian Antenna Showers

+ Change “shower restart” to Markov criterion:

Given an n-parton configuration, “ordering” scale is 

Qord = min(QE1,QE2,...,QEn)

Unique restart scale, independently of how it was produced

+ Matching: n! → n
Given an n-parton configuration, its phase space weight is:

|Mn|2 : Unique weight, independently of how it was produced

6

Matched Markovian Antenna Shower:
After 2 branchings: 2 terms
After 3 branchings: 3 terms
After 4 branchings: 4 terms

Parton- (or Catani-Seymour) Shower:
After 2 branchings: 8 terms
After 3 branchings: 48 terms
After 4 branchings: 384 terms

+ J. Lopez-Villarejo → 1 term at any order

(+ generic Lorentz-
invariant and on-shell 
phase-space factorization)

Antenna showers: one term per parton pair 2nn! → n!
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Approximations
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ψPS p⊥-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ψAR kinematics map.

• ARI: p⊥-ordering using our best imitation of the what the real ARIADNE program does. It uses
p⊥-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ψAR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including −∞, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p⊥-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ψPS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer

29

S T RO N G  O R D E R I N G

Distribution of Log10(PSLO/MELO) (inverse ~ matching coefficient)

(fourth order)(third order)(second order)

Dead Zone: 1-2% of phase space have no strongly ordered paths leading there*

*fine from strict LL point of view: those points correspond to “unordered” non-log-enhanced configurations

GKS, arXiv:1102.2126 
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→ Better Approximations

8

(PS/ME)
10

log
-2 -1.5 -1 -0.5 0 0.5

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

 4!Z
Vincia 1.025 + MadGraph 4.426

Smooth Ordering
 3!Matched to Z

AR"GGG, 
PS"GGG, 
KS"GGG, 
 (qg & gg)AR"ARI, 

(PS/ME)
10

log
-2 -1.5 -1 -0.5 0 0.5

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

 5!Z
Vincia 1.025 + MadGraph 4.426

Smooth Ordering
3!Matched to Z

(PS/ME)
10

log
-2 -1.5 -1 -0.5 0 0.5

Fr
ac

tio
n 

of
 P

ha
se

 S
pa

ce

-410

-310

-210

-110

1

 6!Z
Vincia 1.025 + MadGraph 4.426

Smooth Ordering
3!Matched to Z

Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ψAR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : Θord PLL → ΘordPariPLL = Θord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an

36
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Figure 10: Strongly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Spikes on the far left represent
the underflow bin — dead zones in the shower approximations. Gluon emission only. Matrix-element
weights from MADGRAPH [46, 47], leading color (no sum over color permutations).

• ψPS p⊥-ordering using the GGG antenna functions and the parton-shower-like (PS) longitudinal
kinematics map. I.e., the parent with the largest invariant mass with respect to the emitted parton
recoils only longitudinally.

• mD-ord: mD-ordering using the GGG antenna functions and the ψAR kinematics map.

• ARI: p⊥-ordering using our best imitation of the what the real ARIADNE program does. It uses
p⊥-ordering, but with the ARIADNE radiation functions instead of the GGG ones, and it also uses
a special recoil strategy, as follows; for qg dipoles, the quark always takes the entire recoil (in the
CM of the dipole), whereas for gg dipoles, the ψAR angle is used to distribute the recoil.

In all cases, we compare to one leading-color matrix element, i.e., before summing over colors, and with
all color factors having been divided out.

The two bins around zero correspond to the parton-shower approximation having less than a 10%
deviation from the full matrix element. At four partons, on the left-hand pane, these two bins contain
over 35-60% of the sampled phase space points, depending on the approximation, with tails extending
out towards larger deviations. The spikes at the extreme left edge of the plots represent the underflow
bin, including −∞, which corresponds to zones in which all of the possible shower histories have been
removed by the strong ordering condition. Such dead zones are characteristic of (ordered) LL parton
showers, when the ordering variable is more restrictive than pure phase space. We shall later discuss
how to remove them while simultaneously improving the approximation in the ordered region as well.

For all multiplicities, the default p⊥-ordering with the antenna-like ARIADNE recoil map appears to
generate the best overall agreement (narrowest distribution). The parton-shower-like longitudinal recoil
map (thin solid line labeled ψPS), following the spirit of PYTHIA 6 and showers based on CS partitioned
dipoles and the dipole-mass ordering (dashed line labeledmD-ord) give slightly worse agreement (wider
distributions). Notice, though, that the dead-zone bin is smaller for dipole-mass ordering.

The “ARI” case (thick solid line) has no dead zone for this process (due to the special kinematics
map), but it also appears to generate a somewhat wider, and systematically softer (shifted to the left)
distribution, than the GGG ones. To examine further whether this is an effect of the intrinsically softer

29

S T RO N G  O R D E R I N G
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Distribution of Log10(PSLO/MELO) (inverse ~ matching coefficient)

Leading Order, Leading Color, Flat phase-space scan, over all of phase space (no matching scale)

GEEKS (Giele, Kosower, Skands): arXiv:1102.2126

No dead zone

GKS, arXiv:1102.2126 
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+ Matching (+ NLC)
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Figure 16: Smoothly ordered matched parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], full color (summed over color permutations). Compare to
the unmatched shower distributions in figs. 10, 14, and 15.

In fig. 16, we show the weight ratios discussed earlier (which are essentially just the inverses of
PME

n ), for Z → 5 and Z → 6 partons, now including matching at each preceding order. For the shower
approximations, we use the default smoothly ordered NLC-improved GGG antennæ, with three different
kinematics maps (solid histogram, thin solid line, and dashed lines, respectively). We also compare to
the same settings as the solid histogram but using the ARIADNE radiation functions instead of the GGG
ones (thick solid lines). Comparing these distributions to those in fig. 14, we see that the differences
between the shower models are largely canceled by the matching to the preceding orders, as expected. At
each order, now only a relatively well-controlled and stable matching correction remains, which does not
appear to exhibit any significant deterioration order by order. Note that we have not applied any phase
space cuts here, and hence we find no evidence for any remaining subleading divergences in the matrix
elements leading to problems in this approach. This is in sharp contrast to slicing- or subtraction-based
approaches, where a non-zero matching scale is obligatory beyond the first matched order.

A note on color factor normalizations. Obviously, if the leading-color pieces are not normalized
the same way in two different approaches, the subleading terms must likewise appear different. This,
e.g., leads to some apparent differences between MADGRAPH and the GGG antennæ. With color and
coupling factors, the MADGRAPH-GGG correspondence for the Z → qggq̄ antenna is:

g4
sAGGG

4 (0, 1, 2, 3) =
2|M4LC(0, 1, 2, 3)|2

Ĉ2
F |M2(s)|2

, (116)

where the factor 2 on the MADGRAPH matrix element cancels the color averaging factor which is
already present in |M4LC|2, which represents a MADGRAPH matrix element with only one element
non-zero in the color matrix, the one corresponding to the (0, 1, 2, 3) color flow squared. In particular,
note that the LC coefficient in MADGRAPH comes with Ĉ2

F , whereas, in order to construct the full

46

Remaining matching 
corrections are small

(fourth order)(third order)
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Figure 14: Smoothly ordered parton showers compared to matrix elements. Distribution of
log10(PS/ME) in a flat phase-space scan. Bins normalized to 1/Npoints. Gluon emission only. Matrix-
element weights from MADGRAPH [46, 47], leading color (no sum over color permutations). Compare
to fig. 10 for strong ordering.

full color but only gluon emission. One observes a marked improvement with respect to the strongly
ordered approximations, fig. 10, for all multiplicities. In particular, not only the dead zones but also the
large tails towards low PS/ME ratios visible in the higher-multiplicity plots in fig. 10 have disappeared,
which we interpret as a confirmation that the logarithmic accuracy of the approximation has indeed been
improved. Notice, however, that the ARIADNE functions (where we have here used the ψAR kinematics
map for both qg and gg antennæ, hence the explicit label on the plot) still tend to shift the shower
approximations systematically towards softer values, whereas the GGG ones remain closer to the matrix
elements.

4.3.2 Gluon Splitting

For gluon splitting, there is no soft singularity, only a collinear one. This means there is now only a
single log-enhancement (instead of a double log) driving the approximation and competing with the
(uncontrolled) finite terms. It is therefore to be expected that the LL approximation to gluon splitting is
significantly worse, over more of phase space, than is the case for gluon emission.

Furthermore, if the two neighboring dipole-antennæ that share the splitting gluon are very unequal
in size, e.g., as a result of a preceding close-to-collinear branching, then higher-order matrix elements
and splitting functions unambiguously indicate that the total gluon splitting probability is significantly
suppressed. This is not taken into account when treating the two antennæ as independent radiators. This
effect was already noted by the authors of ARIADNE, and a first attempt at including it approximately
was made by applying the following additional factor to gluon splittings in ARIADNE, in addition to the
strong ordering condition,

Gluon Splitting (ARIADNE) : Θord PLL → ΘordPariPLL = Θord
2sN

sIK + sN
PLL , (95)

where sN is the invariant mass squared of the neighboring dipole-antenna that shares the gluon splitting,
and sIK is the invariant mass squared of the dipole-antenna in which the splitting occurs. The additional
factor reduces to unity when the two neighboring invariants are similar; it suppresses splittings in an
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→ A very good all-orders starting point

GKS, arXiv:1102.2126 
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P. Skands - New Developments in Parton Showers

Uncertainty Variations

A result is only as good as its uncertainty
Normal procedure:

Run MC 2N+1 times (for central + N up/down variations)

Takes 2N+1 times as long 

+ uncorrelated statistical fluctuations 

11
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P. Skands - New Developments in Parton Showers

Uncertainty Variations

A result is only as good as its uncertainty
Normal procedure:

Run MC 2N+1 times (for central + N up/down variations)

Takes 2N+1 times as long 

+ uncorrelated statistical fluctuations 

Automate and do everything in one run
VINCIA: all events have weight = 1

Compute unitary alternative weights on the fly
→ sets of alternative weights representing variations (all with <w>=1)

Same events, so only have to be hadronized/detector-simulated ONCE!

11

MC with Automatic Uncertainty Bands
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P. Skands - New Developments in Parton Showers

Uncertainties

For each branching, 
recompute weight for:

- Different renormalization scales

- Different antenna functions

- Different ordering criteria

- Different subleading-color treatments

12

Weight

Nominal 1

Variation

for a particular branching, the same branching would have happened with the relative probability

P2 =
αs2a2

αs1a1
P1 , (118)

in a different model that uses αs2 as its coupling (e.g., with a different renormalization scale or scheme)
and a2 as its radiation function (e.g., with different finite terms, different partitioning of shared poles,
different subleading or higher-order corrections, or even a different ordering criterion).

This, however, is not quite sufficient. Effectively, only the tree-level expansion of the shower would
be affected by keeping track of such relative probabilities down along the shower chain; the Sudakov
factors would remain unmodified. Such a procedure would therefore explicitly break the unitarity that is
so important to resummation applications, leading to possibly exponentially different weights between
the sets, which would be hard to interpret7. More intuitively, a big uncertainty on a very soft branching
happening late in the shower should not be able to significantly change the entire event weight, jets
and all. In the normal shower approach, it is the property of unitarity which keeps such things from
happening; as soon as any correction grows large, its associated Sudakov factor must necessarily become
small soon thereafter, keeping the total size of any correction inside a unit-probability integral.

The main part of our proposal therefore concerns a simple way to restore unitarity explicitly also for
the uncertainty variations, as follows. For each accepted branching, a number of trial branchings have
usually first been generated and discarded, to eliminate the overcounting done by the trial function. In
VINCIA, we have so far not been particularly careful to optimize the choice of trial function (see Section
2.2), and hence we have quite many failed trials. These are relatively cheap to generate, however, so the
code is not significantly slowed by this inefficiency. Moreover, these failed trials actually turn out to be
useful, even essential, in the present context.

Just like eq. (118) expresses the relative probability for a branching to be accepted under two dif-
ferent sets of model parameters, 1 and 2, with 1 playing the role of phase space generator and 2 the
role of uncertainty variation, it is also possible to ask what the probability of a failed trial to have failed
under different circumstances would have been. Thus each failed trial can actually be used to compute
variations on the no-emission probability, i.e., the Sudakov factors.

Specifically, for each trial, the no-emission probability for the model we use as our phase space gen-
erator (which corresponds to the settings chosen by the user in VINCIA, including matching, subleading
corrections, etc.) is

P1;no = 1− P1 , (119)

whereas the one for the alternative model should be

P2;no = 1− P2 = 1− αs2a2

αs1a1
P1 . (120)

Thus, by multiplying the relative event weight w2/w1 by P2/P1 for each accepted branching and by
P2;no/P1;no for each failed one, we explicitly restore the unitarity of the set of weights {w2}. In order to
prevent extreme outliers from substantially degrading the statistical precision of the variation samples,
however, we limit the resulting weight adjustments to at most a factor of 2 per branching in the code (in
either direction).

7For example, two models that differ systematically by only a small amount on each branching, say 25%, would, after 20
such branchings, differ by a factor 1.2520 = 100. If they differ by a factor of 2 instead, the result would be a million, clearly
not a reasonable correction to the total event rate.
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+ Unitarity+ Matching

Differences explicitly matched out 

(Up to matched orders)

(Can in principle also include 
variations of matching scheme…)
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Figure 17: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the renormal-
ization scale. L3 data from ref. [55]. Unmatched.

the result of the variations, all matching is switched off, and hence the uncertainty bands are rather
larger than would be the case for default VINCIA settings. The L3 data (black points) [55] are included
mostly to provide a constant reference across the plots; we postpone discussion of them to the section on
LEP comparisons (Section 8). The top panels of each the plots shows MC compared to data, with both
normalized to unity. The bottom panels show the ratio MC/data, with the uncertainties on the data shown
as yellow bands, the inner (lighter) one corresponding to the statistical component only and the outer
(darker) shade corresponding to statistical plus systematic errors (added linearly, to be conservative).

Comparing Figs. 17 and 18, one observes that the two different variations lead to qualitatively dif-
ferent shapes on the uncertainty predictions. The renormalization scale uncertainty, Fig. 17, produces
an uncertainty band of relatively constant size over the whole range of Thrust, whereas the finite terms,
Fig. 18, only contribute to the uncertainty for large values of τ = 1− T , as expected. Comparing left to
right in both figures, we conclude that both the features and the magnitude of the full uncertainty bands
on the right are well reproduced by the weight variations on the left.

Available Variations: So far, five types of automatic variations have been included in the VINCIA
code, starting from version 1.025, via a simple on/off switch. These uncertainty variations are:

• VINCIA’s default settings. This is obviously not a true uncertainty variation, but is provided as a
useful comparison reference when the user has changed one or more parameters.

• MAX and MIN variations of the renormalization scale. The default variation is by a factor of 2
around p⊥.

• MAX and MIN variations of the antenna function finite terms. The default variation corresponds
to an integrated ±2 gluons for gluon emission antennae, and an integrated 1

2 splitting, for gluon
splitting, uniformly distributed over the antenna phase space.

50

Automatic Uncertainties
Vincia:uncertaintyBands = on

Traditional
Variaton

(two separate runs)

Automatic
Variation

(one run)

Renormalization Scale Uncertainty
~ constant relative size

Variation of renormalization scale (no matching)
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Figure 18: Thrust. Comparison of VINCIA’s automatic uncertainty variations around a default parameter
set (left) with running the generator for each variation separately (right), for variation of the antenna-
function finite terms. L3 data from ref. [55]. Unmatched.

• Two variations in the ordering variable, one being closer to strong ordering in p⊥ and the other to
ordering in themD variable.

• MAX and MIN variations of the subleading color corrections. The specific nature of the variation
depends on whether subleading corrections are switched on in the shower or not. If not, the MAX
variation uses CA for all gluon emission antennae and the MIN one ĈF . If on, the correction
described in Section 4.4 is applied, but the correction itself is then modified by ±50% for the
MAX and MIN variations here.

These variations are provided as alternative weight sets for the generated events, which are available
through methods described in the program’s online manual. For more advanced users, some limited
user control over the variations is also included, such as the ability to change the factor of variation of
the renormalization scale.

When combining several variations to compute the total uncertainty, we advise to take just the largest
bin-by-bin deviations (in either direction) as representing the uncertainty. We believe this is better than
adding the individual terms together either linearly or quadratically, since the latter would have to be
supplemented by a treatment of correlations that we don’t know. With the maximal-deviation approach,
we are free to add as many uncertainty variations as we like, without the number of variations by itself
leading to an inflation of the error.

We should also note that, in the VINCIA code, matching coefficients etc. are calculated for each
uncertainty variation separately. The size of each band is therefore properly reduced, as expected, when
switching on corrections that impact that particular source of uncertainty.

Finally, we note that, though the speed of the calculation is typically not significantly affected by
adding uncertainty variations, the code does run slightly faster without them. We therefore advise to
keep them switched off whenever they are not going to be used.
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Sector Showers

Dipole-antenna formalism (2 -> 3)

Two types: - Global
- Sector

for any P.S. point{
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Number of Terms
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parton shower

Vincia Markov global 
antenna shower

Vincia Markov sector
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# of terms 
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2NN! N 1 N = number of 

emitted partons

Global FSR shower 
(default VINCIA)
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3→4
2 terms per phase-space point
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sector implementation

Implementation based on the global shower setup.

Antenna functions are different than in the global case.    
→ Challenges  (partitioning of collinear radiation singularities)

Different criteria for separating sectors in phase space 
Looking for “best” sub-LL behavior. 
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results->ff

Test: fragmentation function for a quark 

PS, Weinzierl: Phys.Rev.D79 (2009)   ;   Nagy, et al. JHEP 0905 (2009) 088

Hard emissions:
 bad analytic approx.

x→1
No energy loss

x→0
Total energy loss

Asymptotic 
behavior

VINCIA 1.026 + PYTHIA 8.150
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results -> Speed

Matched through: Z→3 Z→4 Z→5 Z→6
Pythia 6 0.20 ms/event

 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 
gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

ms/event
 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 

gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

ms/event
 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 

gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memoryPythia 8 0.22
ms/event

 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 
gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

ms/event
 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 

gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

ms/event
 Z→qq (q=udscb) + shower. Matched and unweighted. Hadronization off 

gfortran/g++ with gcc v.4.4 -O2 on single 3.06 GHz processor with 4GB memory

Vincia Global 0.30 0.77 6.40 130.00

Vincia Sector 0.27 0.63 6.90 52.00

Vincia Global (Qmatch = 5 GeV) 0.29 0.60 2.40 20.00

Vincia Sector (Qmatch = 5 GeV) 0.26 0.50 1.40 6.70

Sherpa (Qmatch = 5 GeV) 5.15* 53.00* 220.00* 400.00*
* + initialization time 1.5 minutes 7 minutes 22 minutes 2.2 hours
Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)Generator Versions: Pythia 6.425 (Perugia 2011 tune), Pythia 8.150, Sherpa 1.3.0, Vincia 1.026 (without uncertainty bands, NLL/NLC=OFF)

J. Lopez-Villarejo & PS, arXiv:1109.3608
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http://projects.hepforge.org/vincia

Next steps
Multi-leg one-loop matching 
(with L. Hartgring & E. Laenen, NIKHEF)

Polarized Showers 
(with A. Larkoski, SLAC, & J. Lopez-Villarejo, CERN)

→ Initial-State Showers 
(with W. Giele, D. Kosower, G. Diana, M. Ritzmann)

VINCIA Status
Plug-in to PYTHIA 8 
Stable and reliable for Final-State Jets 
(E.g., LEP)

Automatic matching and uncertainty 
bands
improvements in shower 
(smooth ordering, NLC, Matching, …)

Paper on mass effects ~ ready 
(with A. Gehrmann-de-Ridder & M. Ritzmann)
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