
Introducción a C++

A. Tolosa Delgado
Instituto de Física Corpuscular (CSIC-Universitat de València)

Curso de Técnicas Experimentales Avanzadas en Física Nuclear

Master Inter-universitario de Física Nuclear, curso 2017-2018

Índice

1. Introducción

2. Variables (POD)

3. Control de fujo

4. Variables puntero

5. Funciones

6. Clases y objetos

7. Arrays y contenedores

1. Arrays

2. std::vector

3. std::map

8. Bibliografía

Apéndice: compilar y linkar en Linux

file:///home/atd/cernbox/projects/18Exp/
file:///home/atd/cernbox/projects/18Exp/

Introducción C++

Código fuente: conjunto de instrucciones (lenguaje humano)
--El código fuente es texto plano!

--Interpretado (ROOT) o compilado (ROOT, g++, clang, etc)

Debug & benchmarking: más fácil con un IDE, como Kdevelop

Programación estructurada: dividir las tareas en tareas más
pequeñas y simples

No hay que reinventar la rueda, comprobar web antes!
http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/reference/
Foros: Stackexchange, Stack Overfow, etc

Pensar antes de programar (el 90% del esfuerzo es debug)

http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/reference/

Hello world!

// File: main.cpp

1: #include <iostream>

2: int main()

3: {

4: std::cout << "Hello World! \n "; // Uso de “;”

5: return 0; // Uso de “;”

6: }

Directiva de precompilador : #include, #defne, #ifdef, #pragma

Función “main” en todo programa externo (pero no en ROOT!)

Uso de “{}” para marcar un entorno/scope (función, bucle, etc)

Compilar (g++):
 g++ main.cpp -o myFirstProgram

Hello world! Comentarios, variables

// Compilar: g++ main.cpp

// Ejemplo

// Autor

// Fecha

1: #include <iostream>

2: int main (/* esta función main no tiene argumentos */)

3: {

4: double x (5.0) ; // ejemplo de inicialización de variable

5: int y = 3; // ejemplo de asignación

6: std::cout << x / y << std::endl ;

7: return 0;

8: }

Variables

a) Una variable (u objeto) es una reserva de espacio en la memoria.

b) Se puede guardar información y modifcarla más tarde.

c) La memoria del ordenador = muchas cajitas, una detrás de otra.

d) Cada cajita tiene una dirección de memoria.

e) Cuando se defne una variable se reservan las cajitas necesarias

f) El nombre de una variable evita trabajar con direcciones de memoria

En el código anterior, las cajitas de memoria en la línea 5:

Cuando se dice el tipo de variable/objeto, el
compilador reserva la memoria sufciente y
utiliza la información de una determinada forma

 Ejemplo: int z(12345) reservará 4B, y escribirá
 en memoria 0...000011000000111001

main

x

y

Variables tipo “Plain Old Data” (POD)

El tamaño de los enteros es dependiente del compilador!

El tipo de variable dice:
a) El tamaño que ocupa en memoria (siempre el mismo)
b) La información que puede tener
c) Qué se puede hacer con esa información

Control de fujo

If...else, while, do...while, switch, break, for (incremento & rango)

-See http://www.cplusplus.com/doc/tutorial/control/

1: #include <iostream>

2: int main() {

4: int start(5), stop(15), step(3), loopCounter(0); // inicializar siempre los POD!

 // for (initialization ; condition ; increase) { statements; }

5: for (int val = start; val < stop ; val += step , ++loopCounter)

6: {

7: std::cout << “Step: “ << loopCounter << “\t Val: “ << val << std::endl;

8: } // end loop for, val

9: return 0;

10: }

http://www.cplusplus.com/doc/tutorial/control/

Variables puntero

Un puntero es un tipo de variable que guarda una dirección de
memoria
--Se debe especifcar a qué tipo de variable apunta

1: #include <iostream>

2: int main()

3: {

4: int myVariable(5); // inicializar siempre los POD!

5: int * myPtr = 0; // inizializar siempre los punteros!!

6: myPtr = & myVariable // & = operador dirección memoria

7: *myPtr = 666; // * = operador acceso a memoria (“indirection”)

8: std::cout << myVariable << std::endl;

9: return 0;

10: }

Variables puntero

Hay varios espacios de memoria:

-Global name space: las variables serán accesibles por cualquier función
en cualquier momento

-Stack: variables locales, se limpian cuando se acaba el entorno, “{}”
(bucle, función, etc)

-Free store: las variables defnidas aquí persisten hasta que
explícitamente se libera espacio (o el programa termina). Para reservar
espacio se necesita la función “new”

1: int x(3); // variable global

2: int main() {

3: double * y = new double(44); // variable local, puntero

4: if (y != NULL){ std::cout << x + (*y) << std::endl ; }

5: return 0;

6: }

Funciones

1: double myDivision(double x , double y)

2: {

3: return x / y;

4: }

-Función: parte del programa que actúa sobre datos y que
retorna un valor

--Todo programa de C++ debe tener una función “main”, que es
llamada automáticamente en primer lugar

--Ésta puede llamar a otras funciones

--Sintaxis para la defnición de una función:

ReturnType functionName (type parameterName, etc...)
{

statements;
return [ReturnType];

}

Funciones

1: #include <iostream>

2: double myDivision(double x , double & y , double * result)

3: {

4: if(result) *result = x / y;

4: else std::cerr << “Null pointer” << std::endl ;

5: return x / y;

6: }

7: int main() {

8: double x(10), y(7);

8: double divisionRes(0);

9: std::cout << myDivision(x , y , & divisionRes) << std::endl;

10: return 0;

11: }

Pasar argumentos por valor, referencia, puntero

Funciones. Sobrecarga (polimorfsmo)

1: double myDivision(double x , double y , double * result) {

2: if(result) *result = x / y;

3: else std::cerr << “Null pointer” << std::endl ;

4: return x / y;

5: }

6: float myDivision(float x , float y , float * result)

7: {

8: if(result) *result = x / y;

9: else std::cerr << “Null pointer” << std::endl ;

10: return x / y;

11: }

Diferentes argumentos y/o retorno. El compilador elegirá
la función correcta dependiendo de los argumentos.

Clases y objetos

Una clase es una colección de distintas variables y una
colección de funciones asociadas a esas variables.

¿Cuándo hay que defnir una nueva clase?

Los programas resuelven problemas reales. Los problemas
complejos pueden resolverse usando los tipos “int” y “char”,
pero suele ser más fácil escribir y entender el código si se
crean representaciones de lo que se está tratando.

Por ejemplo, podemos defnir un tipo “pieza”, que incluya su
geometría y composición, y defnir un “detector” como suma
de muchas “piezas”. Hacer una simulación de un detector será
así más fácil que usar “int” y “char”.

En general HAY QUE USAR LAS CLASES DE ROOT/GEANT4

Clases y objetos. Ejemplo (myIsotope.hpp)

1: #include <iostream>

2: #include <string>

3: class myIsotope

4: {

5: public:

6: myIsotope(): isoZ(0), isoName(“”) {}

7: ~myIsotope(){ std::cout << “Bye...\n”; }

8: std::string GetName () { return isoName; }

9: void SetName (std::string & iN){ isoName = iN ; }

10: int GetZ(){ return isoZ; }

11: void SetZ(int iZ){ isoZ = iZ; }

10: private:

11: int isoZ;

12: std::string isoName;

13: } ; // importante terminar con “;” !!

Métodos de
la clase
(funciones)

Miembros de la
clase
(datos/variables)

Destructor

Constructor

Clases y objetos. Ejemplo (myIsotope.hpp)

1: #include <iostream>

2: #include <string>

3: class myIsotope

4: {

5: public:

6: myIsotope(): isoZ(0), isoName(“”) {}

7: ~myIsotope(){ std::cout << “Bye...\n”; }

8: myIsotope(int iZ): isoZ(iZ), isoName(“”) {}

9: myIsotope(std::string & iN): isoZ(0), isoName(iN) {}

10: myIsotope(std::string & iN, int iZ): isoZ(iZ), isoName(iN) {}

11: myIsotope(myIsotope & inIso): isoZ(inIso.GetZ()), isoName(inIso.GetName()) {}

12: myIsotope Clone();

...: } ; // importante terminar con “;” !!

Destructor

Constructor por defecto

Constructor sobrecargado

Clases y objetos. Acceso a los miembros de la clase

Un objeto es una representación individual de una “clase”.

Declarar una clase dice al compilador cuánta memoria necesita
reservar para cada objeto, y qué puede hacerse con esa
información (métodos)

1: int x(5);

2: std::string aName(“Jorge”); //std::string mejor que “char”

3: myIsotope galium(“Galium” , 31);

4: myIsotope cooper(“Cooper”);
5: cooper.SetZ(29); // Z es privada!, cooper.Z = 3;
6: std::cout << cooper.GetZ() ;

7: myIsotope * uranium = new myIsotope(“Uranium” , 92);

8: std::cout << uranium->GetZ() ;
9: std::cout << (*uranium).GetZ() ;

Clases y objetos. ¿Dónde defnir una clase?

Es recomendable defnir una clase en un fchero separado, e incluirlo en el programa
principal (o en el intérprete) con la directiva #include “myIsotope.hpp”
En general, se suele separar la declaración de la clase en un fchero “.hpp” o “.h”, y la
defnición de los métodos (funciones de la clase) en un fchero “.cpp,”, ”.cxx”, ”.C”. Si la
clase se usa en el input-output de ROOT (diccionario), la separación es obligatoria.

1: #include <iostream>
2: #include <string>
3: #ifndef __myIsotope_hpp__
4: #define __myIsotope_hpp__
5: class myIsotope {
6: public:
7: myIsotope();
8: ~myIsotope();
9: std::string GetName ();
10: void SetName (std::string & iN);
11: int GetZ();
12: void SetZ(int iZ);
13: private:
14: int isoZ;
15: std::string isoName; } ;
16: #endif

1: #ifndef __myIsotope_cxx__

2: #define __myIsotope_cxx__

3: #include “myIsotope.hpp”

4: myIsotope::myIsotope(): isoZ(0), isoName(“”) {}

5: myIsotope::~myIsotope() { std::cout << “Bye...\n”;}

6: std::string myIsotope::GetName ()

{ return isoName; }

7: void myIsotope::SetName (std::string & iN)

{ isoName = iN ; }

8: int myIsotope::GetZ(){ return isoZ; }

9: void myIsotope::SetZ(int iZ){ isoZ = iZ; }

10: #endif

myIsotope.hpp myIsotope.cxx

Arrays y contenedores. Arrays (C++)

Array: es una colección de objetos. Se declara usando “[]”, ie,

int arrayExample[5] = {0, 1, 2, 3, 4};

myIsotope isoArray[3];

-Para acceder al elemento n-ésimo se usa “[n]”

std::cout << arrayExample[1] ;

-El tamaño del array tiene que estar defnido para el precompilador

int arrayLength = 8;

int anotherArray [arrayLength]; // no compilará!

-Se pueden declarar arrays multidimensionales

int matrixExample[2][2] = { {0, 1} , {2, 3} }; // los {} interiores se ignoran

Difcultades:

-¿Y si queremos añadir nuevos elementos al array?

>> Habría que crear un nuevo array con el nuevo elemento.

- ¿Y si accedemos a un elemento que no existe?

>> No tienen límites, intentar acceder a “arrayExample[100]” es posible pero el
valor será absurdo

Arrays y contenedores. std::vector

std::vector: funciona de una forma similar a un array, pero resuelve los
problemas anteriores (tiene límites y no hay que preocuparse por el tamaño)

std::vector< int > vExample; // 0 elementos

std::vector< int > vOtherExample (5); // 5 elementos, iniciados por defecto

std::vector< int > vAnotherExample (5 , -1); // 5 elementos, iniciados a “-1”

-Para acceder al elemento n-ésimo se usa el método“at(n)”

std::cout << vOtherExample.at(1) ; // at() checkea si el elemento existe

-Se pueden añadir elementos nuevos

vOtherExample.push_back(66.6);

-Si creemos que el vector puede ser muy grande, podemos reservar memoria,
lo que disminuirá el tiempo necesario para añadir nuevos elementos

vOtherExample.reserve(50);

Ventajas std::vector frente a un array de C/C++

>> No hay que preocuparse por la gestión de memoria

>> Métodos propios que facilitan su manejo
http://www.cplusplus.com/reference/vector/vector/

Arrays y contenedores. std::vector (looping)

-Como un array

for(int i=0; i< vExample.size() ; i++)

{

std::cout << vExample.at(i) << std::endl;

}

-Como un contenedor, con iteradores (C++)

for(std::vector< int >::iterator vit = vExample.begin(); vit != vExample.end(); ++vit)

{

std::cout << *vit << std::endl;

}

-Como un contenedor, con iteradores (C++11)

for(auto vit : vExample)

{

std::cout << vit << std::endl;

}

http://www.cplusplus.com/reference/vector/vector/

Arrays y contenedores. Iteradores (looping)

-Los iteradores son una forma fexible de acceder a cada uno de los elementos de
un contenedor (representan elementos individuales de un contenedor)

-Todos los contenedores tienen un método que devuelve el iterador al primer
elemento (“begin()”) y al último (“end()”)

-Los iteradores de std::vector pueden ser avanzados con los operadores “+” o “-”, ie

std::vector< int >::iterator vit = vExample.begin();

vit = vit + 3; // avanza 3 posiciones, sólo std::vector

-En general, para avanzar iteradores se puede usar la función “advance”/”next”

std::advance(vit, 3) ;

WARNING: advance/next/prev no comprueban si pasan los límites del contendor.
Debe comprobarse como un paso extra. La función std::distance() puede ser útil.

-Se pueden eliminar elementos de los contenedores con la función “erase()”. Los
elementos pueden eliminarse de uno en uno, o especifcando un rango, eg

vExample.erase(vit); // elimina el elemento correspondiente a “vit”

vExample.erase(vit, vit + 2); // elimina 2 elementos

Arrays y contenedores. std::map

-Un mapa es una lista asociativa, como un diccionario. Los elementos están
ordenados en el contenedor según una clave (key).

-Cada elemento de este contenedor tiene dos partes

 → Una “clave”, que identifca al elemento del contenedor.

 → Un “objeto mapeado”, asociado a cada “clave”

-Ejemplo: queremos ordenar por tiempo un conjunto de datos.

// std::map < key , mapped >

 std::map < int , double > gammaMap;

-Para insertar los elementos podemos usar las funciones insert/emplace

gammaMap.emplace(6 , 1460); // el retorno permite confrmar si se insertó

-Podemos buscar un elemento por la “clave”, usando la función “fnd”

gammaMap.fnd (6);

Esta función devuelve gammaMap.end() en caso de que “6” no
exista, o un puntero al iterador con clave “6”.

Arrays y contenedores. std::map (looping)

-Para recorrer el mapa se utilizan iteradores,

for(std::map<int,double>::iterator mit = gammaMap.begin();

 mit != gammaMap.end();

++mit)

{ std::cout << “Time: “ << mit->frst << “ “ << “Energy: “ << mit->second; }

-Las funciones “lower_bound”/”upper_bound” pueden ser usadas para
seleccionar un rango de elementos de un mapa

for(std::map<int,double>::iterator mit = gammaMap.lower_bound(10);

 mit != gammaMap.upper_bound(20);

++mit)

{ std::cout << “Time: “ << mit->frst << “ “ << “Energy: “ << mit->second; }

Bibliografía

Tutoriales:
http://www.cplusplus.com/doc/tutorial/
“Teach Yourself C++ in 21 Days” - Jesse Liberty
“Lecture on C++ and ROOT for physicists” - Deepak Samuel

Referencia (sobre uso)
http://www.cplusplus.com/reference/

Se distinguen dos etapas:
-Compilar: traducir el código humano en código máquina.
Diferentes fcheros pueden compilarse por separado.
-Linkar: unir los fragmentos de código traducido y hacer un
único ejecutable

Ventajas de compilar frente a interpretar:
-Más fácil localizar errores
-Programas más rápidos

Para más detalles, véase:
https://iie.fng.edu.uy/~vagonbar/gcc-make/gcc.htm

Apéndice. Compilar en Linux con g++

http://www.cplusplus.com/doc/tutorial/
http://www.cplusplus.com/reference/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

