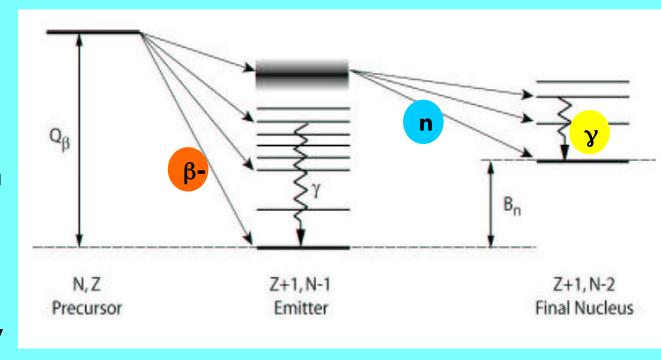
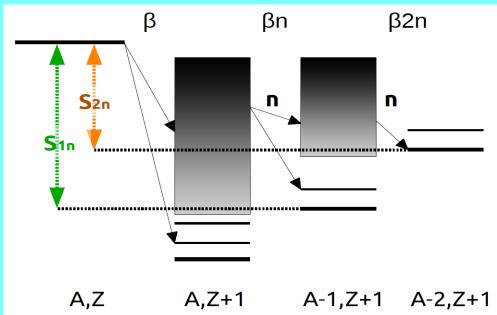
β-delayed neutron emission: Measurement of emission probabilities

J.L.Tain
Instituto de Fisica Corpuscular
CSIC-Univ. Valencia

Beta-delayed neutron emission is an exotic process that occurs in neutron rich nuclei whenever the neutron separation energy in the daughter S_n is smaller than the available decay energy window $Q_{\scriptscriptstyle\beta}$



Beta-delayed multiple neutron emission can also occur whenever S_{2n} , S_{3n} , ... are smaller than Q_{β}



P_{xn} : x-neutron emission probability

$$P_{1n} = \frac{\int\limits_{S_n}^{Q_{\beta}} \frac{\Gamma_{1n}(E_x)}{\Gamma_{tot}(E_x)} S_{\beta}(E_x) \cdot f(Q_{\beta} - E_x) \cdot dE_x}{\int\limits_{Q_{\beta}}^{Q_{\beta}} S_{\beta}(E_x) \cdot f(Q_{\beta} - E_x) dE_x}$$

$$\Gamma_{tot} = \Gamma_{y} + \Gamma_{1n} + \Gamma_{2n} + \dots$$

Beta strength:

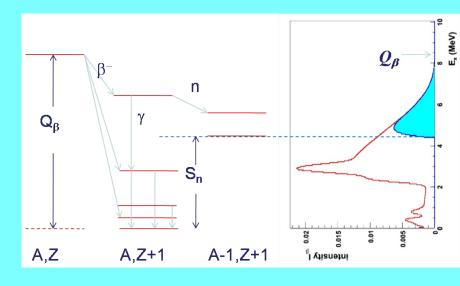
$$S_{\beta}(E_{x}) = \frac{1}{D} \frac{g_{A}^{2}}{g_{V}^{2}} \frac{1}{2J_{i}+1} \left| \left\langle f \right| M_{\lambda \pi}^{\beta} \left| i \right\rangle \right|^{2}$$
$$= \frac{I_{\beta}(E_{x})}{T_{1/2} f(Q_{\beta} - E_{x})}$$

Total neutron emission probability

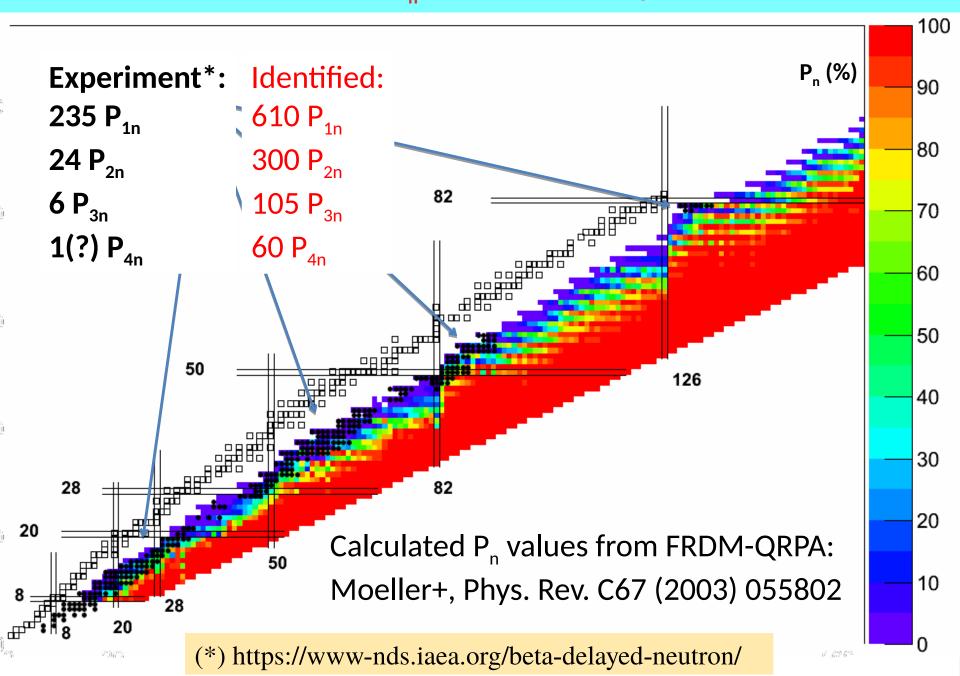
$$P_n = \sum_{x>0} P_{xn}$$

Neutron emission multiplicity

$$\langle n \rangle = \sum_{x>0} x P_{xn}$$



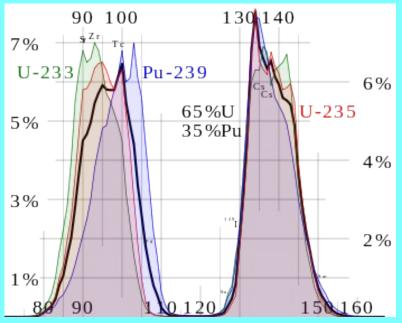
Measured P_n values versus expected



Nuclear power reactors: delayed neutron fraction

- Some fission products are β n emitters
- They contribute with a small fraction (β <1%) to the total number of neutrons in a reactor
- They are however essential for the mechanical control of reactor power

Fission yields as a function of A



Prompt neutrons vs. delayed neutrons

	Isotope	fission cross-section 0.025eV / 2MeV	prompt neutrons 0.025eV / 2MeV	delayed neutrons 0.025eV / 2MeV
Г	235U	585 / 1.27	2.42 / 2.63	0.0162 / 0.0165
	238U	0.000027 / 0.57	2.36 / 2.60	0.0478 / 0.0478
	233U	531 / 1.98	2.48 / 2.63	0.0067 / 0.0077
	239Pu	747 / 1.93	2.87 / 3.16	0.0065 / 0.0067
	241Pu	1 012 / 1.76	2.92 / 3.21	0.0160 / 0.0160

Thermal energies

The time evolution of delayed neutron fraction is represented by six (eight) "groups of isotopes"

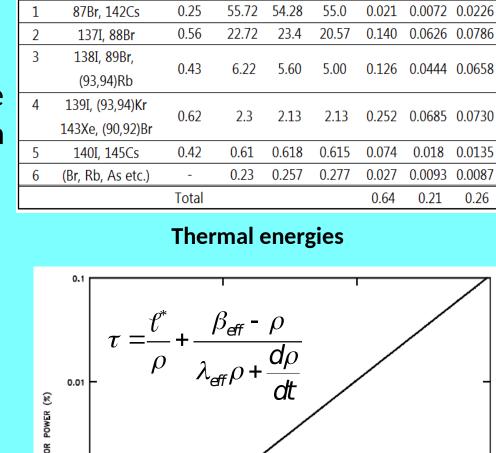
The group parameters are fissile

- nucleus dependent and neutron energy dependent
 They are obtained from integral
- The time evolution of reactor power after sudden variations of the reactivity ρ

measurements

is modulated by the delayed neutron fraction
$$\beta$$

$$\rho = \frac{k_{eff} - 1}{k_{eff}} \quad k_{eff} \text{ effective multiplication factor}$$



235U

Mean

energy

(MeV)

Possible

precursor nuclei

0.001

0.0001

Average half-life of the

group [s]

239Pu

233U

30

TIME (SECONDS)

235U

Delayed neutron

fraction [%]

239Pu

233U

Microscopic summation calculations of \overline{V}_d

- A more fundamental and generic approach to the estimation of β_{eff}
- Microscopic summation calculations lack still the accuracy of Keepin sixgroup formula
- Reason: **inaccuracies** in fission yields Y and **delayed neutron emission probabilities** P_n
- Improvement of P_n values and comparison with integral measurements can constrain Y

235U thermal fission

V_i · P_n

0.22

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

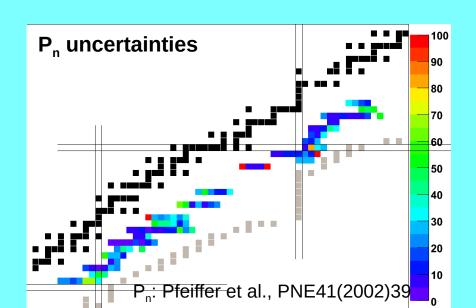
0.02

0.02

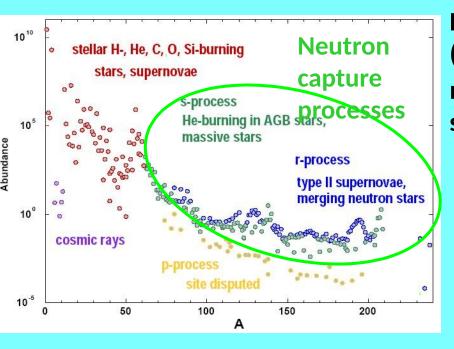
Number of delayed neutrons per fission

$$\overline{V}_d = \sum_i Y_i \cdot P_n^i$$

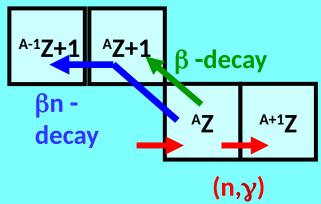
Can be used to identify P_n values that should be revisited

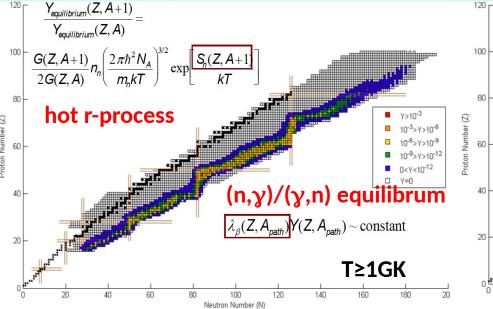


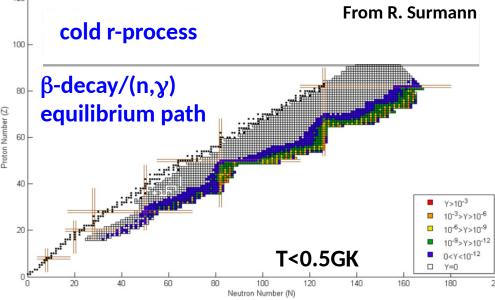
Astrophysics: The r-process



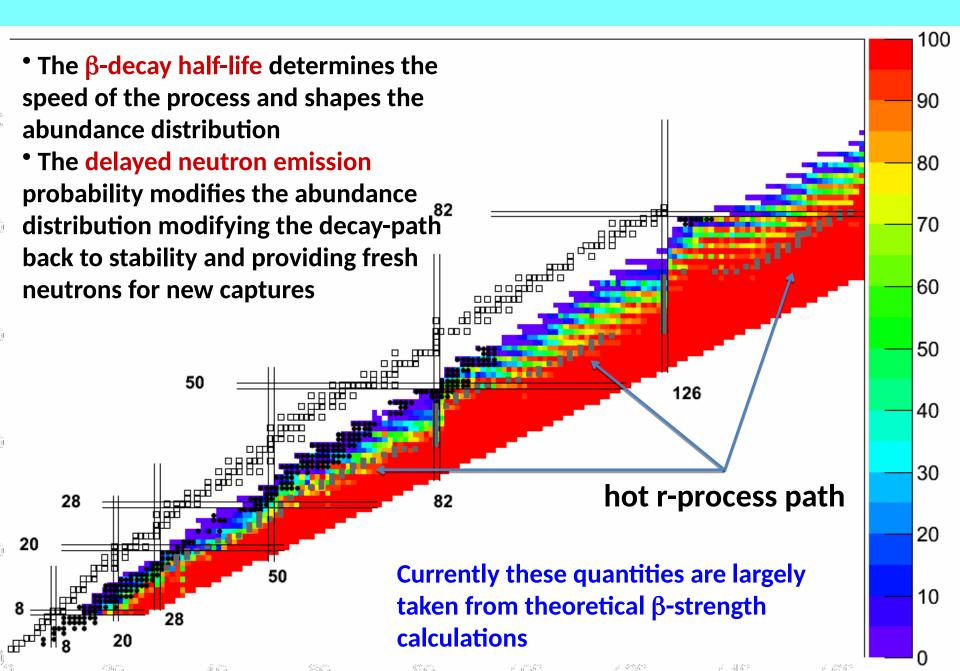
R-process: A short and very high neutron flux $(n_n>10^{20} \text{ g/cm}^3)$ produces very neutron-rich nuclei by successive neutron captures in a short time, which then decay to stability.







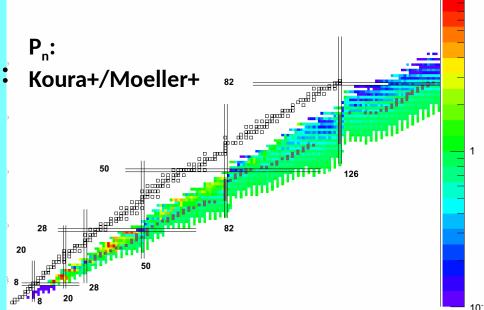
Importance of T_{1/2} and P_n values in r-process nucleosynthesis

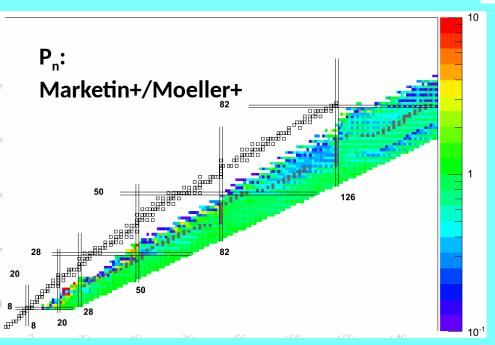


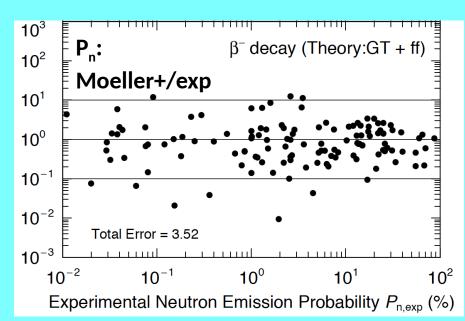
Comparison of global calculations: P_n

How reliable are the calculations?

- Moeller+, PRC67 (2003) 055802:
 FRDM+QRPA
- Marketin+, PRC93 (2016)
 025805: RHB+RQRPA
- Koura+, PTP113(2005)305 & PTP84(1990)641 : KTUY+GT2

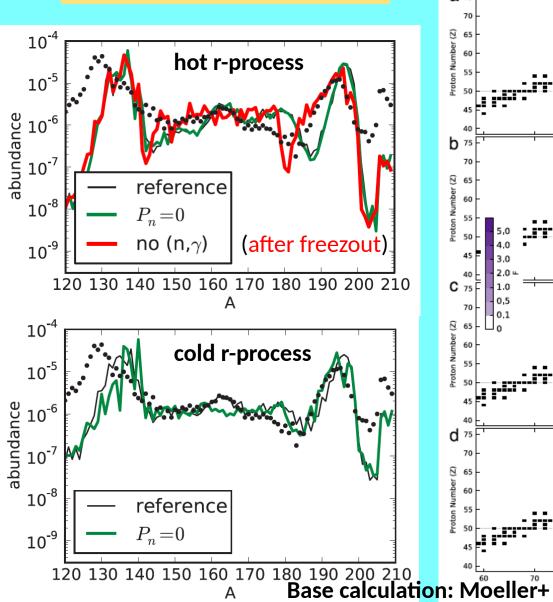




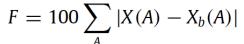


Impact of P_n

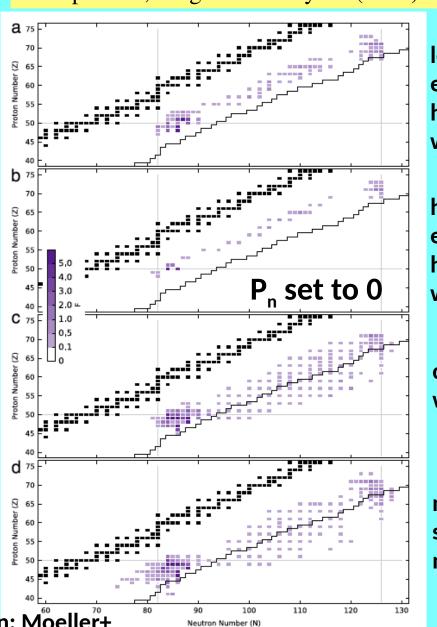
Arcones+, PRC83(2011)045809



Sensitivity check:



Mumpower+, ProgPartNucPhys86 (2016) 86



low entropy hot wind

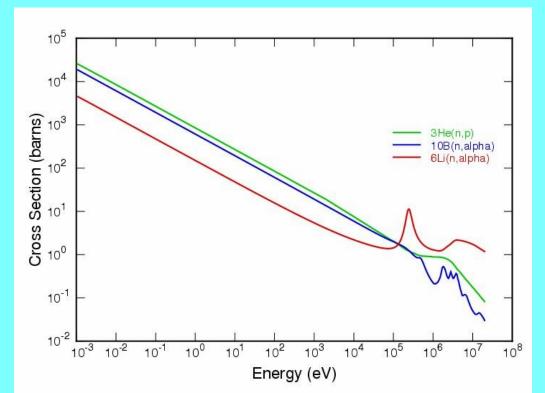
high entropy hot wind

cold wind

neutron star merger

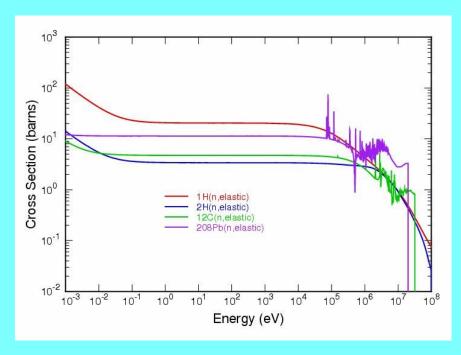
Measurement of P_n values

- The best method is by direct detection of the neutrons emitted
- Neutrons are neutral particles thus their detection require the production of electromagnetically interacting particles
- Reactions used: nucleus scattering, charged particle producing reactions, radiative capture, fission
- A useful reaction is ³He(n,³H)¹H, with Q=+764keV which has a large cross-section at thermal energies

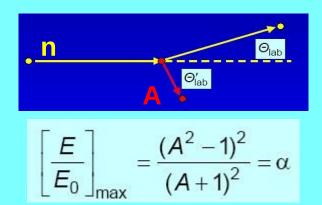


• ³He is a (rare) gas that can be used as the sensitive gas of proportional counters

 Moderation of neutron energy by scattering on hydrogen is very useful to thermalize its energy



Nucleus	1-α	ξ	N
¹H	1	1	18
²H	0.889	0.725	24
⁴He	0.640	0.425	41
¹² C	0.284	0.158	111
⁵⁶ Fe	0.069	0.035	500
²⁰⁸ Pb	0.019	0.010	1823



Maximum energy loss: 1- α

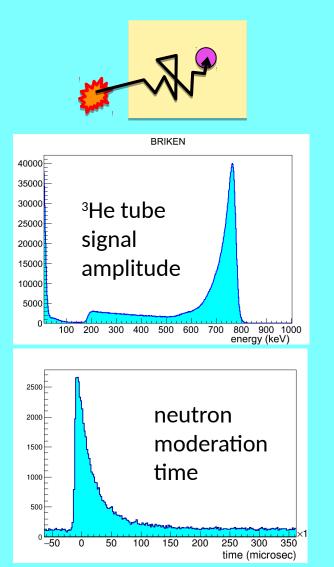
Slowing down parameter:

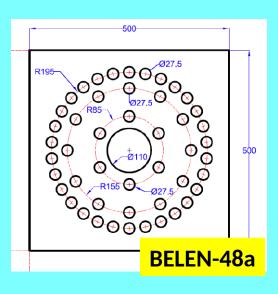
$$\xi = \left\langle \ln \frac{\mathsf{E}_0}{\mathsf{E}} \right\rangle = 1 + \frac{(\mathsf{A} - 1)^2}{2\mathsf{A}} \ln \frac{\mathsf{A} - 1}{\mathsf{A} + 1}$$

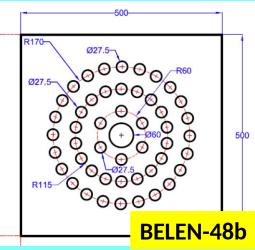
N: cumber of collisions to bring E_n from 1MeV to 25meV

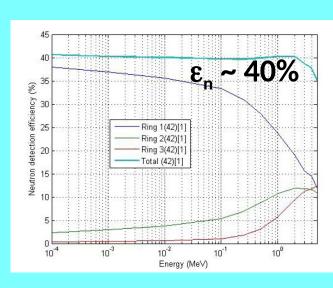
Moderated neutron neutron counter

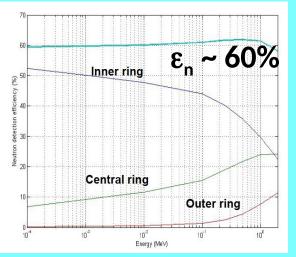
 Array of ³He filled proportional tubes inside a neutron energy moderator polyethylene (PE) matrix









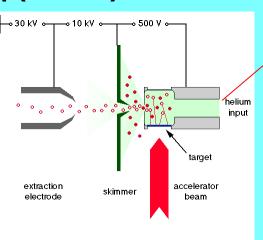


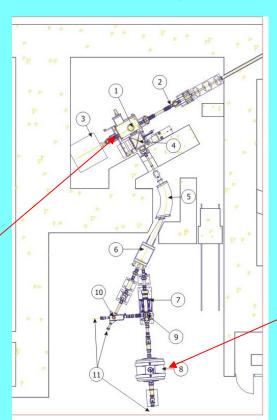
Experiment at ISOL facility: production and selection of isotopes

JYFL Accelerator Laboratory

IGISOL separator +
ion guide source:
refractory elements

p(25MeV) + Th => FF

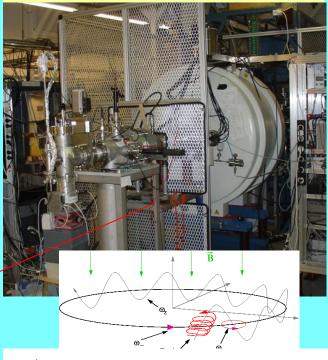


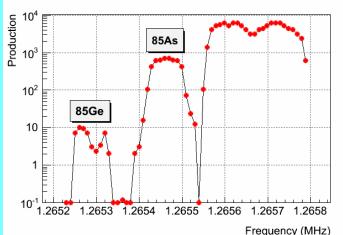


Isotope	Rate (s ⁻¹)	Isotope	Rate (s ⁻¹)
⁸⁸ Br	1450	⁸⁵ Ge	6
94Rb	1030	⁸⁵ As	175
95Rb	760	⁸⁶ As	30
¹³⁷	100	⁹¹ Br	80

Pure isotopic beams

JYFLTRAP Penning trap: isotopic purification

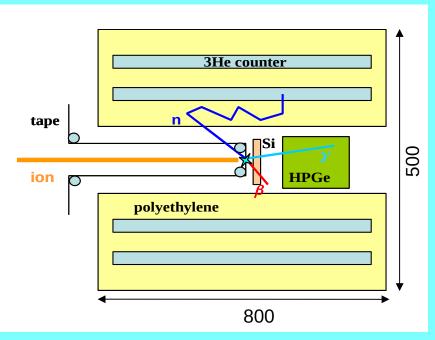




Experimental setup:

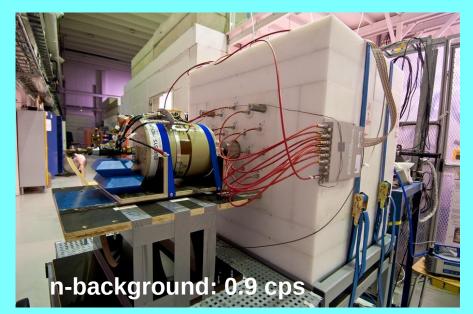
BELEN-20 detector

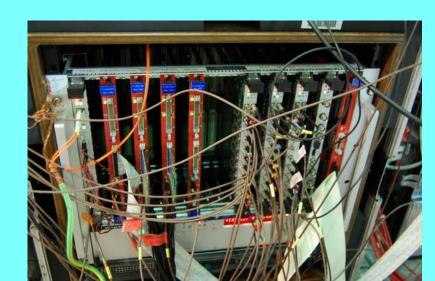
20 ⊘2.5cm×60cm **3He tubes @20atm**



- Neutron background shield: 20cm PE
 - **Self triggered DACQ:**
 - -Time-energy pairs for every neutron or β
 - -Clean noise separation
 - -Minimum dead time:<0.5%

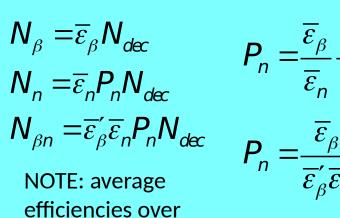
- 30keV beam implanted on tape
- Si or plastic detector for β detection
 - HPGe detector for γ detection

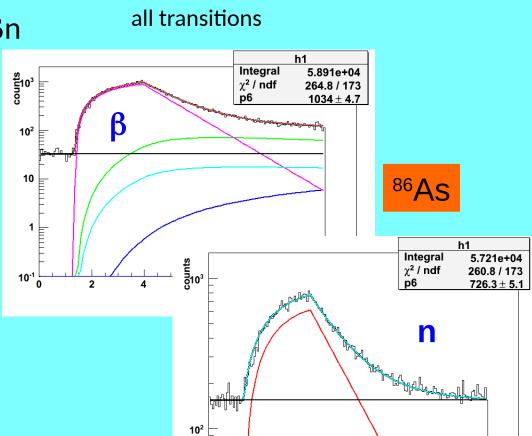




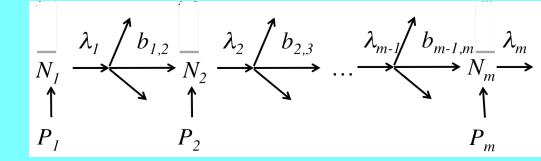
Data analysis

- To obtain P_n we need to count the total number of decays and the number of decays followed by n emission
- For this we count β and n or β n coincidences
- We need to disentangle the counts from the nucleus of interest from other nuclei
- For this we measure grow and/or decay curves of the activity and fit with appropriate solutions of the Bateman equations





10 time [s] Solution of Bateman equations from Skrable et al., Health. Phys. 27 (1974) 155)



Equations:

$$\frac{dN_1}{dt} = P_1 - \lambda_1 N_1$$

$$\frac{dN_2}{dt} = P_2 + \lambda_1 b_{1,2} N_1 - \lambda_2 N_2$$
...
$$\frac{dN_m}{dt} = P_m + \lambda_{m,1} b_{m,1,m} N_{m,1} - \lambda_m N_m$$

Activity:

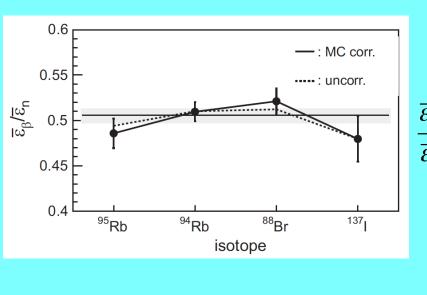
$$A_m^{\beta}(t) = \overline{\varepsilon}_{\beta} \lambda_m N_m(t)$$

$$A_m^n(t) = \overline{\varepsilon}_n P_n \lambda_m N_m(t)$$

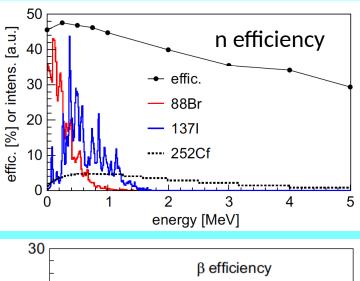
Solution (number of nuclei as a function of time):

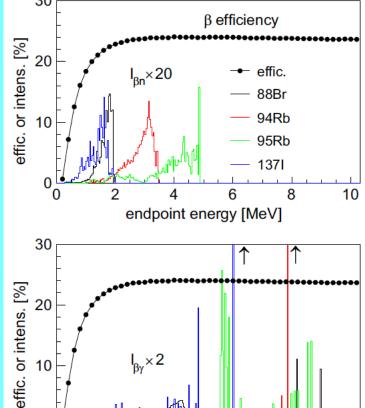
$$N_{m}(t) = \sum_{i=1}^{m} \left[\left(\prod_{j=i}^{m-1} \lambda_{j} b_{j,j+1} \right) \times \sum_{j=i}^{m} \left(\frac{N_{i}^{0} e^{-\lambda_{j} t}}{\prod_{k=i,k\neq j}^{n} (\lambda_{k} - \lambda_{j})} + \frac{P_{i} \left(1 - e^{-\lambda_{j} t} \right)}{\lambda_{j} \prod_{k=i,k\neq j}^{n} (\lambda_{k} - \lambda_{j})} \right]$$

Determination of average efficiencies (nucleus dependent): source of systematic errors



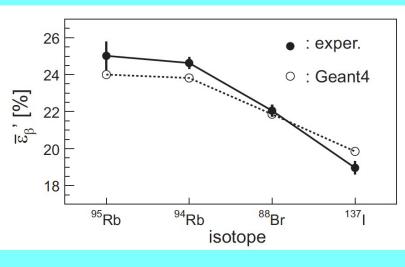
$$E_{\beta}' = \frac{N_{\beta n}}{N}$$





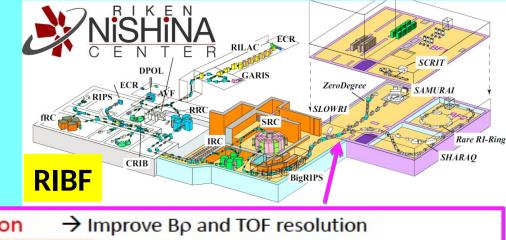
endpoint energy [MeV]

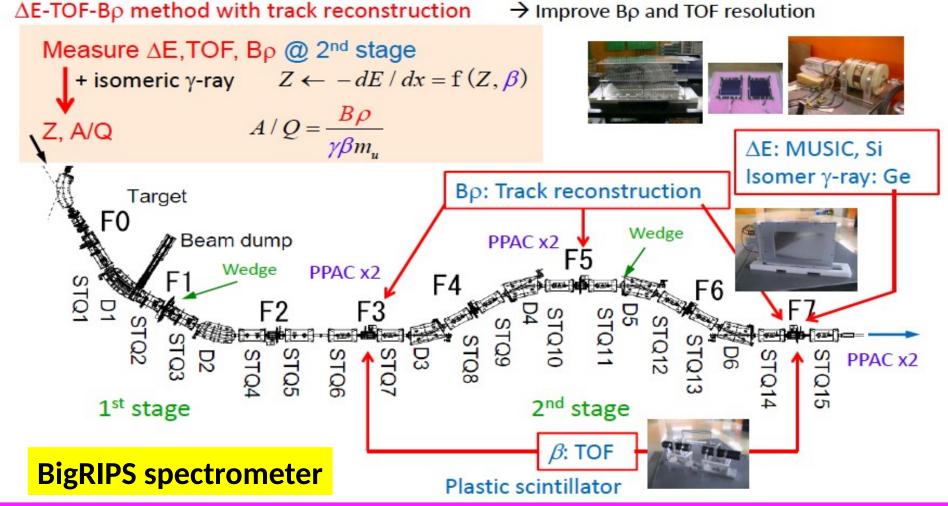
10



Experiment at fragmentation facility: production and selection of isotopes

345 MeV/u ²³⁸U + ⁹Be(4mm): fragmentation/fission





Advanced Implantation Detector Array (AIDA)

Stack of six Si DSSD

Size: 1mm×72mm×72mm

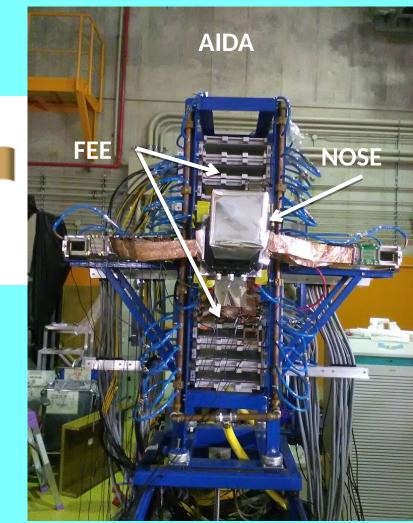
Granularity: 128×128 pixels (0.51mm strip)

SECOND STAGE

Low gain (implant) and high gain (betas)

preamplifiers

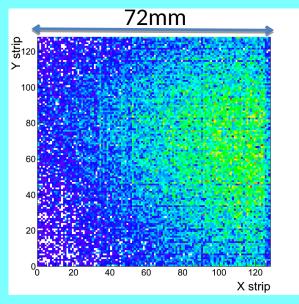
Total data readout DACQ (1536 ch)



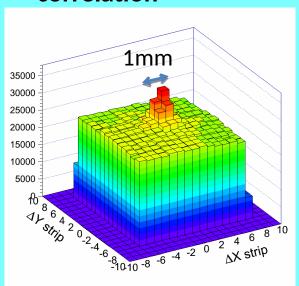
- Implants and betas are distinguished by the energy released in the detector
- Betas corresponding to each implanted ion are associated by spatial correlations



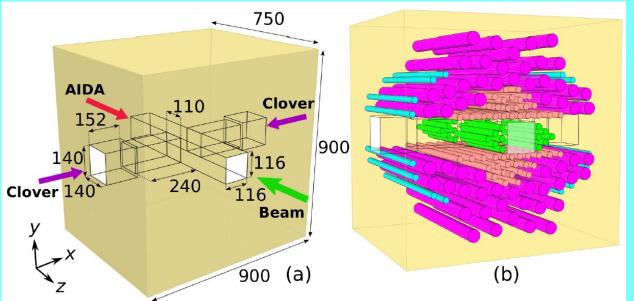
Implant position distribution



Implant-beta spatial correlation

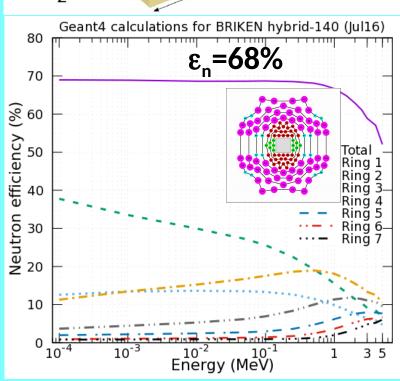


BRIKEN neutron counter



Hybrid setup:

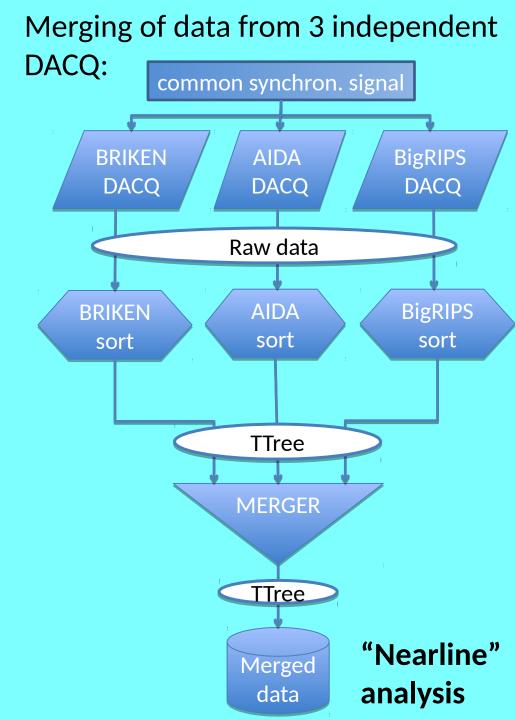
- 140 ³He tubes (4 types)
- 2 CLOVER HPGe



BRIKEN Gasific70 DACQ:

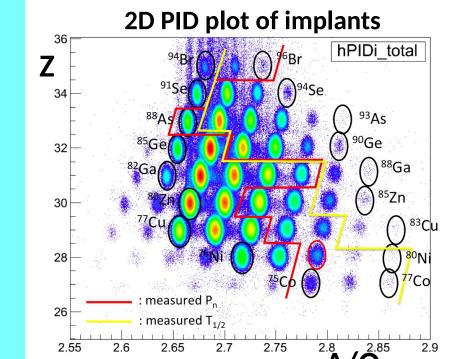
- ³He tubes, CLOVER, ancillaries
- SIS3316 and SIS3302 digitizers
- Self triggered, common clock

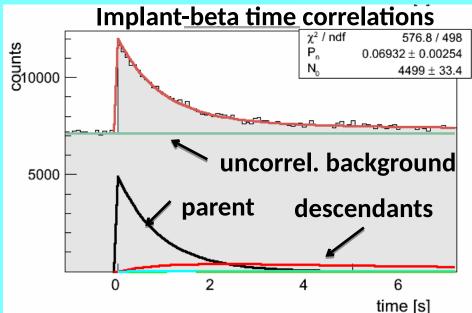
Agramunt+, NIMA807(2016)69



Data analysis:

- Each implanted ion in AIDA is identified using the information from BigRIPS in prompt coincidence
- The associated β decay is assigned to the identified ion on a statistical basis from implant-β space-time correlations (delayed coincidence)
- Random coincidences are quantified from the backwards in time correlations
- Fitting with appropriate solutions of the Bateman equations serves to separate parent from descendant β signals

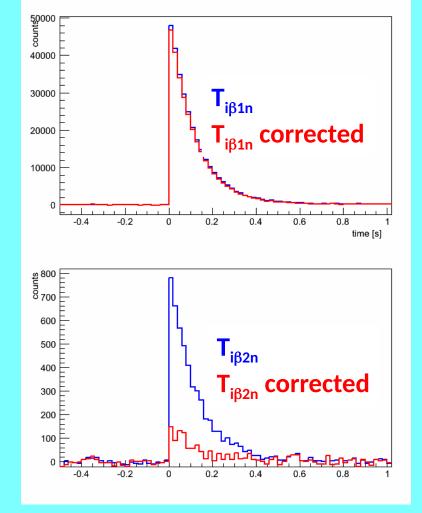




Tolosa+, NIMA925(2019)133

- Adding the condition that
 1, 2, ... neutrons come
 within ~200μs of the β we
 obtain the implant-β1n,
 implant-β2n, ... time
 correlations
- Random 1n, 2n, ... events contribute to the implantβxn correlated background and must be corrected

 β2n decay contributes to the counts observed in β1n correlations and should be corrected



$$N_{1n}(t) = \varepsilon_n P_{1n} N_{dec} + 2\varepsilon_n (1 - \varepsilon_n) P_{2n} N_{dec}$$

$$N_{2n}(t) = (\varepsilon_n)^2 P_{2n} N_{dec}$$

$$N_{1n(2n)}(t) = 2 \frac{1 - \varepsilon_n}{\varepsilon_n} N_{2n}(t)$$

 To disentangle parent and descendant contributions we fit the time spectra with appropriate solutions of Bateman equations

Fit functions:

$$f_{\beta}(t) = \sum_{i \in \beta} \overline{\varepsilon}_{\beta}^{i} \lambda_{i} N_{i}(t)$$

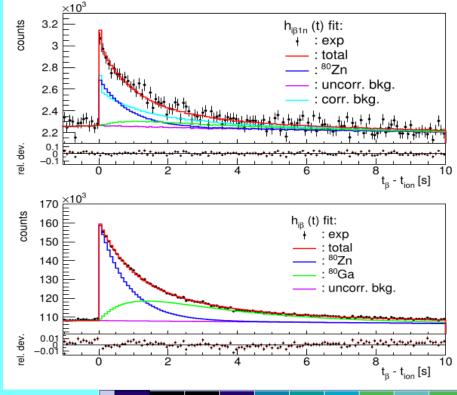
$$f_{\beta 1n}(t) = \sum_{j \in \beta 1n} \overline{\varepsilon}_{\beta}^{j} \overline{\varepsilon}_{n}^{j} P_{1n}^{j} \lambda_{j} N_{j}(t)$$

 $b_{i,i+1} = P_{1n}^{i}, P_{2n}^{i} \text{ or } 1 - P_{1n}^{i} - P_{2n}^{i}$

$$f_{\beta 2n}(t) = \sum_{k=\beta 2n} \overline{\varepsilon}_{\beta}^{k} (\overline{\varepsilon}_{n}^{k})^{2} P_{2n}^{k} \lambda_{k} N_{k}(t)$$

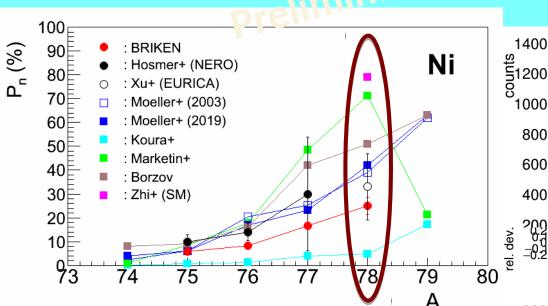
$$N_k(t) = N_1 \prod_{i=1}^{k-1} (b_{i,i+1} \lambda_i) \times \sum_{i=1}^k \frac{e^{-\lambda_i t}}{\prod_{j=1 \neq i}^k (\lambda_j - \lambda_i)}$$

Decay
pattern can
be quite
complex far
from
stability





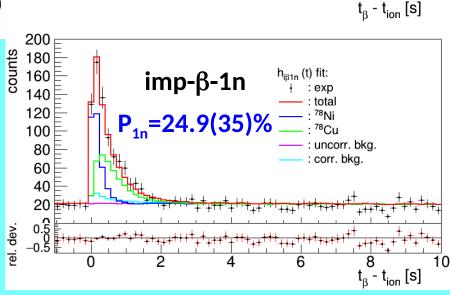
Ni isotopes: P_{1n} compared with theory and previous data



 $imp-\beta \qquad imp-\beta \qquad h_{i\beta} \text{ (t) fit:} \\ + : exp \\ - : total \\ - : ^{78}Ni \\ - : ^{78}Cu \\ - : uncorr. bkg.$

Hosmer+, PRC82(2010)025806 Z.Y.Xu, PhD Thesis (2014) Borzov, PRC71(2005)065801 Zhi+, PRC87(2013)025803

• At shell closure: large spread of theoretical estimates, all off the experiment



(from Alvaro Tolosa)