Introduccién a C++

Curso de Técnicas Experimentales Avanzadas en Fisica Nuclear

Master Inter-universitario de Fisica Nuclear, curso 2017-2018

A. Tolosa Delgado

Instituto de Fisica Corpuscular (CSIC-Universitat de Valéncia)

indice
1. Introduccion
2. Variables (POD)
3. Control de Flujo
4. Variables puntero
5. Funciones
6. Clases y objetos
7. Arrays y contenedores
1. Arrays
2. std::vector
3. std::map
8. Bibliografia

Apéndice: compilary linkar en Linux

CSIC

file:///home/atd/cernbox/projects/18Exp/
file:///home/atd/cernbox/projects/18Exp/

Introduccion C++

Cddigo fuente: conjunto de instrucciones (lenguaje humano)
--El cédigo fuente es texto plano!

—-Interpretado (ROOT) o compilado (ROOT, g++, clang, etc)
Debug & benchmarking: mas facil con un IDE, como Kdevelop

Programacion estructurada: dividir las tareas en tareas mas
pequenasy simples

No hay que reinventar la rueda, comprobar web antes!
http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/reference/

Foros: Stackexchange, Stack Overflow, etc

Pensar antes de programar (el 90% del esfuerzo es debug)

http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/reference/

Hello world!

// File: main.cpp

1: #include <iostream>

2:int main()

3:{

4: std::cout << "Hello World!\n"; //Uso de “;"
5: return 0; // Uso de “}"
6:}

Directiva de precompilador : #include, #define, #ifdef, #pragma
Funcién “main” en todo programa externo (pero no en ROOT!)
Uso de “{}" para marcar un entorno/scope (funcién, bucle, etc)

Compilar (g++):
g++ main.cpp -o myFirstProgram

Hello world! Comentarios, variables

// Compilar: g++ main.cpp
// Ejemplo

// Autor

// Fecha

1: #include <iostream>

2:int main (/* esta Funcion main no tiene argumentos */)
3:{

4: double x (5.0); //ejemplo de inicializacién de variable
5: inty=3; //ejemplo de asignacion

6: std:cout<<x/y<<std:endl;

/: return O;

Variables

a) Una variable (u objeto) es una reserva de espacio en la memoria.
b) Se puede guardar informacién y modificarla mas tarde.

c) La memoria del ordenador = muchas cajitas, una detras de otra.
d) Cada cajita tiene una direccién de memoria.

e) Cuando se define una variable se reservan las cajitas necesarias

f) El nombre de una variable evita trabajar con direcciones de memoria
En el cédigo anterior, las cajitas de memoria en la linea 5:

Cuando se dice el tipo de variable/objeto, el
compilador reserva la memoria suficiente y
utiliza la informacién de una determinada forma

Ejemplo: int z(1 2345) reservara 4B, y escribird
en memoria 0..000011000000111001

" lFl %%

VNI E[UTAT
DEVALENCIA

Variables tipo “Plain Old Data” (POD)

El tamano de los enteros es dependiente del compilador!

Type Bits Range
int 16 -32768 to-32767
unsigned int 16 0 to 65535
signed int 16 -31768 to 32767
short int 16 -31768 to 32767
unsigned short int 16 0 to 65535
signed short int 16 -32768 to-32767
long int 32 -2147433648 to 2147433647
unsigned long int 32 -2147483648 to 2147483647
signed long int 32 0 to 4294967295
float 32 3.4E-38 to 3.4E+38
double 64 1.7E-308 to 1.7E+308
long double 80 3.4E-4932 to 3.4E+45932
char 8 -128 to 127
unsigned char 8 0 to 255
signed char 8 -128 to 127

El tipo de variable dice:
a) El tamano que ocupa en memoria (siempre el mismo)
b) La informacion que puede tener ,
c) Qué se puede hacer con esa informacion %

CSIC

Control de Flujo

If...else, while, do...while, switch, break, for (incremento & rango)
-See http://www.cplusplus.com/doc/tutorial/control/

1: #include <iostream>
2:int main() {

4: int start(5), stop(15), step(3), loopCounter(0); //inicializar siempre los POD!

// For (initialization ; condition; increase) { statements; }
5: for (int val = start; val < stop ; val += step, ++loopCounter)
6: {
7: std::cout << “Step: " << loopCounter << "\t Val: “ << val << std::end|;

8: }//end loop for, val

9: return O;
10:}

http://www.cplusplus.com/doc/tutorial/control/

Variables puntero

Un puntero es un tipo de variable que guarda una direccion de
memoria
--Se debe especificar a qué tipo de variable apunta

1: #include <iostream>

2:int main()

3:{

4: int myVariable(5); // inicializar siempre los POD!

5: int * myPtr = 0; // inizializar siempre los punteros!!

6: myPtr=& myVariable //& = operador direccién memoria

7: *myPtr = 666; // * = operador acceso a memoria (“indirection”)
8: std::cout << myVariable << std::endl;

9: return O;

10:}

Variables puntero

Hay varios espacios de memoria:

-Global name space: las variables seran accesibles por cualquier Funcién
en cualguier momento

-Stack: variables locales, se limpian cuando se acaba el entorno, “{}"
(bucle, funcién, etc)

-Free store: las variables definidas aqui persisten hasta que
explicitamente se libera espacio (o el programa termina). Para reservar
espacio se necesita la funcion “new”

1:int x(3); // variable global

2:int main() {

3: double *y = new double(44); //variable local, puntero
4: if (y!= NULL){std::cout << x + (*y) << std::endl; }

5: returnO;

6:}

Funciones

-Funcion: parte del programa que actua sobre datos y que
retorna un valor

--Todo programa de C++ debe tener una funcién “main”, que es
llamada automaticamente en primer lugar

—Esta puede llamar a otras funciones
--Sintaxis para la definicién de una funcién:

ReturnType functionName (type parameterName, etc...)

{
statements;
return [ReturnType];
e
1: double myDivision(double x , double y)
2.4

3: return x/vy;
4:}

Funciones

Pasar argumentos por valor, referencia, puntero

1: #include <iostream>

2: double myDivision(double x, double & y, double * result)
3:{

4: if(result) *result=x/y;

4: else std::cerr << “Null pointer” << std::endl ;

5: return x/vy;

6:}

7:int main() {
8: double x(10), y(7);
8: double divisionRes(0);

9: std::cout << myDivision(x, vy, & divisionRes) << std::end|,

10: return O;
11:}

Funciones. Sobrecarga (polimorfismo)

Diferentes argumentos y/o retorno. El compilador elegird
la funcién correcta dependiendo de los argumentos.

1. double myDivision(double x , double y , double * result) {
2. if(result) *result =x/vy;

3. else std::cerr << “Null pointer” << std::endl ;

4: return x/vy;

5:}

6. float myDivision(float x , float y , float * result)
74

8: if(result) *result =x /vy,

9. else std::cerr << “Null pointer” << std::endl ;
10: return x/vy;

11:}

Clases y objetos

Una clase es una coleccion de distintas variables y una
coleccién de funciones asociadas a esas variables.

;Cuando hay que definir una nueva clase?

Los programas resuelven problemas reales. Los problemas
complejos pueden resolverse usando los tipos “int” y “char”,
pero suele ser mas facil escribir y entender el codigo si se
crean representaciones de lo que se esta tratando.

Por ejemplo, podemos definir un tipo “pieza”, que incluya su
geometria y composicion, y definir un “detector” como suma
de muchas “piezas”. Hacer una simulacién de un detector sera
asi mas facil que usar “int" y “char”.

En general HAY QUE USAR LAS CLASES DE ROOT/GEANT4

Clases y objetos. Ejemplo (myisotope.hpp)

1: #include <iostream>

2. #include <string>

3: class mylsotope Constructor

4: { Destructor

5: public:

6. mylsotope(): isoZ(0), isoName(“”) {} :\gé:;iﬁ;s de
7: ~mylsotope(){ std::cout << “Bye...\n"; } (funciones)
8: 'std::string GetName () { return isoName; }

9. void SetName (std::string & iN){ isoName =iN; }

10: int GetZ(){ return isoZ; }

11. void SetZ(intizZ){ isoZ=izZ; }

10: private:

11. intisoZ, Ic\:/:gasrgbros dela
12: std::string isoName;

13:}; /[importante terminar con “;" !l

Clases y objetos. Ejemplo (myisotope.hpp)

1: #include <iostream>

2: #include <string>

3: class mylsotope ~ Constructor por defecto

4:{ /_ Destructor

. public:

mylsotope(): isoZ(0), isoName("") {}

~ Constructor sobrecargado

5

6 ,

7: ~mylsotope(){ std::cout << “Bye..\n"; }/
8: mylsotope(intiZ): isoZ(iz), isoName(“") {}
9

mylsotope(std::string & iN): isoZ(0), isoName(iN) {}

10: mylsotope(std::string & iN, int iZ): isoZ(iZ), isoName(iN) {}
11:

12: mylsotope Clone();

...}y //importante terminar con “;" !!

Clases y objetos. Acceso a los miembros de la clase

Un objeto es una representacién individual de una “clase”.

Declarar una clase dice al compilador cudanta memoria necesita
reservar para cada objeto, y qué puede hacerse con esa
informacion (métodos)

1:int x(5);

2: std::string aName("Jorge”); //std::string mejor que “char”
3: mylsotope galium(“Galium”, 31);

4: mylsotope cooper(“Cooper”);

5: cooper.SetZ(29); // Z es privada!, ecoperZ=-3;
6: std::cout << cooper.GetZ() ;

7: mylsotope * uranium = new mylsotope(“Uranium”, 92);
8: std::cout << uranium=>GetZ() ;

9: std::cout << (*uranium).GetZ() ;

Clases y objetos. ;Donde definir una clase?

Es recomendable definir una clase en un fichero separado, e incluirlo en el programa
principal (o en el intérprete) con la directiva #include “mylsotope.hpp”

En general, se suele separar la declaracion de la clase en un fichero “.hpp” o0 “.h", y la
definicion de los métodos (Funciones de la clase) en un fichero “.cpp,”, ".cxx”, “.C". Si la
clase se usa en el input-output de ROOT (diccionario), la separacién es obligatoria.

mylsotope.hpp mylsotope.cxx
L #?nclude <i0§tream> 1: #ifndef ___mylsotope _cxx__
2: #include <string> . _
3: #ifndef __ mylsotope_hpp__ 2: #define __mylsotope_cxx___
4: #define __mylsotope_hpp 3: #include “mylsotope.hpp”
S5: class _my|50t0pe { 4: mylsotope::mylsotope(): isoZ(0), isoName(*”) {}
? prl:ll;lllsct.)tope 0; 5: mylsotope::~mylsotope() { std::cout << “Bye...\n";}
8: ~mylsotope(); 6: std:string mylsotope::GetName ()
9. std::string GetName (); { return isoName; }
10: _VO'd SetName (std::string & IN); 7. void mylsotope::SetName (std::string & iN)
11: int GetZ(); _ o
12: void SetZ(intiz); {BENEmE =I5
13: private: 8: int mylsotope::GetZ(){ return isoZ; }
14: intisoZ; 9: void mylsotope::SetZ(intiZ){ isoZ =iZ; }
15: std::string isoName; }; _ .
16: #endif 10: #rendit

Arrays y contenedores. Arrays (C++)

Array: es una coleccion de objetos. Se declara usando “[]", ie,
int arrayExample[5] ={0, 1, 2, 3, 4};
mylsotope isoArray[3];
-Para acceder al elemento n-ésimo se usa “[n]”
std::cout << arrayExample[1] ;
-El del array tiene que estar
int arrayLength = §;
int anotherArray [arrayLength |; //
-Se pueden declarar arrays multidimensionales
int matrixExample[2][2] ={{0, 1}, {2, 3} }; // los {} interiores se ignoran

Dificultades:

-;Y si queremos anadir nuevos elementos al array?

>> Habria que crear un nuevo array con el nuevo elemento.
- /Y si accedemos a un elemento que no existe?

>> No tienen limites, intentar acceder a “arrayExample[100]” es posible pero el
valor serd absurdo -

&S

Arrays y contenedores. std::vector

std::vector: funciona de una forma similar a un array, pero resuelve los
problemas anteriores (tiene limites y no hay que preocuparse por el tamano)

std::vector< int > vExample; // 0 elementos

std::vector< int > vOtherExample (5); // 5 elementos, iniciados por defecto

std::vector< int > vAnotherExample (5,-1); // 5 elementos, iniciados a “-1"
-Para acceder al elemento n-ésimo se usa el método"at(n)”

std::cout << vOtherExample.at(1) ; // at() checkea si el elemento existe
-Se pueden nuevos
vOtherExample ;

-Si creemos que el vector puede ser muy grande, podemos reservar memoria,
lo que disminuira el tiempo necesario para anadir nuevos elementos

vOtherExample.reserve(50);

Ventajas std::vector frente a un array de C/C++
>> No hay que preocuparse por la gestion de memoria

>> Métodos propios que facilitan su manejo

http://www.cplusplus.com/reference/vector/vector/

Arrays y contenedores. std::vector (looping)

-Como un array
For(int i=0; i< vExample.size() ; i++)

{

std::cout << vExample.at(i) << std::end|;
}

-Como un contenedor, con iteradores (C++)

for(std::vector< int >::iterator vit = vExample.begin(); vit '= vExample.end(); ++vit)

{

std::cout << *vit << std::endl;

}

-Como un contenedor, con iteradores (C++11)

for(auto vit : vExample)

{

std::cout << vit << std::endl;

http://www.cplusplus.com/reference/vector/vector/

Arrays y contenedores. Iteradores (looping)

-Los iteradores son una forma flexible de acceder a cada uno de los elementos de
un contenedor (representan elementos individuales de un contenedor)

-Todos los contenedores tienen un método que devuelve el iterador al primer
elemento (“begin()”) y al ultimo (“end()")

-Los iteradores de std::vector pueden ser avanzados con los operadores “+" 0 “-", ie
std::vector< int >::iterator vit = vExample.begin();
vit = vit + 3; // avanza 3 posiciones, solo std::vector

-En general, para avanzar iteradores se puede usar la funcién “advance”/"next”
std::advance(vit, 3) ;

WARNING: advance/next/prev no comprueban si pasan los limites del contendor.
Debe comprobarse como un paso extra. La funcion std::distance() puede ser (til.

-Se pueden eliminar elementos de los contenedores con la funcién “erase()”. Los
elementos pueden eliminarse de uno en uno, o especificando un rango, eg

vExample.erase(vit); // elimina el elemento correspondiente a “vit”

vExample.erase(vit, vit + 2); // elimina 2 elementos

Arrays y contenedores. std::map

-Un mapa es una lista asociativa, como un diccionario. Los elementos estan
ordenados en el contenedor segidn una clave (key).

-Cada elemento de este contenedor tiene dos partes
— Una “clave”, que identifica al elemento del contenedor.

— Un “objeto mapeado”, asociado a cada “clave”

-Ejemplo: queremos ordenar por tiempo un conjunto de datos.
// std::map < , mapped >
std::map < , double > gammaMap;
-Para insertar los elementos podemos usar las funciones insert/emplace
gammaMap.emplace(6, 1460); // el retorno permite confirmar si se inserto
-Podemos buscar un elemento por la “clave”, usando la funcién “find”

gammaMap.find (6);

Esta Funcién devuelve gammaMap.end() en caso de que “6” no
exista, o un puntero al iterador con clave “6".

Arrays y contenedores. std::map (looping)

-Para recorrer el mapa se utilizan iteradores,

For(std::map<int,double>::iterator mit = gammaMap.begin();
mit != gammaMap.end();
++mit)

" u

{ std:cout << “Time: " << mit->first << “ “ << "Energy: " << mit->second; }

-Las funciones “lower_bound”/“upper_bound” pueden ser usadas para
seleccionar un rango de elementos de un mapa

for(std::map<int,double>::iterator mit = gammaMap.lower_bound(10);
mit != gammaMap.upper_bound(20);
++mit)

" u

{ std:cout << “Time: " << mit->first << “ “ << "Energy: " << mit->second; }

Bibliografia

Tutoriales:

http://www.cplusplus.com/doc/tutorial/

“Teach Yourself C++ in 21 Days” - Jesse Liberty

“Lecture on C++ and ROOT for physicists” - Deepak Samuel

Referencia (sobre uso)
http://www.cplusplus.com/reference/

Apéndice. Compilar en Linux con g++

Se distinguen dos etapas:

-Compilar: traducir el c6digo humano en cédigo maquina.
Diferentes ficheros pueden compilarse por separado.
-Linkar: unir los fragmentos de codigo traducido y hacer un
unico ejecutable

Ventajas de compilar frente a interpretar:
-Mas Facil localizar errores
-Programas mas rapidos

Para mas detalles, véase:
https://iie.fing.edu.uy/~vagonbar/gcc-make/gcc.htm

http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/reference/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

