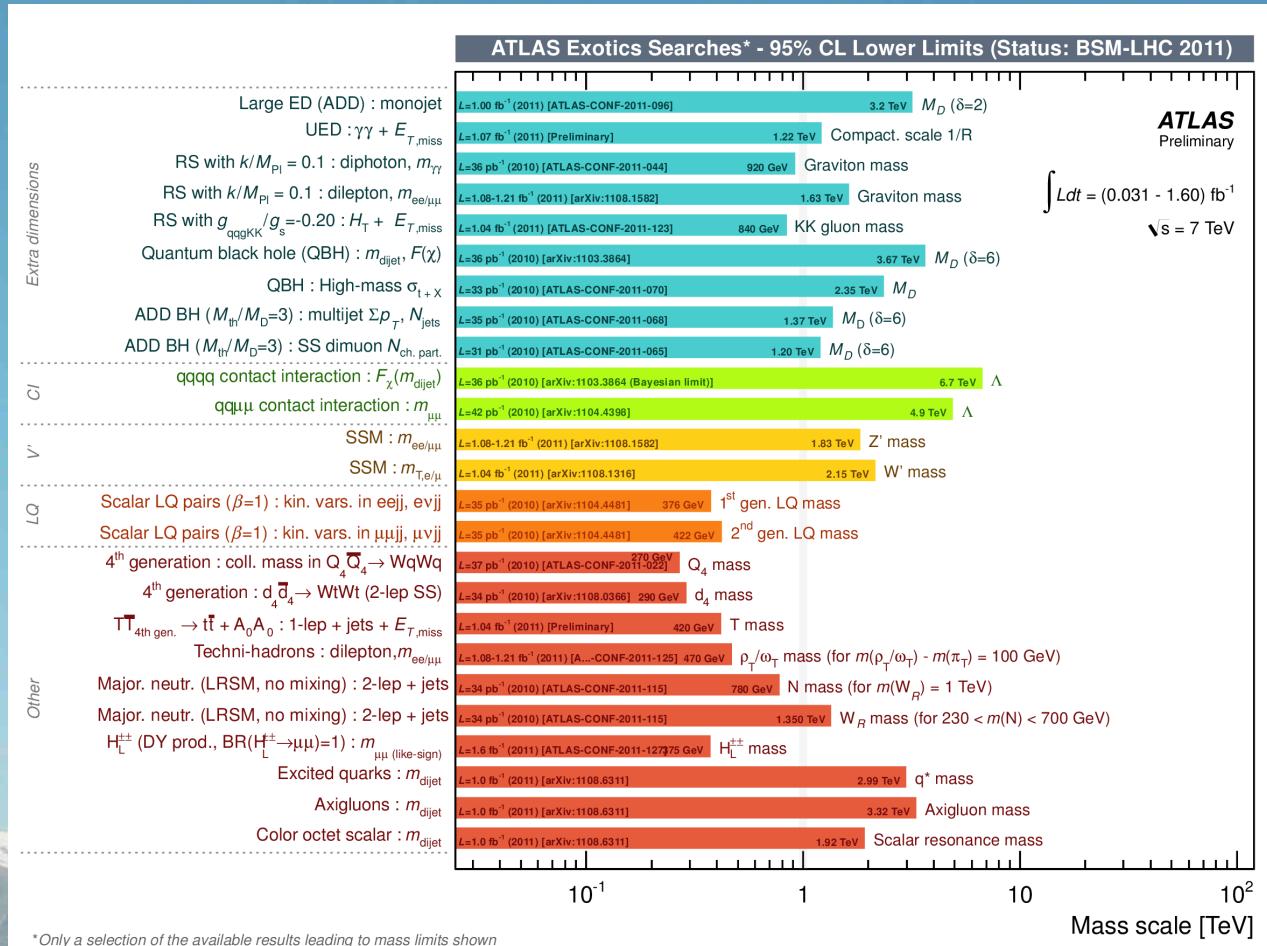


Physics Beyond the Standard Model

José Santiago


CAFPE and
Física Teórica y del Cosmos
Universidad de Granada

ugr | Universidad
de Granada

Beyond the SM Physics?

- One of the most common sentences in LHC experimental talks: **no signs of new physics found (yet)**

Beyond the SM Physics?

- One of the most common sentences in LHC experimental talks: **no signs of new physics found (yet)**
- And not because they are not looking ...
 - Many (sophisticated) analyses
 - Luminosity increasing fast
- Time to give up on BSM physics?
 - EWSB sector still unexplored
 - Models of new physics not as accessible (did we really think they would be?)
- BSM physics more exciting than ever!

Absolutely not!

Outline

- Why physics beyond the standard model (BSM)?
- Which kind of physics BSM?
 - Not seen at LEP
 - Hierarchy problem
- NP “in pairs”
- “Single” NP
- “Disguised” NP
- Importance of the Higgs sector
- Summary and Outlook

The Standard Model

- Spontaneously broken gauge theory

$$SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_C \times U(1)_Q$$

- Most general renormalizable Lagrangian with field content:

$$G_\mu^a, W_\mu^I, B_\mu$$

$$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, u_R, d_R, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, e_R \times 3 \text{ families}$$

$$\phi = e^{i\pi \cdot \sigma / (\sqrt{2}v)} \begin{pmatrix} 0 \\ v + \frac{h}{\sqrt{2}} \end{pmatrix}$$

The Standard Model

- Spontaneously broken gauge theory

$$SU(3)_C \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_C \times U(1)_Q$$

- Most general renormalizable Lagrangian with field content:

$$G_\mu^a, W_\mu^I, B_\mu$$

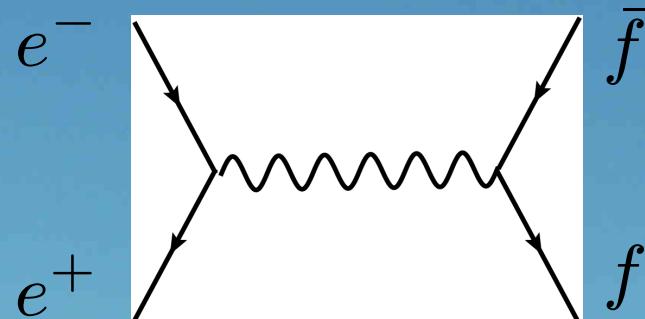
$$\begin{pmatrix} u_L \\ d_L \end{pmatrix}, u_R, d_R, \begin{pmatrix} \nu_L \\ e_L \end{pmatrix}, e_R \times 3 \text{ families}$$

$$\phi = e^{i\pi \cdot \sigma / (\sqrt{2}v)} \begin{pmatrix} 0 \\ v + \frac{h}{\sqrt{2}} \end{pmatrix}$$

All experimentally observed
except for the Higgs boson

Why BSM at the LHC?

- Electroweak symmetry breaking (Hierarchy problem)
 - Elementary scalars (Higgs) are quadratically sensitive to UV physics: $v=246$ GeV highly unnatural
 - Can be protected by new symmetries (SUSY, LH,...) or replaced by new structures (Compositeness)


**Hint: no elementary
scalars found in nature**

Why BSM at the LHC?

- Electroweak symmetry breaking (Hierarchy problem)
 - Elementary scalars (Higgs) are quadratically sensitive to UV physics: $v=246$ GeV highly unnatural
 - Can be protected by new symmetries (SUSY, LH,...) or replaced by new structures (Compositeness)
- Not only hierarchy problem
 - Dark matter, family replication, structure of masses and mixing angles, baryon asymmetry, ...
- Not only LHC
 - Tevatron, flavor, neutrinos, astro-particles, ...

Which kind of NP?

- Not discovered at LEP

Measured with precision $\mathcal{O}(10^{-2} - 10^{-3})$

- Typical ways to evade constraints:

- Loop suppression: weak coupling $\frac{g^2}{16\pi^2} \sim \mathcal{O}(10^{-2} - 10^{-3})$
- Heavy NP with small couplings to SM

$$\frac{g^2 v^2}{M^2} \sim \mathcal{O}(10^{-2} - 10^{-3}) \text{ for } \frac{M}{g} \sim 7 - 8 \text{ TeV}$$

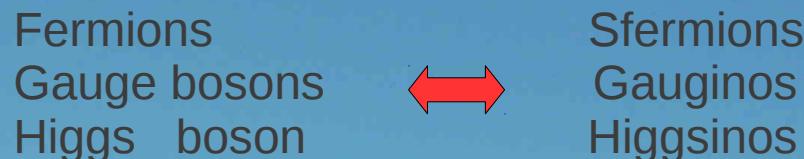
Can we still solve the hierarchy problem?

Hierarchy problem

- The hierarchy problem arises at the quantum level

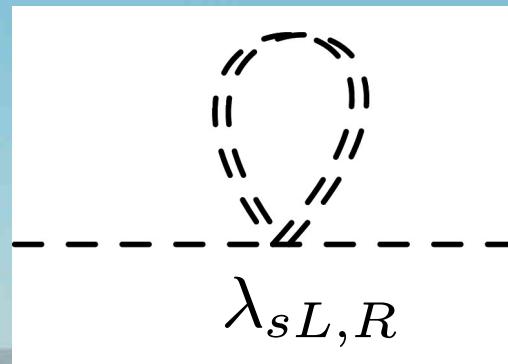
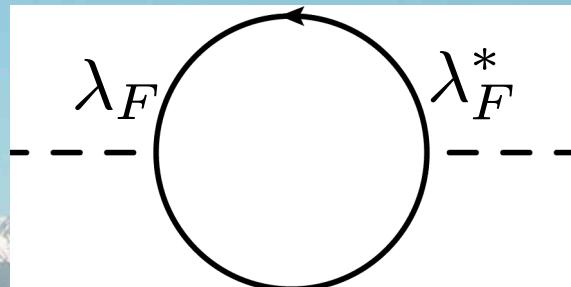
$$\delta m_H^2 \sim \text{---} \frac{\lambda_F}{\lambda_F^*} \text{---} \sim -2|\lambda_F|^2 \frac{\Lambda^2 N_c}{16\pi^2} + \dots$$

- As long as NP enters at the loop level, it can cancel the quadratic sensitivity

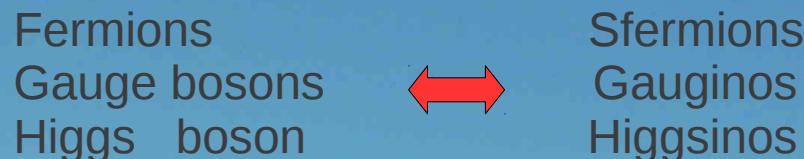

$$\delta m_{H, NP}^2 \sim \text{---} \frac{\lambda}{\lambda} \text{---} \sim \lambda \frac{\Lambda^2 N_c}{16\pi^2} + \dots$$

- Impose a symmetry that forbids couplings with an odd number of new particles: no tree level effects but same one loop effects.
- Extra Higgs symmetry protection needed if NP scale is high

NP “in pairs”



Supersymmetry (SUSY)

- Supersymmetry: fermion \longleftrightarrow boson symmetry.
 - Each particle has a supersymmetric partner with opposite statistics


- Chiral symmetry protects the Higgs mass

$$\delta m_H^2 = \frac{\Lambda^2 N_c}{16\pi^2} [-2|\lambda_F|^2 + \lambda_{sL} + \lambda_{sR}] + \dots$$

Supersymmetry (SUSY)

- Supersymmetry: fermion \longleftrightarrow boson symmetry.
 - Each particle has a supersymmetric partner with opposite statistics

- Chiral symmetry protects the Higgs mass

$$\delta m_H^2 = \frac{\Lambda^2 N_c}{16\pi^2} [-2|\lambda_F|^2 + \lambda_{sL} + \lambda_{sR}] + \dots$$

- SUSY $\Rightarrow \lambda_{sL} = \lambda_{sR} = |\lambda_F|^2$
- If SUSY spontaneously broken (must: no sparticles found)

$$\delta m_H^2 \approx -\frac{2N_c}{16\pi^2} |\lambda_t|^2 m_{\tilde{t}}^2 \log \frac{\Lambda^2}{m_{\tilde{t}}^2}$$

Sparticles cannot be too heavy

Supersymmetry (SUSY)

- R-parity:
 - particles $\rightarrow R = +$
 - sparticles $\rightarrow R = -$
- Only loop effects at low energies
- Only pair production
- Lightest Supersymmetric Particle (LSP) stable: DM candidate
- Phenomenology extremely rich (studied for many years):

SUSY not in the Exotics group

Supersymmetry (SUSY)

- R-parity:
 - particles $\rightarrow R = +$
 - sparticles $\rightarrow R = -$
- Only loop effects at low energies
- Only pair production
- Lightest Supersymmetric Particle (LSP) stable: DM candidate
- Phenomenology extremely rich (studied for many years):
 - MSSM: $\mathcal{O}(120)$ free parameters (just parameterization of SUSY breaking)
 - Many models of SUSY breaking
 - Many different possible spectra
 - Searches typically interpreted in terms of models with minimal number of independent parameters (mSUGRA, cMSSM, ...): very constrained experimentally (doesn't make SUSY close to be ruled out).

Supersymmetry (SUSY)

- Typical assumptions:
 - Sparticles produced in pairs
 - LSP corresponds to partner of SM particle
 - Colored sparticles (squarks and gluinos) heavier than uncolored ones (but light enough to be produced)
- Typical implications:
 - Large production cross sections of colored particles with cascade decays down to SM particles and two LSPs.
 - Standard SUSY search: large E_T , large number of hard jets and leptons

Common in many models
of SUSY breaking

Nothing found yet!

Might need to revise
our assumptions

Little Higgs models (LH)

- Higgs: pseudo-Goldstone boson

**Massless at tree level but
quadratic sensitivity at
one loop**

Little Higgs models (LH)

- Higgs: pseudo-Goldstone boson + collective symmetry breaking

Massless at tree level but
quadratic sensitivity at
one loop

Cancels the quadratic
sensitivity at one loop

Little Higgs models (LH)

- Higgs: pseudo-Goldstone boson + collective symmetry breaking

$$G/H \times G'/H' \Rightarrow \pi^a, \pi^{a'}$$

↓

$$G \oplus G'$$

Explicit breaking by gauge and Yukawa couplings

V_L would-be Goldstone bosons

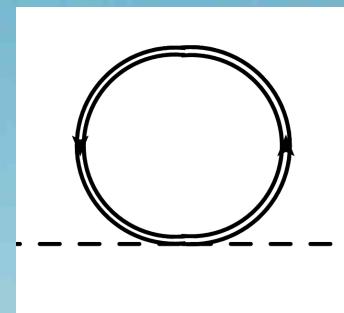
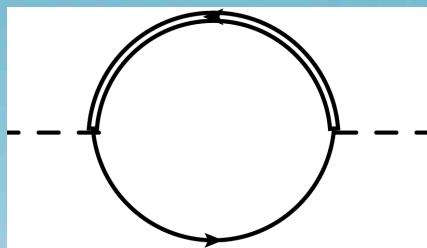
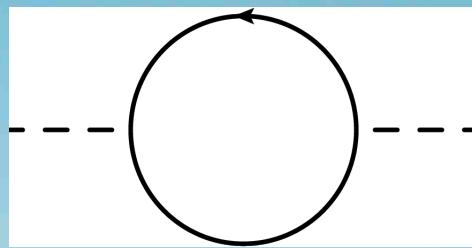
h^i pseudo-Goldstones **IF both groups simultaneously broken**

The diagram illustrates the decomposition of a product of quotient groups into a direct sum. On the left, the expression $G/H \times G'/H' \Rightarrow \pi^a, \pi^{a'}$ is shown above a downward arrow, followed by $G \oplus G'$. Below this, the text "Explicit breaking by gauge and Yukawa couplings" is written. To the right, a brace groups the results into two categories: V_L (would-be Goldstone bosons) and h^i (pseudo-Goldstones). A red note "IF both groups simultaneously broken" is placed under the h^i category.

Little Higgs models (LH)

- Higgs: pseudo-Goldstone boson + collective symmetry breaking

$$G/H \times G'/H' \Rightarrow \pi^a, \pi^{a'} \quad \left. \begin{array}{l} V_L \text{ would-be Goldstone bosons} \\ h^i \text{ pseudo-Goldstones IF both groups simultaneously broken} \end{array} \right\}$$




\downarrow

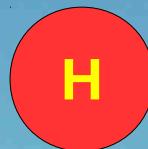
$$G \oplus G'$$

Explicit breaking by gauge and Yukawa couplings

Quadratic sensitivity canceled at one loop (can be extended to higher orders)

$$\delta m_H^2 \sim$$

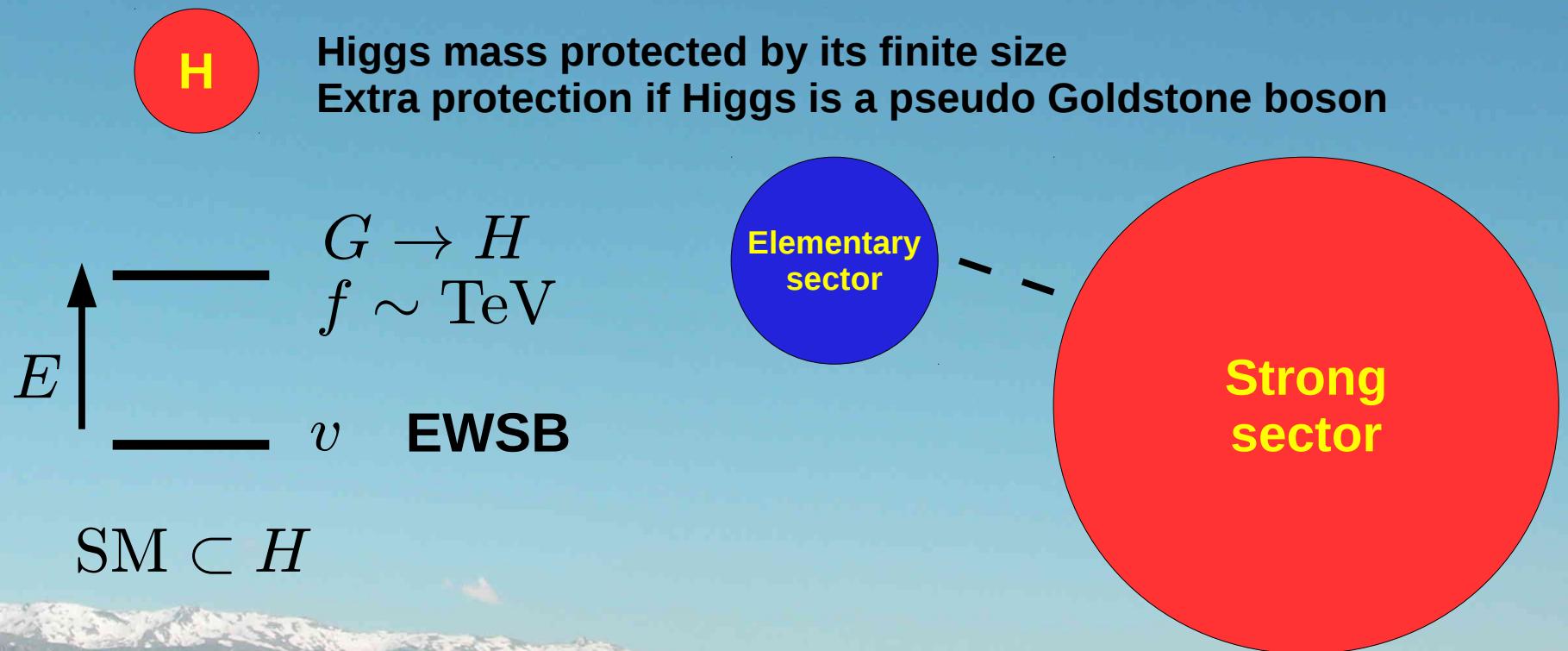
Cancellations from same statistics particles (Clebsch-Gordan coefficients)


Little Higgs models (LH)

- LEP constraints force new particles heavy unless one imposes an exchange T-symmetry with similar implications to R-parity
 - Pair production
 - Missing energy signatures
- Despite differences many collider implications dictated by the discrete symmetry (also in other models like Universal Extra Dimensions): might be difficult to disentangle in a first round of discoveries!
- But
 - Not a complete theory: $\Lambda \sim 10$ TeV UV completion?
 - No “gluon partners”

NP “singly produced”

New Structures: Compositeness


- If NP can couple linearly it must be relatively heavy and couple weakly to light SM fermions
- Archetype: Composite Higgs
 - Higgs: composite state of a new strongly coupled interaction

Higgs mass protected by its finite size
Extra protection if Higgs is a pseudo Goldstone boson

New Structures: Compositeness

- If NP can couple linearly it must be relatively heavy and couple weakly to light SM fermions
- Archetype: Composite Higgs
 - Higgs: composite state of a new strongly coupled interaction

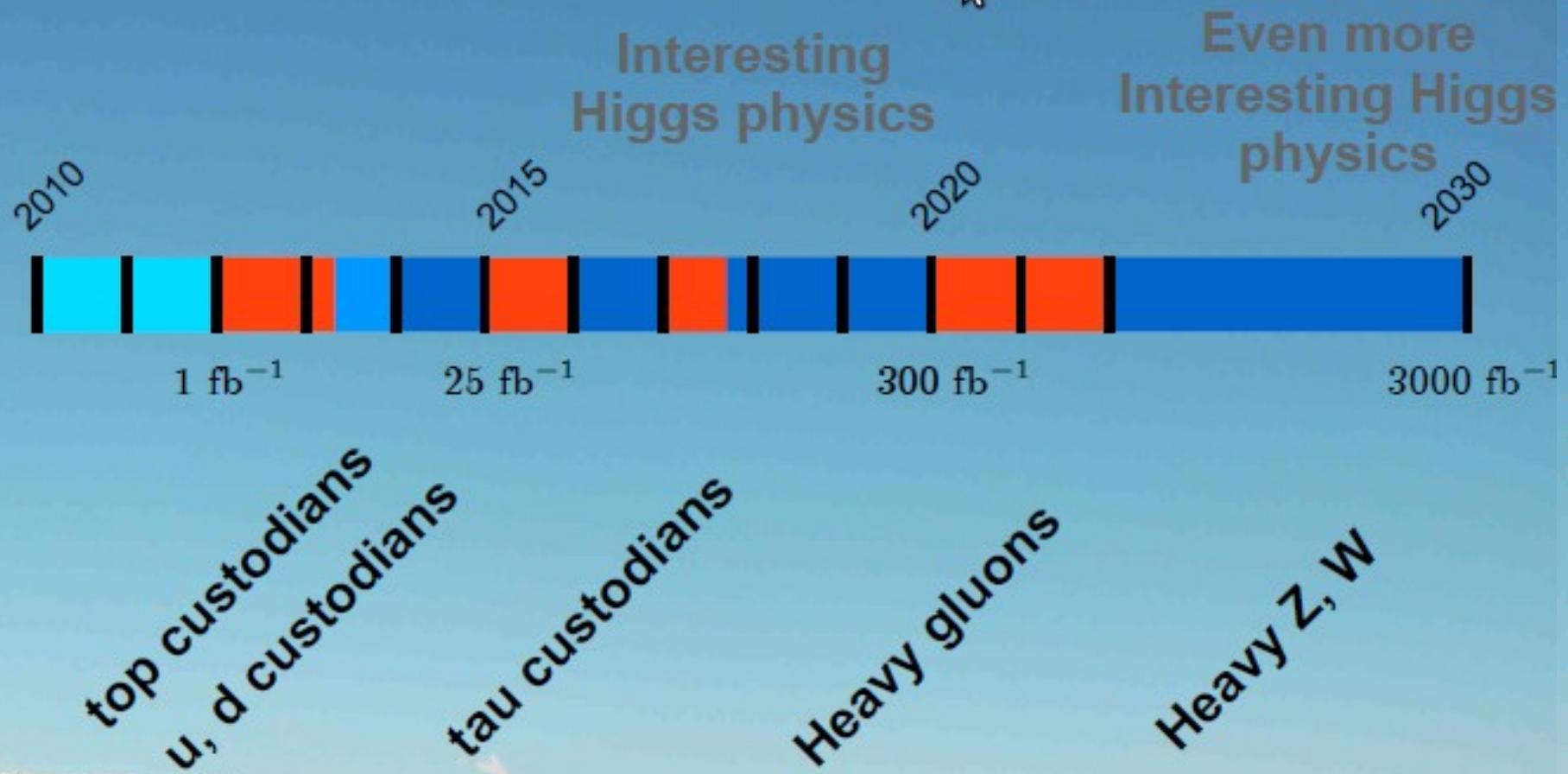
New Structures: Compositeness

- If NP can couple linearly it must be relatively heavy and couple weakly to light SM fermions
- Archetype: Composite Higgs
 - Higgs: composite state of a new strongly coupled interaction

Higgs mass protected by its finite size
Extra protection if Higgs is a pseudo Goldstone boson

$$\begin{array}{c} E \\ \uparrow \\ \text{---} \\ f \sim \text{TeV} \\ \text{---} \\ v \end{array} \quad \begin{array}{c} G \rightarrow H \\ \text{EWsb} \\ \text{SM} \subset H \end{array} \quad \begin{array}{c} f \ll M_{\text{Pl}} \\ m_{NP} \sim g_c f \gg f \\ m_h \sim \frac{g_e}{4\pi} m_{NP} \ll m_{NP} \end{array} \quad \begin{array}{c} \text{Strong sector conformal} \\ \text{Heavy NP} \\ \text{pNGB Higgs} \end{array}$$

Just like QCD (almost)


New Structures: Compositeness

- LHC implications
 - New particles heavy \sim few TeV
 - Strong coupling: wide resonances
 - Top likely composite: (boosted) top rich final states
 - Light SM fermion partners (top, tau custodians) likely, but models without custodial symmetry (thus without custodians) also possible
 - Modified Higgs couplings: suppressed couplings, fermiophobic Higgs, ...
 - Phenomenology quite different from previous cases but it was not expected to show up this early

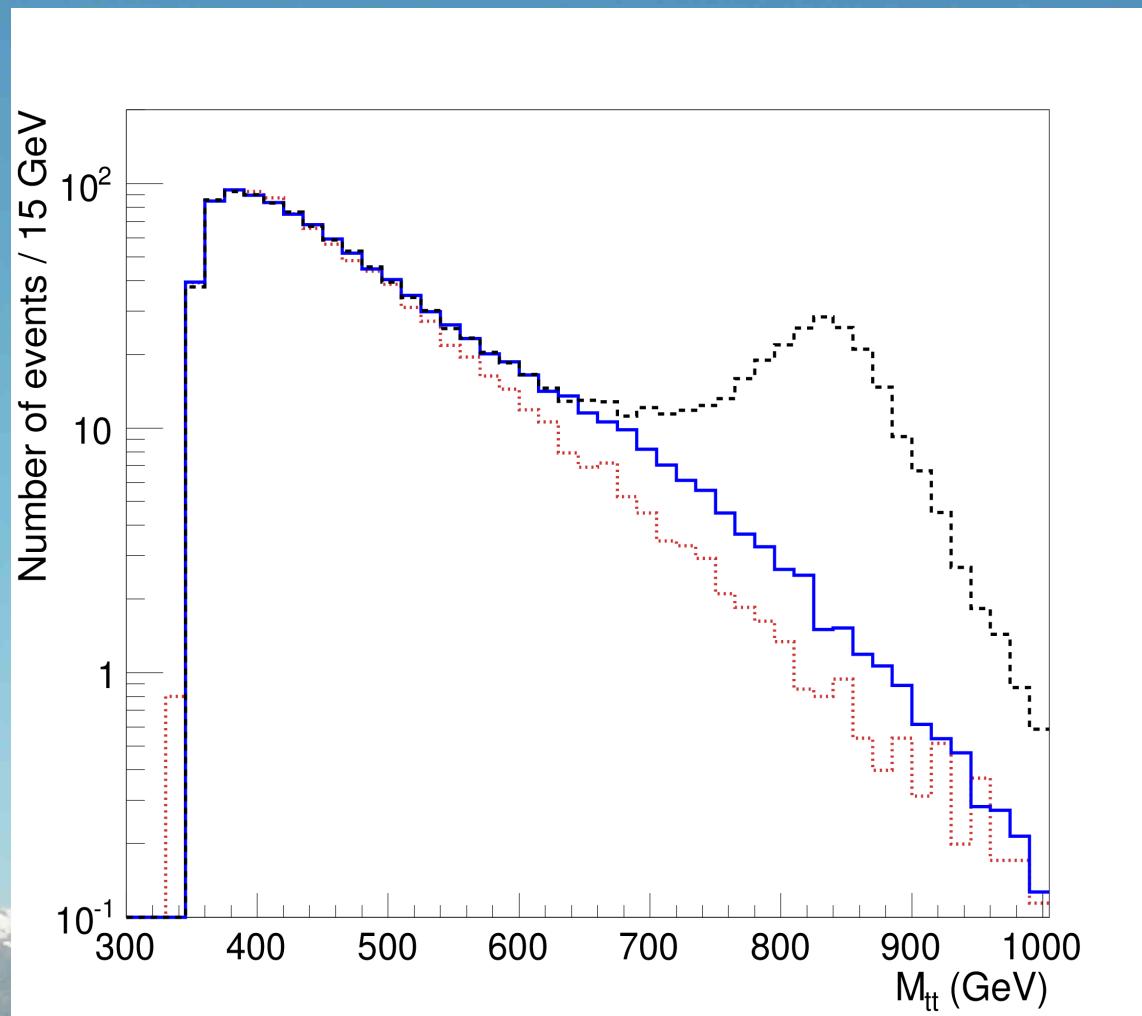
Difficult at 7 TeV LHC!

Warped Extra Dimensions at the LHC

LHC schedule taken from talks by M. Lamont
(pLHC2010) and F. Zimmermann (KEK)

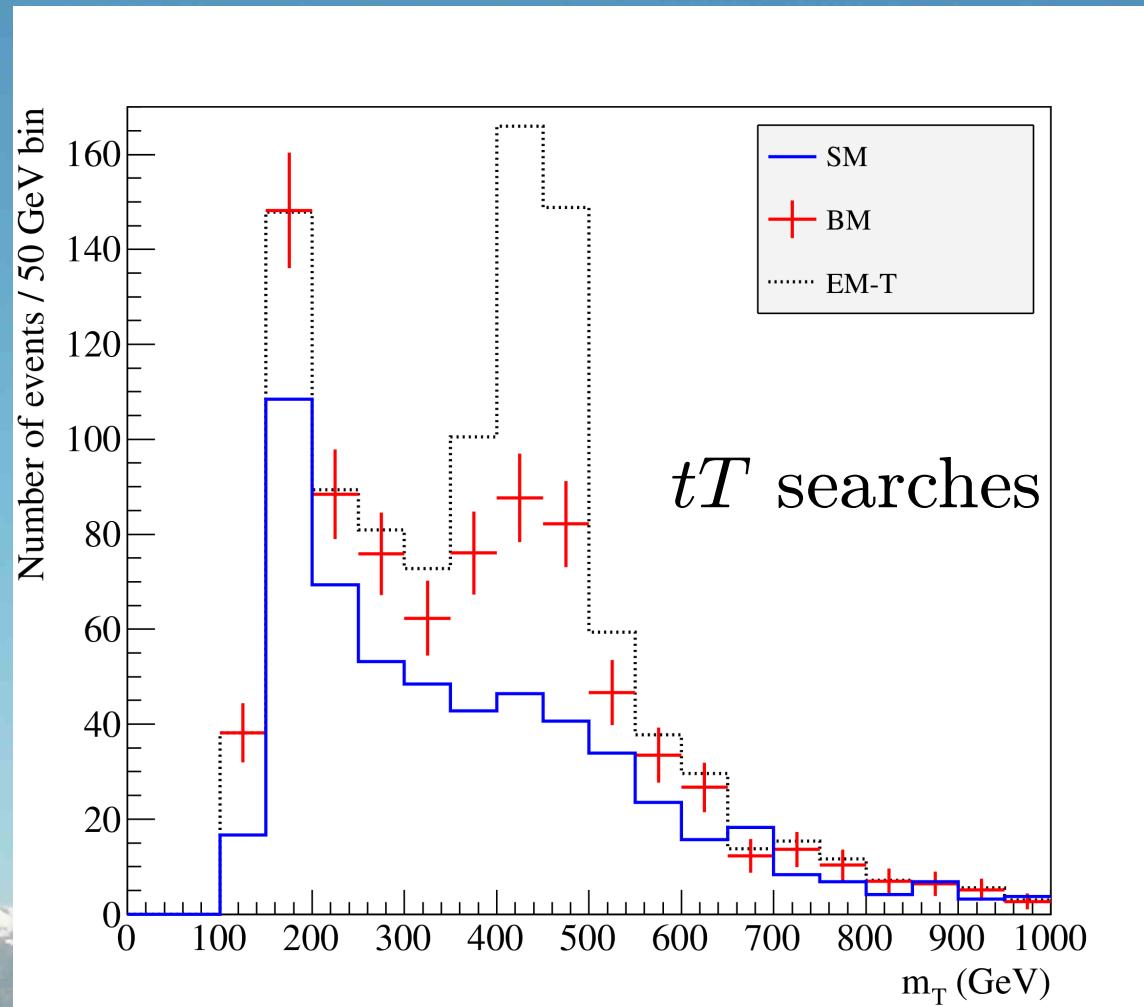
New Structures: Compositeness

- What if no Higgs at all?
 - Composite Higgs allows for an interpolation between the SM ($f \rightarrow \infty$) and Higgsless models ($f \rightarrow v$)
 - Higgsless models still allowed:
 - Models with warped extra dimensions give weakly coupled duals (calculable because of large N)
 - Vector resonances will be probed soon (cannot be too heavy to unitarize longitudinal gauge boson scattering)
 - Technicolor models: difficult to give definite predictions
 - Low N theories might be promising but it is difficult to make quantitative statements.


Disguised NP

Disguised New Physics

- NP could be even lighter than expected but hidden:
 - Stealth gluon scenario
 - Massive (700-900 GeV) gluon with small axial couplings to light quarks and large couplings to the RH top.
 - New vector-like quarks increase its width to 0.5-0.7 M
 - Can explain the Tevatron top FB anomaly
 - Difficult to see unless tailored analyses are performed
 - See today's talk by Mikael Chala
 - Many other options of (unexpected) new physics


Disguised New Physics

- NP could be even lighter than expected but hidden:
 - Stealth gluon scenario

Disguised New Physics

- NP could be even lighter than expected but hidden:
 - Stealth gluon scenario

Situation at the LHC

- LHC phenomenology very rich
 - Many different phenomenological implications are possible
 - Different models can have similar (on a first look) implications
 - Signatures not as immediately visible as some expected
 - Standard assumptions are common but violations are also common
 - Some models of new physics still out of reach
- We have focused on the sectors that solve the hierarchy problem but the crucial test is the Higgs itself
 - Extended Higgs structures needed in certain extensions (SUSY) but not exclusive to these extensions
 - Couplings easily modified with dramatic phenomenological changes

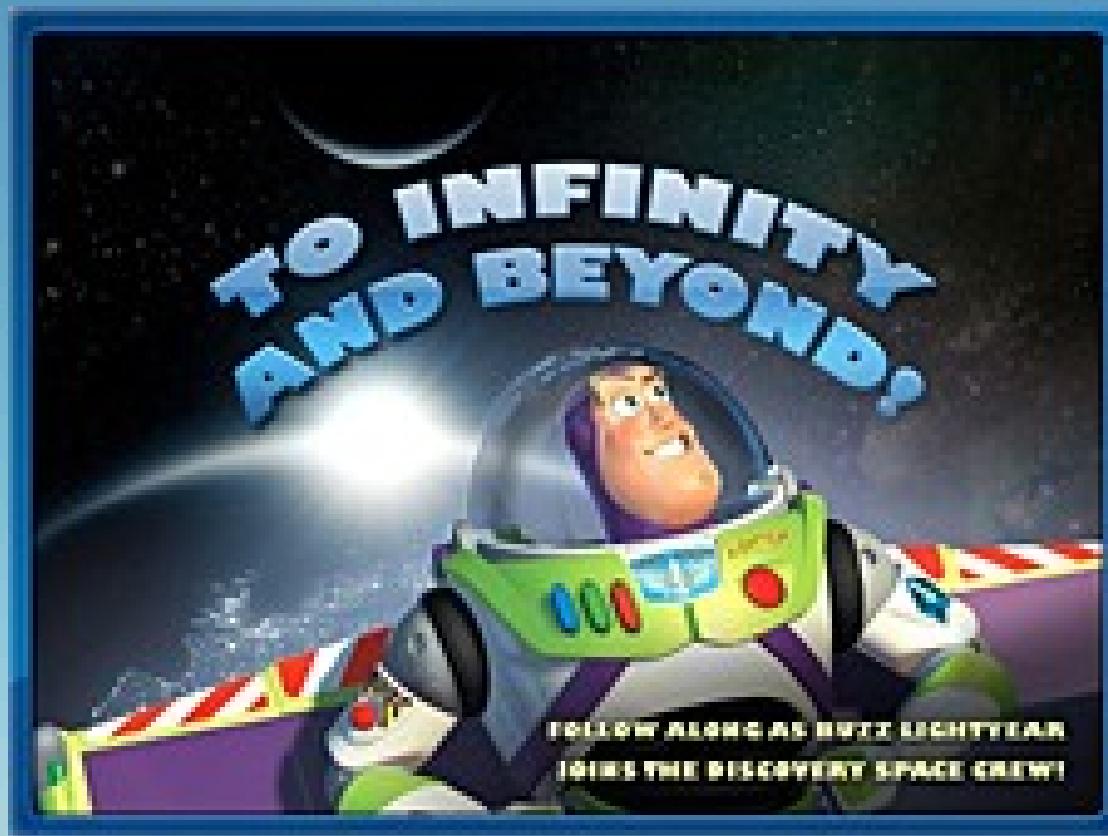
Importance of the Higgs sector

- Besides being a remnant of EWSB in the SM the Higgs unitarizes longitudinal gauge boson scattering.
- The theory is unitary, the question is whether unitarization occurs at weak or strong coupling.
- Is EWSB weak or strong?

$$\frac{v^2}{4} \text{Tr} \left(D_\mu \Sigma^\dagger D^\mu \Sigma \right) \left[1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} \right] - m \bar{\psi}_L \Sigma \left(1 + c \frac{h}{v} \right) + \text{h.c.}$$

- $V_L V_L \rightarrow V_L V_L (HH)$ Crucial (but very difficult) test
- A SM-like Higgs should be accessible by next year. A detailed study of its properties is essential to disentangle the mechanism of EWSB

Importance of the Higgs sector


- A SM-like Higgs should be accessible by next year. A detailed study of its properties is essential to disentangle the mechanism of EWSB.
 - Is there a Higgs at all?
 - Is it SM-like?
 - Expected couplings (production and branching ratios)
 - No extra scalars (charged Higgses, extra neutral ones)
 - Is it an impostor? (Dilaton, radion, ...)
 - Plausible option (in my view): SM-like but not quite
 - Surely we will have to review our assumptions once again.

Summary and Outlook

- BSM physics more interesting than ever:
 - Many different options still possible
 - Many models with similar phenomenology
 - NP not as “exhibitionist” as expected (by some)
- EWSB is the main motivation for BSM physics
 - Detailed study of the Higgs sector (or its replacement) is crucial
 - Should start to have information next year but might need more energy and luminosity to be conclusive
 - Combine information on Higgs sector and searches/discoveries of its “companions”

Word of Caution

- Do not only look far at the horizon, new physics might be right underneath our feet!

