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Primary objective of the Pierre Auger Observatory

“Measure the properties of cosmic rays above 10" eV

with unprecedented statistics and quality”

Energy

« Cutoff at the end of the spectrum (GZK effect)? Second knee? Ankle?

Arrival direction

* Where the UHECRs come from? Is the UHECRSs flux isotropic?.....

Composition

* What are the UHECRSs? Are they mainly proton? Iron?...



Other important goals....

Search for UHE neutrinos and photons

» Observatory has the capability to detect showers induced by v and vy

Particle physics at 10’ eV

« Check for hadronic interaction models, measuring Gp_airin air showers

Other physics

e Solar, enviroment, atmospheric physics...



Pierre Auger Observatory in Argentina
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Auger extension to lower energies:

« AMIGA: denser array (infill) and buried muon counters

« HEAT: 3 additional FD telescopes looking “higher” in the sky

Auger extension with new detection techniques:

* AERA: radio antennas (MHz) in the infill region __ AERA

* R&D Ghz antennas: AMBER, MIDAS, EASIER, FDWave

Pierre Auger enhances: arxiv:1107.4807




ASTROPARTICLE PHYSICS RESULTS:

energy spectrum, anisotropies, composition

Arxiv:1107.4809; 1107.4805; 1107.4804



Energy Spectrum (6<60°)
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Fitting the combined Energy Spectrum
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Precise measurement of spectral features 8



Preliminary Infill Spectrum
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Infill is fully efficient at 3x10'" eV and 6 < 55°



Inclined SD Spectrum (6>60°)
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Update on correlation with VCV-AGN

Astropart. Phys. 34 (2010) 314

(3.1° circle) Search for correlation with the AGNSs
~ eventposition  from the 12" edition of the Veron and

Veron-Cetty catalogue

Prescription:

8 D_=75Mpc, E_ =57 EeV, ©=3.1°
"
&
.;"
§ Update up to June 2011.:
3 oo 28/84 correlate - (33+5)% correlation
o
0.1 1  vs 21% expected from isotropy (P=006)
% 1 = x4« = & ™ &

Humber of eventz (excluding exploratory scan)
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Update on correlation with CenA
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- Most significant excess in a 24° window
- 19 observed events / 7.6 expected
- KS test yields 4% isotropic probability but significance for the excess region can only be

established with independent data "



Some further searches

Multiplete search
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No excess found for E>1EeV in blind search nor search for y-ray emitters (HESS, Fermi-LAT sources)



Mass composition measurements

Many different observables are sensitive to the primary mass composition:

From FD detector:

 Full longitudinal profile
e Depth of the shower maximum Xmax

* Fluctuations on Xmax
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From SD detector:

Azimuthal asymmetry of the signal risetime

Depth profile of muon production points
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Assuming hadronic models are correct:

mean mass rises as the energy increases.
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Neutrinos

Searching for: » Upgoing Earth-skimming showers

« Downgoing neutrinos (all the flavours)

4) double-bang shower 1) regular shower
initiated by v, initiated by proton

\ ki 2

2) deep shower
initiated by v

—

5) down-going shower

initiated by v, 3) up-going shower

initiated by v,

Identification criteria:

* Inclined showers: elongated footprint and propagation speed of the shower front ~ c

* Deep (young) showers: broad time distributions in surface detectors

Blind search: 0 candidates
16



Results from search for neutrinos
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Photon search

Identification criteria

Search in SD data Search in Hybrid data
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« Small reconstructed curvature radius < Deep Xmax in FD ; %
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* Few triggered detectors in SD =

 Large risetime
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PARTICLE PHYSICS RESULTS:

muon content in air showers, p-air cross section

Arxiv: 1107.4804
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Muon production in EAS

The missing muon problem: none of the existing models can consistently describe the data on

muon number: data show more muon production than simulations

Techniques of muon number measurements

Time Structure of Tank Signals Very Inclined Events
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Muon production in EAS
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- Models significantly under-predict muons in air showers
- Muon deficit largest at high zenith angles: Nu/NuQ”’p: 2.1, Nu/NuEp"S’Fe: 1.2

- Discrepance could be caused for energy scale and/or shortcomings in the simulation of hadro-

nic and muonic showers components 21



Proton-air Cross Section

Measurement technique
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Proton-air Cross Section

Equivalent c.m. energyN's,, [TeV]
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* The cut-off in the spectrum in clearly seen and compatible with GZK pre-
diction.

« Extragalactic cosmic rays are anisotropic (signal stabilizing).

* Primary cosmic rays detected are hadronic.

* Neutrino and photon limits nearing the GZK regime.

Exciting results related to particle physics at 10 EeV:

* First p-air (and pp) cross section much beyond LHC energies.
 Hadronic interaction models underestimate muon number Iin extensive air
showers.
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