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Porquée la produccion de haces radioactives ha marcado un
antes y un despues en la Fisica Nuclear

Reacciones nucleares y lo que nos ensenan
de la estructura de los nucleos.
Porqueé necesitamos haces postacelerados
Porqueé necesitamos alejarnos de la estabilidad.
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~ Close to the stability Direct Reactions with Light Projectiles, p, d, a,
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Let us use an illustrative example

209Bi=208Pb+p

209 .
B1126

o

Closed shell + 1 p Closed. shell for neqtrons
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Fig. 3.2. Single-particle energics for a simple harmonic oscillator (S.H.O.), a modified harmonic
oscillator with /2 term, and a realistic shell model potential with / > and spin orbit (I ® 5) terms.

209Bi=208Pb+p
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This is the gs of 209Bi
0+ /

9/2

209Bi=208Pb+p - The first excited state
p— In 208Pb is an octupole excitation, 3-, at

3- 2415 keV

One expects at the same energy in 209Bi
A septuplet:

h9/2

Octupole

P el ot

The appropriate reaction is inelasctic scattering, for instance (d,d")
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Octupole

209Bi=208Pb+p
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Jne could go to more sophisticated excitation modes such as
An isovector dipole resonance (E1)
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Qué ha sido necesario para poder
hacer estos experimentos

Definir la reaccion nuclear de interés.
Blancos estables: 208Pb y 209Bi en este caso
Un proyectil “sin estructura”

Un proyectil ligero (struggling)

et i b Bl
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Vamos a intentar aproximarnos a otro nucleo doblemente magico:

132Sn (Z=50, N=82)
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Hasta qué punto es 133Sn=132Sn(core)+n?

0+

- (5/27)
©/27)

(1/27)

13/2+

Y —

| Vidas mediés, T1/2'
| 207 ms ! |
180/165 ms !
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LETTERS

The magic nature of >2Sn explored through the
single-particle states of >3Sn
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End of the story (so far):

PHYSICAL REVIEW C 99, 024304 (2019)
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The location of the i13/2 single particle neutron state is still elusive,
one possibility is that it is unbound state.

B DECAY OF '""In: y» EMISSION FROM ... PHYSICAL REVIEW C 99, 024304 (2019}
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Conclusion of this part

It is important to have the possibility to perform reactions where
either the target or the projectile are radioactive.

What is easier????
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Haz radioactivo o target
Radioactivo?

132Sn +d = 133Sn + p

To produce a beam of 132Sn is possible (not easy),
To produce a target of 132Sn (T1/2=40 s) is impossible
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We need to produce a beam of radioactive nuclei

The first thing to worry about is how to produce radioactive nuclei:
Tool: Reaction or Fission

The second thing to worry is to produce them in a “clean” way

For that it is important to separate them from other radioactive products

The third thing is to produce them at the right energy

There are two main ways: the Isol method and the fragmentation method

B. Rubio. Master FN, Valencia 2020



The first thing to worry about is how to produce radioactive nuclei.
Tool: Reaction or Fission
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The reaction to produce Radioactive beams
starting with stable beam and stable target

Beam + target - products Product energy

Number of Products

GeV ~® “All nuclei” £ _gebeam
. . — . fragmentation Vosaan — Veaan up to 1000 4
HI RIKEN, GSI, MSU,FAIR, FRIB N
GeV o . “All nuclei” < o target
e+ . — . spallation few MeV/u up to 1000
P o ISOLDE
0 .
small ® “mainly neutron rich”  * o
@+ ""-...__'-_: fission ~1 MeV/u few 100
p/n @ Reactors, ISOLDE... N
sMeV/u “mainly proton rich rich” Z4  target+beam
fusion- ST -
. evaporation - m, +m, Ee fowi(=20) * ¥~ target
SPIRAIL.2 e N
20 MeV/b “close to the stability™ t ®
Transfer few: —
reactions >-109 MeViu ;]Ery o rarge
“Small facilities” <~ R




B. Rubio. Master FN, Valencia 2020



Historical view to the discovery of new isotopes
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The second thing is to separate them from other radioactive products

Radioactive nuclei production techniques

Isotopic Separation On-Line (ISOL)

thick target arator

Very low energy

Isol method

In—ﬂight fragmentétion

spectrometer

heavy projectile thin target high-energy nucleus

Fragmentation method
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Production techniques Rad Beams: post acceleration

> |sotopic separation on-line (ISOL) Isol method -

thick target ion source mass separator

high-energy nucleus

light projectile
post-acceleration

diffusion
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132Sn+d - 133Sn + p
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On 16 October 1967, the first
experiments were carried out at the

Isotopic Separator On Line
ISOLDE CERN.




ORGANISATION EU : \ % %
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1992 moved to PS booster (today)
(in 2017, 50 years celebration)
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@ “All nuclei” ) W s el
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The Separator: in general, only
isobaric separation
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lon sources A place were the newly produced atom is isonised

r B

Hot surface ion source 50KV

® The ioniser is a hot tube

e Material with a higher work function W
than the element of interest f

e Heated up to 2400 degrees I

. v

Hot Target
T=2300K

4 )

Plasma ion source

e Plasma: gas mixture (Ar and Xe)
ionised by accelerated electrons .

TARGET

e Hot or cool transfer line

| KU LEUVEN

Riccardo Raabe — KU Leuven 30 Years of RIB Physics — Pisa, 20-24/07/2015



lon sources
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Laser ion source
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Isotopes produced at ISOLDE

ION SOURCE
ACE

LASER

Tc

TV CrjMn Fe

Ru

Co
Rh

Re

Os

Ir

Rf Db| Sg |Bh

Hs

Mt

112

He
B/ C/ N O Ne
Si|P|S |Cl Ar
Br | Kr
| | Xe
Rn

113/114/115
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Many experiments have been carried out
During these 50 years with beams right after
the separation -
(non accelerated beams or slow beams) y
The activity of the IFIC gamma Group focuss
On beta decay activities here '._ "“5"“1
(see talk by ‘A ’Algora) - |

[ . u
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View [%

ISOLDE

17 DECEMBER 1964

The On-Line CERN approves the online cility dedicated to the production of a large variety of radioactive ion
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EBIS Ion Source and beam handling: 5-15% efficiency

A/q separator _ Q%QAQE.‘&-X’BG@

In the EBIS the 1* ton* ion
conversion takes place

A/q
separator . B binched @
i 1*ions
b . < Beams from ISOLDE with
-. B . :
_ 1+ charge state
_selected
= q'ions
tolinac -
Preparation
trap
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Post accelerator: Normal Conducting LINAC

However, energies only 0. 8 to 3 MeV/u which are too low for Nuclear reactions
B. Rubio. Master FN, Valencia 2020



QXRT-YAA - Miniball gamma array

barrel

MINIBALL cluster

24 six-fold segmented, tapered, encapsulated high-purity germanium crystals
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"HIE ISOLDE
High Intensity and Energy ISOLDE (up to 10 MeV per nucleon)

4.3 MeV per nucleon

| fﬁf LTl Lk REX-ISOLDE
r. ..'. A lh_.-.l..._r

g igh-beta
‘r;i ' cryomodules
":L 85 Miniball

o
e

First experiments in 2015
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EURISOL 4 MW
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Black - In-target (ISOL) production

Isol + post acceleration present
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Future ISOL facilities
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Mid-term Roadmap

Phase1 (2016-)
Increase the intensity of stable beams N
High intense neutron source Low energy facility

(HI= 10*pps, p-Ni) AGATA

DESIR Phase1+ (2020-)

(2015-2018)

. Y h

Phase1++ (2021-) Phase? %,
High Intlesnsity Expand the range and e
(HI< 10" pps, p-U) the intensity of exotic

nuclei

SPIRAL1 Upgrade (2017-)
New light RIBs from
beam/target fragmentation
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Near Future : SPIRAL2 Phase1 ' @i~

LINAC: Neutrons (+)
33MeV p, 40 MeV d For Science DESIR Facility
14.5 AMeV HI Low energy RIB

S3 separator-

(++) spectrometer

A/q=7 HI source
Up to 1mA; p-U

=
e
"

A/g=2 source
p, d, 34He S5SmA

A/g=3 HI source
Up to TmA; p-Ni

LINAC : Average beam intensity equivalent to
that of ESS or EURISOL driver




ISOL Rare Isotope Beams at SPIRAL 2

Unfortunatelly e neutron rich side of
The Spiral 2 Facili. is not financed at

The moment
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Fortunatelly and startegically a new project for neuron
rich (fission), has been aproved in Legnaro (Italy),
and is already under construction

SPES
Selective Production of Exotic Species
.

UF::‘;;::.,"::?:::.'; SPES PrOjECt

The SPES radioactive ion beam facility: status |
and perspectives

SPES building

50x60 m?
-3 to +11 m height
24.000 m? of concrete

The SPES facility at the LNL
(Inauguration of the driver in few weeks)

Giacomo de Angelis
INFN Laboratori Nazionali di Legnaro
for The SPES collaboration




Far in the Future ISOL facility

B. Rubio. Master FN, Valencia 2020



Furl'henng furgel' und uccelerui'or fechnology

A 4-year Design Study began in 2005
| in order to work on the technologically
challenging aspects of the project, the
instrumentation and the radiation safety
issue. Synergy with other projects is
being examined, including a feasibility
" study for the new ‘beta-beam’ neutrino
- proposal, forming an integral part of the
) Design Study. After this, possible sites
will be evaluated, and the community
e will be ready for a full Engineering
EXPERIMEMNTAL

. Design, to be followed by construction
of the facility.

r r Researchers and engineers of several
Y '»EU RISOL European laboratories are collaborating

TO HIGH-ENERGY TO MEDIUM-ENERGY TO LOW-ENERGY in twelve tasks to further the EURISOL
i “Pﬂm“ﬂfu IHE-“ : Emﬂl“Fmﬂ AREAS i -ENFE-FH E-H.'III. ﬂFﬂﬁ design_

The EURISOL layout consists of a superconducting linear accelerator providing protons of energy 1 GeV and an
impressive power of 5 MW, but also capable of accelerating deuterons, *He and ions up to mass 40. The beams
will impinge simultaneously on two types of targets, either directly or after conversion of the protons into neutrons
through a loop containing 1 ton of mercury surrounded by kilograms of fissile material. The unstable nuclei produced
diffuse out of the target, are ionized and selected, and can be used directly at low energy or reaccelerated by another
linear accelerator to energies up to 150 MeV per nucleon in order to induce nuclear reactions.



Physics with ISOL RIB | Precision nuclear structure physics & applications

Intensity & Energy

domains HIE-ISOLDE,
SPES, SPIRAL2, EURISOL
ISOL@MYRRHA
EURISOL-DF
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intermediate step towards EURISOL




EURISOL — Distributed Facilitz SDFZ
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Radioactive nuclei production techniques

Isotopic separation on-line (ISOL)

rator

©We can use thick production targets (100% of energy
range) => and high injector beam current (upto10'® s)
®© long extraction and ionization time (ms)
©chemistry dependent (disadvanages and some advantages)
In-flight fragmentation

spectrometer

heavy projectile thin target high-energy nucleus

short separation+identification time (100 ns)
©) thinner targets (10% of range) =>lower beam currents (upto 10'2 s)
chemistry independent - - - -



The energy issue: Some physics can only be reached
with relativistic energies

200

100

00

100

do/dE [mb/MeV] do/dE [mb/MeV]




Projectile Fragmentation Reactions

Projectile

1 GeV/u ’

target hotspot

Excited
pre-fragment

————

Final target like
fragment

Energy (velocity) of beam > Fermi velocity inside nucleus ~30 MeV/u
Can ‘shear off’ different combinations of protons and neutrons.

Large variety of exotic nuclear species created, all at forward angles
with ~beam velocity.

B. Rubio. Master FN, Valencia 2020
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EURISOL 4 MW

Louvain-la-Neive
e

Beijing

>y
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CalcuttaVECC
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Optimised to separate

Bp-AE-Bp Separation Method | €I'Y fast fragment or
1ission products

FR S

degrader

Ions are selected according
to the momentum to charge ratio
Mv/q=Mv/Z=Bp. Primary beam is rejected.

B. Rubio. Master FN, Valencia 2020



The GSI fragmentation facility

It is possible to accelerate stable
Nuclei from H (Z=1) to U (Z=92), in
the UNILAC + Synchrotron.

S e Fragmentation of the
primary ion beam:
“cocktail” of ions
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B. Rubio. Master FN, Valencia 2020



The highest intensity today we find at RIKEN, Nishina Center
this is partially due to the implementation of the
superconducting technology

Yoshio Nishina

1937, first cyclotron in Jpan and second in the World)

e-Rl scattering with SCRIT

(construction)
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Experimental Setup
BigRIPs In-Flight Separator

RILAC 2
l“%’\‘?ﬁz
A%
5

Production of
78<r Beam
at 345MeV A

Experimental Setup
BigRIPs In-Flight Separator

Identification
of each fragment

o e T

Zet

B. Rubio. Master FN, Valencia 2020

Experimental Setup
BigRIPs In-Flight Separator

X

Production of
the nucleus
9Be (78r,%*Se)

Experimental Setup
BigRIPs In-Flight Separator
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BigRips
GeHP
Cluster
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Experimental Setup
BigRIPs In-Flight Separator




Estudios de nucleos exoticos en RIKEN (Japon)

A. Algora et al.

B. Blank et al.

B. Rubio et al.

Descubrimiento de nuevos iso0topos

Estudio de los nucleos de Ge, Se, y Kr mas exoticos

Ne

*

10°

32

30

28

26

B

185 1.9 1.9 2 205 215 22
' B. Rubio. Master FN, Valencia 2020
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Krypton
Z=36
Selenium
=34
Arsenic
Z=33
Germanium ) N #
7=32 Ge Ge
Gallium )
Z=31

Zinc | ss 55 56 57 58
7-30 Zn Zn Zn Zn Zn

# # #
Cu  SCu ™Cu *Cu **Cu “Cu

51Ni SZNi 53Ni SdNi SSNi 56Ni

B. Rubio, Cocoyoc, 2019 Jan 10th
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Existing GSI facility New facility

" SIS100/300
L p-LINAC
f
L
: P - .
.= y MILAC : \—__/
'.-_-‘l.\.l{. — .J .III_ \.
A, 4
X : ’J _— Rare lsotope A
. 7 ' Production Target o

A

GSI Super-FRS

Z=1-92 /'F/

(from p to U) Antigroton
Production Tanget

Up to 2 GeV/nucleon

. .i5ma Physics

& m i (Db i ine

Beams at FAIR (future): @
Intensity: factor 100 (prim. beams) - " -

10 000 fold (second. beams) o 7
Z=-1-92

(anti-protons to uranium) -

Up to 35 - 45 GeV/u B. Rubio. Master FN, Valencia 2020
,,full beam cooling*

FLAIR

W ewisting facility
B new facility
) expenments



FRS to Super-FRS

‘ Bp-AE-Bp Separation Method

69 m

INge
il
Optimised to sepal:ate

very fast fragment or
H. Geissel et al. NIM B 204 (2003) 71 fiSSiOI_] pFOdUCtS




FAIR Project Progress - Civil Construction

f
|
|
|
|
i

: SIS 18 in direction of pLinac
Preparation of western tran

SIS 100:
trench sheeting
(first 8 meters - N S
sheet piling) :

69 . _ Status: 30.10.2017
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Scenario for NUSTAR: Day one

Super-FRS
construction and installation

NUSTAR caves @

NUSTAR experiments é

T



ISOL and In-Flight facilities-Partners

It is probably true to say that both types of facility but they are
complementary.

» High intensity beams with ion * Relativistic beams

optics comparable to stable beams
 Universal in Z

 Easy to manipulate beam energies
from keV to 10s of MeV * Down to very short T, ,

*Cleaner *More exotic beams

B. Rubio. Master FN, Valencia 2020
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difficulties

extremely low production cross sections

overwhelming production of unwanted species in the
same nuclear reaction,

very short half lives of the nuclei of interest.

chalenges

As much intensity as possible (good driver, targets to
stand the intensity)

Good separation

Bring the species to a “clean environment” . Make the
process as fast as possible
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A good (although a bit outdated) article

TOP PUBLISHING PrysICA SCRIPTA
Phys. Scr. T152 (2013) 014023 (24pp) doi: 10.1088/0031-8949/ 201 3/T152/014023

Facilities and methods for radioactive ion
beam production

Y Blumenfeld'2, T Nilsson® and P Van Duppen*

! Inetitunt Aa Phucione Nneléaire TNIPACNRE TTniversitd Paric €nd F_O140A Mreay Franns

http://iopscience.iop.org/article/10.1088/0031-8949/2013/T152/014023/pdf

Phys. Scr. T152 (2013) 014023 Y Blumenfeld ez al
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Figure 1. A schematic drawing of the ISOL and in-flight based production methods for RIBs.
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