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After one year of LHC data,
the only evidence for physics beyond the SM 

comes from neutrinos… 
(apart from DM)
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seesaw mechanism: new physics at high scale can
                                 explain the smallness of mν
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• Type I:                                  fermionic singlets

• Type II:                                 scalar triplet

• Type III:                               fermionic triplets

   Alternatives: radiative seesaws, higher dimensional operators,
                        extra dimensions, susy with R-parity violation…
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Is it possible to test it at the LHC?

First requirement: new states must be light

- Low scale seesaw with large Yukawas possible for small μ (type II) or inverse 
seesaw (both type I and III) -

ΣR

M ∼ 200GeV ⇒ YN,Σ ∼ 10−6

→  very small Yukawa couplings

M ∼ µ ∼ 200GeV ⇒ Y∆ ∼ 10−12
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Simplified model:   only 1 triplet  ⇒

• Bounds on mixing angles:
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YΣαv√
2MΣ

|VeVµ| < 1.7 · 10−7

|VeVτ | < 4.2 · 10−4

|VµVτ | < 4.9 · 10−4

|Ve| < 5.5 · 10−2

|Vµ| < 6.3 · 10−2

|Vτ | < 6.3 · 10−2

Stringent bounds are not so important...

Abada, CB, Bonnet, Gavela, Hambye 07
Del Aguila, De Blas, Perez-Victoria 08
CB, Bonnet 11
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The type III seesaw at the LHC

ΓΣ << MΣ

narrow width approx valid

σ = σprod ×Br

Br(Σ0 → l+α W−) =
Γ(Σ0 → l+α W−)

ΓTOT
∝ |Vα|2

∑
α |Vα|2

→   the smallness of  Vα affects τΣ        → displaced vertexes?

       but it does not drastically affect the final cross section

Franceschini
Hambye

Strumia 08
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Which is the situation with the LHC at 7TeV?

Del Aguila, Aguilar-Saavedra 08
(LHC 14TeV)



The type III seesaw in feynrules/madgraph

• We have implemented the simplified model
   (only 1 triplet) in FeynRules
• It generates the output for MadGraph   (and CalcHep)
• Events can be generated!

http://feynrules.irmp.ucl.ac.be/

→ Model database   → Simple extensions of  the SM

CB, Bonnet 11
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l+l+l− + ET/ l+l+l−jj + ET/

• Best discovery channel: 
   no jets good for background rejection
• Invariant mass of  dileptons good to
   distinguish from other seesaws

Del Aguila, Aguilar-Saavedra 08
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• Best channel to measure  
   the triplet mass

Del Aguila, Aguilar-Saavedra 08

pp→ (Σ± → !±Z/H)(Σ0 → !±W∓) Z/H → jets

jets momenta → Z/H momenta
                            + l momenta ⇒ triplet mass
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Process Cross Sections (fb) Final State Final State Cross Section (fb)
100 GeV 120 GeV 140 GeV 100 GeV 120 GeV 140 GeV

Final State + +−
W+µ−W+ν 1.2e+3 5.1e+2 2.4e+2 µ+µ+µ−ννν 14.9 6.3 3.0
W+µ−Zµ+ 6.7e+1 1.4e+2 8.9e+1 µ+µ+µ−νhadr 5.1 10.8 6.8

µ+µ+µ−ννν 1.5 3.1 2.0
W+µ−hµ+ 9.5e−4 2.1e−3 9.7 µ+µ+µ−νhadr – – 1.0
W+νZν 2.3e+2 2.0e+2 1.2+2 µ+µ+µ−ννν 0.9 0.8 0.5
Zµ+Zν 2.4e+1 1.1e+2 8.3+2 µ+µ+µ−νhadr 0.6 2.7 20.1

µ+µ+µ−ννν 0.2 0.8 5.8
Zµ+hν 4.4e−4 5.0e−2 1.9e+1 µ+µ+µ−νhadr – – 0.6
W−νZµ+ 1.3e+2 2.5e+2 1.5e+2 µ+µ+µ−νhadr 3.0 5.8 3.5
W−µ+Zµ+ 3.3e+1 7.0e+1 4.6e+1 µ+µ+µ−νhadr 2.5 5.4 3.5

µ+µ+µ−ννν 0.7 1.6 1.0
W−µ+hµ+ 4.4e−4 1.0e−3 4.9 µ+µ+µ−νhadr – – 0.5

Total Cross Sections µ+µ+µ− + jets + missing ET 11.2 24.7 36.0
Total Cross Sections µ+µ+µ− + jets + missing ET (only via W) 7.6 16.2 11.8

Total Cross Sections µ+µ+µ− + missing ET 18.2 12.6 12.3
Total Cross Sections µ+µ+µ− + missing ET (only via W) 17.1 11.0 6.0

l+l+l− + ET/ l+l+l−jj + ET/

Ve = Vτ = 0
Vµ = 0.063

Acceptance Cuts
pTj > 20 GeV ηj < 5 ∆Rjj > 0.4
pT! > 10 GeV η! < 2.4 ∆R!! > 0.2
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Real analysis     →  it will be provided by experimental collaborations
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Thank you!


