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Astronomy with neutrinos, why?

* Don’t (weakly) interact on their way
* Point directly to the source!
* Additional information on astrophysical process




3 identified sources of neutrinos:

TXS 0506+056




Core-Collapse Supernova neutrinos:

. Motivation:

. * Only observation: SN1987A
- 25 neutrinos detected
.. * Prove the explosion mechanism:
-+ neutrinos play a major role
-+ * Constrain the theoretical models
- * Neutrino properties
~ measurements
- * Extreme environment:
— New physics




Under construction
New technology

-115 instrumented
lines per block

-18 Digital Optical
Module (DOM) per line
-More than 2000
DOMs per block

2 blocks in Italy:
ARCA (larger, 1km3)
- HE astrophysics

- 1 line taking data!

1 block in France:
ORCA (denser)
-Neutrino oscillations
- 4 lines taking data!
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same sensitive area

KM3NeT detectors: r-mn 09090

+compactness
+wider angle of view
+directional information
+digital photon counting

Eff. Mass 10 Mt 5.7 Mt 1 Gt
Line length 350 m 200 m

Inter-line dist 70 m 20 m
Inter-OM dist 14.5 9m
Depth 2450 m 2450 m

ANTARES

ANTARES
storey

*®
b »

ORCA:
1 block

-12 lines
-25 storeys per line
-3 PMTs per storey




Multi-ener gy neutrino spectrum:
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Core Collapse Supernova:
The explosion mechanism

* Massif stars (>10Msun)

* Onion structure

* Gravity: Compress matter

* Temperature and pressure increase

* Nuclear force: Burns H and He

* Competition between gravity and
nuclear force

* In the end, it runs out of fuel
(H, He): no more nuclear reactions




Core Collapse Supernova:
The explosion mechanism

Collapse of the degenerate core
(implosion)

~1500 km

p+e —n+rue

Massive star M = 10Me As Mcore ~ Mchang, pressure of degenerate
relativistic electrons decreases due to electron
capture and becomes insufficient to resist
gravity =» collapse

Onion structure




Core Collapse Supernova:
The explosion mechanism

wave

Proto-neutron star

T.Hanka (2017) arXiv:1702.08825



https://arxiv.org/abs/1702.08825

Phases of a Core Collapse Supernova:

luminosity (ergs/s)

(implosion)

~1500 km
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* Shock bounce

* Electron capture

* Birth of remaining
compact object
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* Hydrodynamical
Instabilities/convection

* Neutrino heating

* Shock revival
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* Neutrino pair
production
* Nucleosythesis
* Explosion
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Non-spherical mass-energy dynamics (quadrupoles or higher order contributions)
- Gravitational Wave emission
Such asymmetric magnetohydro-dynamics are expected to be present in CCSN
- Unkown model for the GW signal form...
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https://arxiv.org/pdf/1901.08692.pdf

What is really happening?

€ * Sophisticated simulations don’t allow to reproduce the
explosion... not for the amount of energies observed
* Only one detection (1987) of 25 neutrinos:

we need more statistics to constrain the mechanism

\° Only 1-3 Galactic CCSN per century... y
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Scott M. Adams et al. (2013) ApJ (778)
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https://arxiv.org/abs/1501.01334


* Large amount (~3e53 erg/s) of 1-100 MeV neutrinos emitted:
Ve dominate during accretion phase (~500ms)

»Main interaction: Ze with protons, IBD (~97%) : Ve +p —> €' +n

also v, with electrons, ES (~3%): Ve -+ € — Ve t€

* We expect ~1000-8000 events @10kpc in 1 detection block:

storage of all data needed (at ms precision)

What we do:

* Detection performance + real-time alerts
* Time resolution: light-curve physical features + pointing

* Energy resolution: neutrino spectrum

13




Monte-Carlo simulation in KM3NeT

flux

(s cm?)
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* Development of a low energy MC neutrino generator for KM3NeT.

o Flux from 3D CCSN simulations by Garching Group: 3 energy and time
dependent parameters in the model: L(E,,t), a(E,,t) and <E, >(E, t)

 Main interaction channel — Inverse Beta Decay (IBD): 7. +p — e* +n
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* Atmospheric muons and
atmospheric neutrinos
* K40 decays (radioactive
Isotopes present in sea water)
* Bioluminescence:
Plants and animals
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Detection method:

Rate [Hz]

KM3NeT DOM
K4O —— Data - 40h 4min

b|0|um P simulation - Muons
B simulation - K

I combinatorial Background

10 (A)

10 atm muons ; KM3NeT preliminary
10
10-2 ® ARCA background
10'3 ® ORCA background
27 M, at 10 kpc
10_4 10* 4 11 M, at 10 kpc
10° t
10 15 20 25 30 o .
Coincidence Level  ~s0om | %
© 10714
= ®
Signal = Overall increase of g2
detected PMT rates over baseline wl B
Multiplicity: number of PMTs in a o I ¢ e
DOM receiving a photon in 10 ns o
Multiplicity selection for optical o e
background reduction! g
\

Muon veto: us coincidences between
DOMs to identify atm. muons
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KM3NeT event statistics

Events in 1 detection block, @10 kpc:

Multiplicity 1 2 3 4 5 6 | 7| 8|09

Ne, 27 Mg 1.6eb | 5.0e3 | 1.0e3 | 3.8e2 | 1.7e2 | 88 | 46 | 23 | 12

Ney 11 Mg 4.1ed4 | 1.2e3 247 85 38 18 | 9 5 2

Table: Signal event statistics as a function of the multiplicity

Progenitor mass | At (ms) | N, ORCA | N, ARCA | N;
27 Mg, 543 60 08 174
11 M 340 38 61 34

Table: Number of background and signal events in the 6-10 multiplicity cut after the
muon filter, per KM3NeT building block in the ORCA and ARCA configurations.




Significance of the detection

significance (sigmas)

100 {

— Coverage of the full Galaxy combining ORCA and ARCA (27M0O)
— Beyond the Galactic Center with full ORCA (11M0O)

M.Colomer PoS(ICRC2019)857

ARCA+ORCA, 27TM@
ARCA, 27TM@
ORCA, 2TMo
ARCA+ORCA, 11M@
ARCA, 11IMG
ORCA, 11Mo@
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Current and future detectors:

Running

Future

o xm 0.0
§ 5 § 25
IceCube ~300.000 SMC (70kpc) %é' B
7
Super-K ~7000 IBD, ES SMC (70kpc) : 295
55 23
28 229
Borexino ~100 IBD Galaxy (25kpc) &5 @ <’<§§-
KamLAND ~300 IBD Galactic Center o<
NOVA ~4000 IBD Galactic Center 33 S9
XX @
LVD ~300 IBD Galaxy (25kpc) §
Hyper-K ~11.000 IBD, ES 1-2 Mpc >
JUNO ~6000 IBD, proton ES SMC (70kpc) o
DUNE ~3000 ES Galaxy (25kpc) 2




* Global network for neutrino detectors sending SN alerts

* Requirement: less than 1 fake trigger in 10 days

* Alert sent if at least 2 detectors trigger an event in coincidence (10s)
* KM3NeT is now part of the network!

SuperNova Early Warning System (SNEWS)

Super-Kamiokande
Kamland \
HALO gt

Borexino —  Concidence Sever (@ BNL)

LVD 7’1 l
IceCube E-mail alert
Daya Bay ATel alerts, LIGO, GCN

 ORCA can trigger beyond the Galactic Center!
* Online SN monitoring working stable for almost 1yr now!

m « Combined real-time trigger ORCA+ARCA
20




Real-time alerts: SNEWS

1

—
=

Probability/minute
3

e Current latency of SNEWS participants: some min
« KM3NeT latency with combined trigger: ~15sec!

B — Probability of SNEWS trigger
E ,\ IIIIIIIIII g' Ouh ty gg
B —— Super-K
{ 95% ~__ Daya Bay
— Borexino*™*
KamLAND*
—« HALQO

Time since supernova (minutes)

-~ KM3NeT is ready to start sending and receiving alerts!

K. Scholberg (2008) arXiv:0803.0531
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https://arxiv.org/abs/0803.0531

First real-time results: GW follow-up

Unmodelled burst GW candidate S191110af (GCN #26222) : RETRACTED

75

- Potential close-by CCSN candidate
KM3NeT follow-up using online SN trigger with 4 ORCA lines:
NO TRIGGER over 400ms search (GCN #26249) - Constraints at 90% CL

Lower limits on the CCSN distance: Upper limit on the total energy
emitted in neutrinos @10kpc :
« 27 MO : 11.4 kpc

* 11 MO : 5.7 kpc E < 2.8e53 erg (<Ev> = 15MeV)

22




What to learn on CCSN neutrinos?

* Multi-PMTs (multiplicity) for optimal sensitivity and energy estimation
* Double coincidences for time information: high statistics (large detector)

Energy spectrum
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What to learn on CCSN neutrinos?

* Multi-PMTs (multiplicity) for optimal sensitivity and energy estimation
* Double coincidences for time information: high statistics (large detector)

Energy spectrum
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Standing Accretion Shock Instability (SASI): hydrodynamical instabilities during

CCSN predicted by recent 3D simulations — Directional effect
Footprint: Time variations in the neutrino light-curve around 200ms

Feature: Characteristic oscillation frequency (80Hz) seen through Fourier analysis
Enhances the neutrino heating favoring the explosion:
- can help understanding the mechanism!

Potentially correlated with GW emission!

T.Hanka (2017) arXiv:1702.08825

Luminosity [1 0°? erg/s]

|. Tamborra, Phys. Rev. Lett. 111 (2013)
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https://arxiv.org/abs/1702.08825

Progenitor models and detector
response to CCSN signal time profile

- We use double coincidences (high stats, reduce biolum)
- Expected signal in full ARCA detector @ 5 kpc
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Now, add background and apply FT... 25
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- Analysis method & preliminary results:

Model dependent approach:

Look for a significant power excess
around the expected SASI| frequency

800 A
700 A
600 1

500 A

I sg+bg
e bg
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Model independent approach:
Look for a significant peak on the Power
Spectrum at any frequency
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Sensitivity to SASI: state of the art

N

Counts/b

Counts/bin

» Detection

Observed light-curve ———»  Power Spectrum: FT
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T T

Distance (kpc)

- lceCube and Hyper-K can see the SASI oscillations up to ~20kpc

|. Tamborra, Phys. Rev. Lett. 111 (2013); J. Miganda (2016) arXiv:1609.04286
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https://arxiv.org/abs/1609.04286

SAS| and GW emission:

« Enhanced SASI oscillations correlated with GW emission
* Precise light-curve measurements — imprint short time-scale phenomena

la=22 |. Tamborra, PRD 90:045032, 2016

6
4l — GW signal
2
0

1000 —  v.signal

0 50 100 150 200 250 300 350
Time [ms]




What to learn on CCSN neutrinos?

* Multi-PMTs (multiplicity) for optimal sensitivity and energy estimation
* Double coincidences for time information: high statistics (large detector)

Energy spectrum
Light-curve p (s :
(time profile) 20 e
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* Simplified flux model used here to investigate 2D parameter space:
Mean neutrino energy and pinching shape parameter (a)
1 y EJerp(—(a+ l)%)

fSN o
Y A7 d? - E. =

* More energetic events: More events at high multiplicity & less at low
multiplicity

* Use low to high level coincidences ratio: £} Bl
multiplicities from 3 to 10 o oF TR es
* 2D X? method to constrain <E >and a: § o} .
M=10 - I3 E
X2(< E, >,CE) = 2 Z(ﬂM—nM+nM X In(—)) :
M=3 i 10 E
" [PRELIMINARY

5 10

15
Multiplicity




Constraining the mean energy
of CCSN neutrinos: KM3Ne T

354

2.9

2_

11

PRELIMINARY
ORCA @10kpc

@ True: 0=3
<Ev>=13MeV

115 12 125 13 135 14
< FE, > [MeV]

14.5

15

,

\.

Degeneracy between
o and <Ev> in the
2D parameter space

J

s

\

Scan over <Ev> and
fixed a plane yields:
o(Ev)/<Ev> ~ 2-3% )

(Conservative v flux,
close to 11Msun values)
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Constraining the mean energy
of CCSN neutrinos: IceCube

p Coincident hit distributions depend on shape of energy spectrum. Use
x2 method to produce 2D constraints in {E,) and pinch parameter a.

p Assumes 8.8 Mo O-Ne-Mg core collapse. Energy resolution is ~30%.

Lutz Kopke, 8th Int. Symp. on Large TPCs (Dec.2017)
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What to learn on CCSN neutrinos?

* Multi-PMTs (multiplicity) for optimal sensitivity and energy estimation

* Double coincidences for time information: high statistics (large detector)

luminosity (ergs/s)

Light-curve
(time profile)
1::5“'”7‘51
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0" 180°
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Determination of the neutrino arrival
at the different detectors

Event rate

Why'

Needed for pointing to the source by triangulation
Needed 1o search for an EM and/or GW counterpart

IDEA: Extract the time delay between SN neutrinos at different
detectors from experimental light-curves: Model independent

GOAL: Include this into SNEWS system for fast localization

NOTE: Only detectors sensitive to the same channel and with
enough signal statistics can be combined

A

4
AT Time

How?

e Chi2: fit time delay between
signal in two light-curves
 Normalized cross-correlation
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Pointing to CCSN with neutrinos:

— Good time resolution needed for good localization performance!

3 detectors:
|C-SK-KM3NeT

(and several detectors taking data! )

: ()?“‘l~ 4 detectors:
0$ IC-SK-KM3NeT-JUNO
o™

o

Assumptions:

e Source at Galactic Center

e Ot = 10ms if combined with KM3NeT
* Ot = 1ms for other combinations

 Distance: 10 kpc

68 90
Confidence Level (%

o 36




Pointing to CCSN with neutrinos: Super-K

R.Thomas; Super-K
Phys.Rev. D68 (2003)

(At the moment, they
cannot do precise pointing
with fast enough delay)

Neutron tagging
efficiency

None 90 %

95% CL half-cone
opening angle

- ldentify elastic scattering interaction for directional information!
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SN neutrino timing and GW identification

Events per bin (1.6384 ms)

600
500
400
300
200
100
0
-100 — S —
-10 -5 ] 5 10 15 20 25 30
Time post bounce (ms)

Without neutrino timing With neutrino timing

Probe core bounce time with neutrinos.

Timing for gravitational wave detection.

1000 d \ 4
’ 1
3.5
800 6
F13
N =5
T o
o -4
5 2
=3
8 400 3
e 1 1.5
1 2
200
0.5 1
0 500 1000 10 20 30 40 o0 60
Time [ms] Time [ms]

Pagliaroli et al., PRL (2009), Halzen & Raffelt PRD (2009). Nakamura et al., MNRAS (2016)
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e KM3NeT will contribute to the neutrino detector network
observing the next Galactic CCSN explosion

« Potential to resolve the SN neutrino ener gy spectrum and
light-curve = constrain the models

« Global detector network needed for triangulation and high
event statistics (+ complementary channels and information)
- crucial for MM observation and understanding the mechanism

o Expected improvements with multi-lines data
— additional back ground re jection strategies possible

« Looking forward for the results with ORCA6+ARCA2 beginning
of next year!
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