

ID de la contribución : **83**

Tipo : **no especificado**

Progress in Solar Atmospheric Neutrino Searches with 9 Years of IceCube Data

martes, 18 de mayo de 2021 19:00 (20)

Cosmic rays interact with nucleons in the solar atmosphere to create pions, kaons, and other particles which decay to produce a flux of high-energy neutrinos. Although this flux is predicted in the literature, it has yet to be observed experimentally. This flux is an irreducible background for current solar WIMP searches. The detection of these neutrinos would improve the sensitivity floor for these searches, and would allow neutrino telescopes to measure neutrinos in yet-unprobed oscillation regimes, characterized by a ratio of baseline to the energy of $L/E \sim 1e5 \text{ km/GeV}$. In this contribution, we will present recent progress in a new IceCube analysis optimized to detect solar atmospheric neutrinos.

Affiliation

Harvard University

Primary author(s) : VILLARREAL, Joshua (Harvard University); LAZAR, Jeffrey

Co-author(s) : ARGUELLES, Carlos (Harvard University)

Presenter(s) : VILLARREAL, Joshua (Harvard University)

Clasificación de la sesión : Dark matter and exotics

Clasificación de temáticas : Dark matter and exotics