Pole vs running mass scheme: impact on different observables

Adrián Irles LAL – CNRS/IN2P3

IFIC-DESY workshop on top quark mass 15/10/2019

Outline

- > Which scheme is preferable?
- > The R-observable in the running mass scheme.
- ➤ The CMS observable TOP-18-004 (only for the +X jets, X>0)
 - Pole mass vs Running mass.

- > Extra material:
 - R-observable at 13 TeV vs 8 TeV
 - Comparison of the TOP-18-004 CMS observable calculations with the tt+1Jet @NLO fixed order (Eur.Phys.J. C59 (2009) 625-646)

> All calculations are based on **Eur.Phys.J. C59 (2009) 625-646** (Dittmaier, Uwer, Weinzierl)

Requirements for a precise quark mass measurement

Define an observable with good sensitivity to the interesting parameter (i.e. mass, alpha_s, etc)

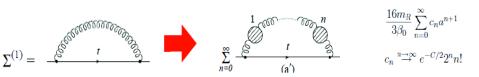
$$\frac{\Delta \mathcal{O}}{\mathcal{O}} \leftrightarrow \frac{\Delta m_t}{m_t}$$

- ➤ The observable should have **small and understood theoretical uncertainties** (perturbative theory!!)
- **>** Well defined mass scheme → NLO calculations!
- Measured observables have to be compared to calculations → parton level, particle level (if the calculation is possible).

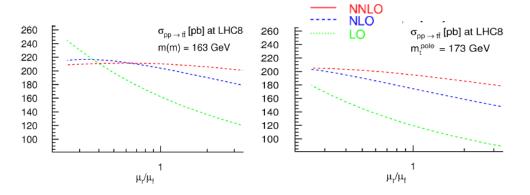
Which mass scheme is better? (Pole vs MS)

- The pole mass has an intrinsic ambiguity of the order of Λ_{ΩCD}
- For inclusive tt cross sections, the running mass scheme (m(m)) provides better convergence of the calculations → smaller uncertainties
- ➤ The threshold effects are badly described in e+e- when the pole mass scheme is used.
 - Specially designed mass schemes.

In fact, the choice would depend on each observable/distribution.



[Bigi, Shifman, Uraltsey, Vainshtein 94 Beneke, Braun, 94 Smith, Willenbrock 97]



Langenfeld, Moch, Uwer PRD 80, 054009 (2009) Czakon, Fiedler, Mitov hep-ph/1303.6254

➤ All schemes are equivalent and, by definition, we can switch from one to another.

$$M_t^{\text{pole}} = m_t(\mu) \left(1 + \hat{a}(\mu) \frac{4}{3} \left[1 - \frac{3}{4} \ln \left(\frac{m_t^2}{\mu^2} \right) \right] \right) + O(\hat{a}^2)$$
 (5)

NLO approx

with

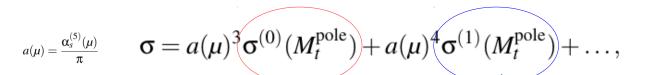
$$\hat{a}(\mu) = \frac{\alpha_s^{(6)}(\mu)}{\pi} \tag{6}$$

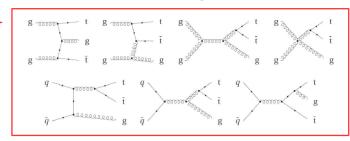
> And this is also possible to be done with observables calculated at a fixed order

How? Eur.Phys.J. C77 (2017) no.11, 794 (2017-11-22) Fuster, A.I, Melini, Uwer, Vos

$$a(\mu) = \frac{\alpha_s^{(5)}(\mu)}{\pi}$$
 $\sigma = a(\mu)^3 \sigma^{(0)}(M_t^{\text{pole}}) + a(\mu)^4 \sigma^{(1)}(M_t^{\text{pole}}) + \dots,$

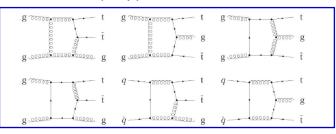
LO





Real correction (tt+2p) +

Virtual (loop) corrections



$$a(\mu) = \frac{\alpha_s^{(5)}(\mu)}{\pi}$$
 $\sigma = a(\mu)^3 \sigma^{(0)}(M_t^{\text{pole}}) + a(\mu)^4 \sigma^{(1)}(M_t^{\text{pole}}) + \dots,$

$$\sigma = a(\mu)^{3} \sigma^{(0)} \left(m_{t}(m_{t}) \left(1 + \frac{4}{3} a(\mu) + \ldots \right) \right)$$

$$+ a(\mu)^{4} \sigma^{(1)} \left(m_{t}(m_{t}) \left(1 + \frac{4}{3} a(\mu) + \ldots \right) \right) + \ldots$$

- ➤ The mass dependence can be written as follows.
 - Same precision in the perturbative expansion approach

$$a(\mu) = \frac{\alpha_s^{(5)}(\mu)}{\pi}$$
 $\sigma = a(\mu)^3 \sigma^{(0)}(M_t^{\text{pole}}) + a(\mu)^4 \sigma^{(1)}(M_t^{\text{pole}}) + \dots,$

$$\sigma = a(\mu)^{3} \sigma^{(0)} \left(m_{t}(m_{t}) \left(1 + \frac{4}{3} a(\mu) + \ldots \right) \right)$$

$$+ a(\mu)^{4} \sigma^{(1)} \left(m_{t}(m_{t}) \left(1 + \frac{4}{3} a(\mu) + \ldots \right) \right) + \ldots$$

 Same precision in the perturbative expansion approach

$$\sigma = a(\mu)^{3} \sigma^{(0)}(m_{t}(m_{t})) + a(\mu)^{4} \left[\sigma^{(1)}(m_{t}(m_{t})) + \frac{4}{3} m_{t}(m_{t}) \frac{d\sigma^{(0)}(M_{t}^{\text{pole}})}{dM_{t}^{\text{pole}}} \right|_{M_{t}^{\text{pole}} = m_{t}(m_{t})} + O(a^{5}).$$

- Few steps further, the cross section as a function of the pole mass can be converted to the equivalent but as a function of the running mass.
 - Different for each mass scheme.
 - Valid in the perturbative expansion approach.

> This can be applied to integrated or differential cross sections as the R-observable or any other (i.e. see next section)

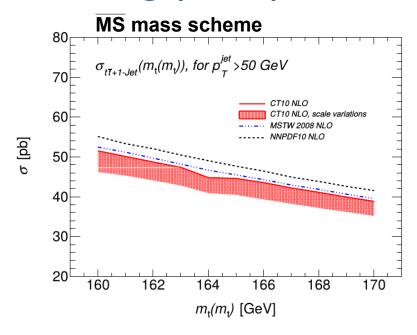
$$\mathcal{R}(m_t^{\text{pole}}, \rho_s) = \frac{1}{\sigma_{t\bar{t}+1-\text{jet}}} \frac{d\sigma_{t\bar{t}+1-\text{jet}}}{d\rho_s} (m_t^{\text{pole}}, \rho_s),$$

Inclusive tt+1jet @ NLO: pole vs running (7TeV)

pole mass scheme

	$\sigma_{t\bar{t}+1\text{-jet}}$ [pb] $p_T(jet) > 50 \text{GeV}, \eta(jet) < 2.5$	
m_t^{pole} [GeV]	LO	NLO
160	66.727(5)	60.04(8)
165	57.615(4)	52.25(9)
170	$49.910(3)_{-17}^{+30}$	$45.45(6)_{-6}^{+1}$
172.5	$46.508(3)_{-15}^{+28}$	$42.37(6)_{-6}^{+1}$
175	45.372(3)	39.46(6)
180	37.800(2)	34.73(5)

Eur.Phys.J. C73 (2013) 2438 (S. Alioli, P. Fernández, J. Fuster, A.I., S. Moch, P. Uwer, M. Vos)



Eur.Phys.J. C77 (2017) no.11, 794 (2017-11-22)Fuster, A.I, Melini, Uwer, Vos

> Slightly better convergence for the running mass, but basically due to kinematic effects (smaller mass values)

Theoretical sensitivity (reminder).

Eur.Phys.J. C73 (2013) 2438 (S. Alioli, P. Fernández, J. Fuster, A.I., S. Moch, P. Uwer, M. Vos)

$$\begin{split} \mathcal{S}(\rho_s) &= \\ \sum_{\Delta=\pm 5-10 \text{ GeV}} \frac{|\mathcal{R}(170 \text{ GeV}, \rho_s) - \mathcal{R}(170 \text{ GeV} + \Delta, \rho_s)|}{2|\Delta|\mathcal{R}(170 \text{ GeV}, \rho_s)} \,. (5) \end{split}$$

$$\left| rac{\Delta \mathcal{R}}{\mathcal{R}}
ight| pprox \left(m_t^{
m pole} \mathcal{S}
ight) imes \left| rac{\Delta m_t^{
m pole}}{m_t^{
m pole}}
ight|.$$

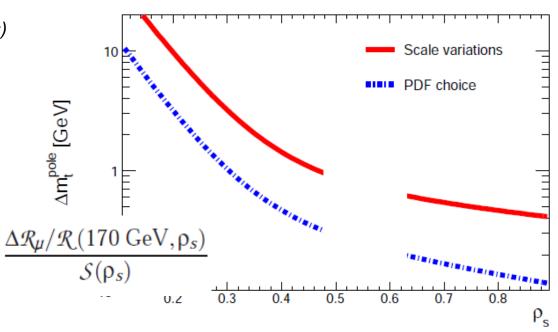


Fig. 6. Expected impact of scale (magenta line) and PDF (blue dashed line) uncertainties on the measured top-quark mass value. The region where $\mathcal R$ is essentially insensitive to the top-quark mass is not shown.

Differential tt+1jet @ NLO: pole vs running (7TeV)

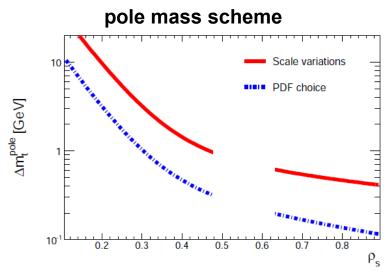
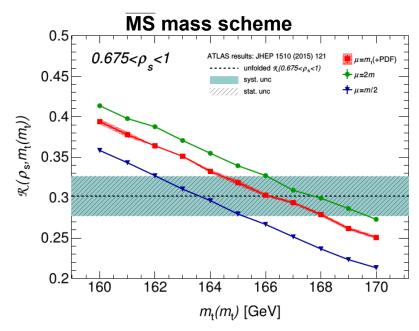


Fig. 6. Expected impact of scale (magenta line) and PDF (blue dashed line) uncertainties on the measured top-quark mass value. The region where \mathcal{R} is essentially insensitive to the top-quark mass is not shown.

Eur.Phys.J. C73 (2013) 2438 (S. Alioli, P. Fernández, J. Fuster, A.I., S. Moch, P. Uwer, M. Vos)



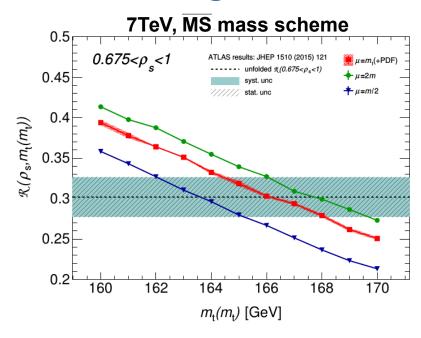
Eur.Phys.J. C77 (2017) no.11, 794 (2017-11-22)Fuster, A.I, Melini, Uwer, Vos

➤ The scale uncertainty for the running mass in the sensitive bin has an larger impact on the mass extraction. ~ 1-1.5 GeV

Differential tt+1jet @ NLO: pole vs running

$$\sigma = a(\mu)^{3} \sigma^{(0)}(m_{t}(m_{t})) + a(\mu)^{4} \left[\sigma^{(1)}(m_{t}(m_{t})) + \frac{4}{3} m_{t}(m_{t}) \frac{d\sigma^{(0)}(M_{t}^{\text{pole}})}{dM_{t}^{\text{pole}}} \right]_{M_{t}^{\text{pole}} = m_{t}(m_{t})} + O(a^{5}).$$

➤ Due to the large mass dependence near the threshold! We introduce large corrections to the LO in this bin.



Eur.Phys.J. C77 (2017) no.11, 794 (2017-11-22)Fuster, A.I, Melini, Uwer, Vos

➤ The scale uncertainty for the running mass in the sensitive bin has an larger impact on the mass extraction. ~ 1-1.5 GeV

Top-quark mass determinations using R (ATLAS)

> 7 TeV

• Pole mass (ATLAS) JHEP 10 (2015) 121,

$$M_t^{\text{pole}} = 173.7 \pm 1.5 \text{ (stat.)} \pm 1.4 \text{ (syst.)}_{-0.5}^{+1.0} \text{ (theory) GeV}$$

Running mass Eur.Phys.J. C77 (2017) no.11, 794 (2017-11-22)

$$m_t(m_t) = 165.9 \pm 1.4 \text{ (stat.)} \pm 1.3 \text{ (syst.)}_{-0.6}^{+1.5} \text{ (theory) GeV}$$

> 8 TeV

The value obtained for the pole-mass scheme is:

$$m_t^{\text{pole}} = 171.1 \pm 0.4 \text{ (stat)} \pm 0.9 \text{ (syst)} ^{+0.7}_{-0.3} \text{ (theo) GeV}.$$

The extracted value in the running-mass scheme is:

$$m_t(m_t) = 162.9 \pm 0.5 \text{ (stat)} \pm 1.0 \text{ (syst)} ^{+2.1}_{-1.2} \text{ (theo) GeV}.$$

CMS-TOP-18-004

Measurement of $t\bar{t}$ normalised multi-differential cross sections in pp collisions at $\sqrt{s}=13$ TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

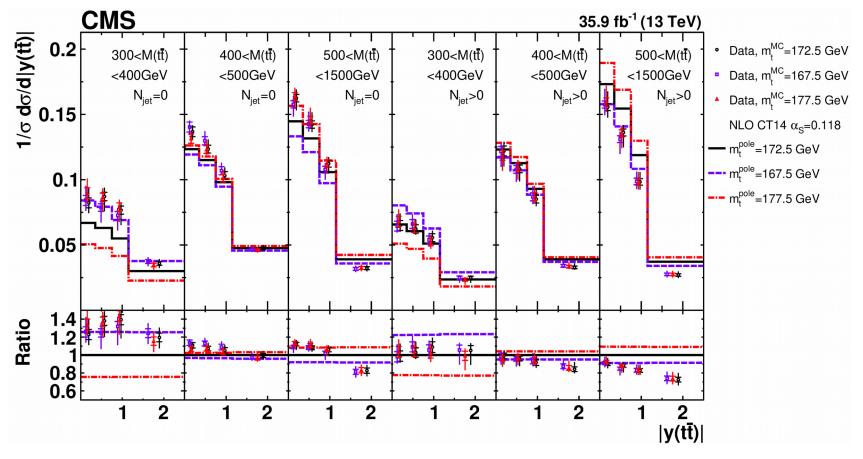
The CMS Collaboration*

CMS-TOP-18-004

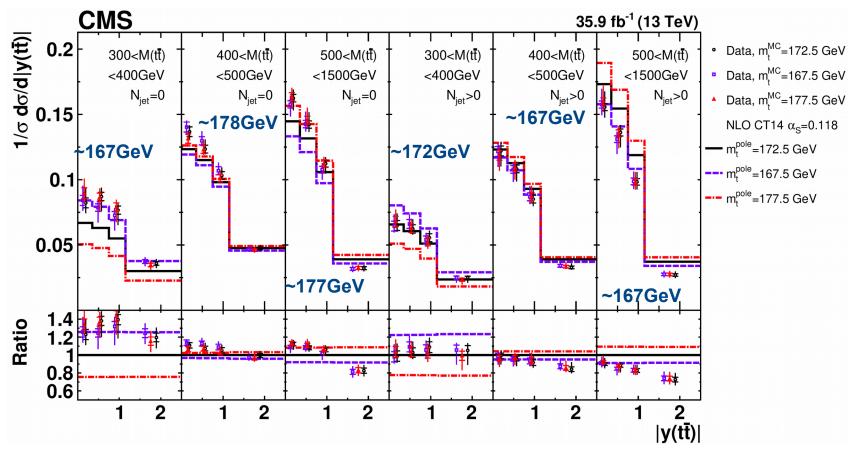
Measurement of tt normalised multi-differential cross sections in pp collisions at $\sqrt{s}=13$ TeV, and simultaneous determination of the strong coupling strength, top quark pole mass, and parton distribution functions

The CMS Collaboration*

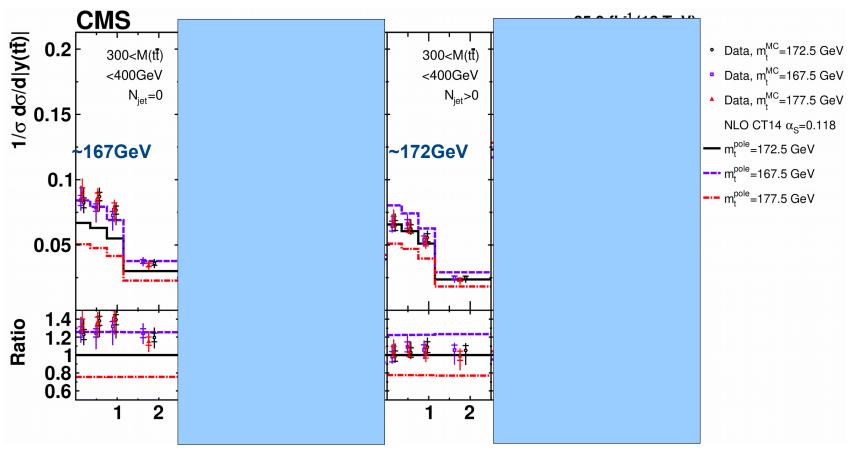
- ➤ The observables are based on differential cross sections for ttbar +0 or >0 jets.
- Extra jets have pt>30 and |eta|<2.4, using anti-kt, R=0.4
- The measurement is done at particle level.
- ➤ They publish full unfolded data with statistical correlation and systematics, bin by bin.
- They also provide a C-factor to correct from parton to particle level.
- http://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-18-004/
- ➤ They do a multidimensional fit, fitting PDFs, alpha_s and mass at the same time.
- ➤ The mass highest precision is obtained with the |mtt| dimension of the 3D distribution. The precision on the alpha_s extraction is dominated by the |y tt| dimension



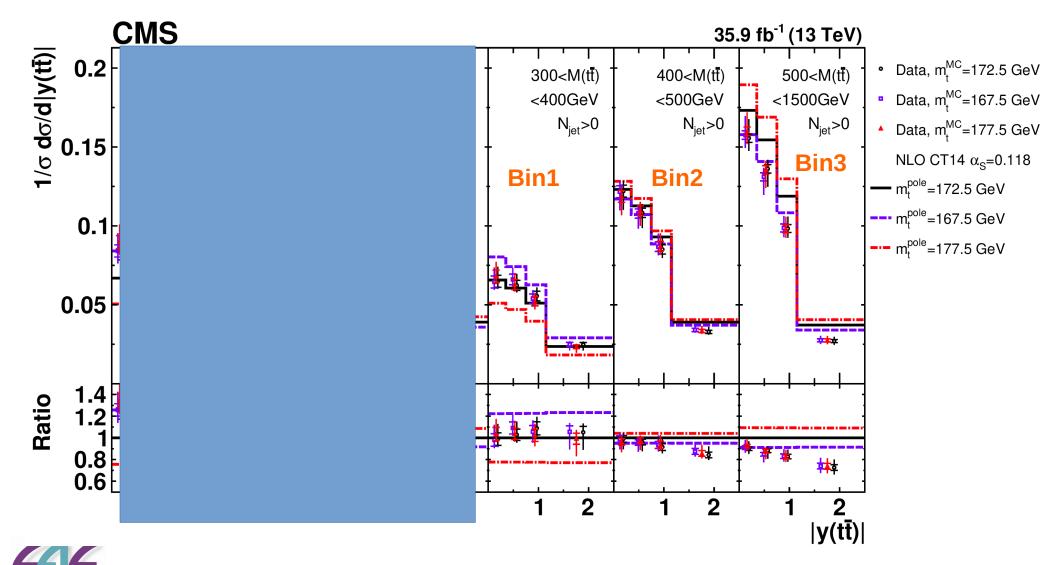
➤ Unfolded data (points) using different MC masses. Theory calculations are shown as histograms.



➤ Unfolded data (points) using different MC masses. Theory calculations are shown as histograms. What are the theory uncertainties?



➤ Unfolded data (points) using different MC masses. Theory calculations are shown as histograms. What are the theory uncertainties?



- > We implement the calculation of the CMS observable (for Njets>0). With few differences (?):
 - Our observable is defined for ttbar+1jet+X events :
 - The « 1jet » has pt>30GeV and |eta|<2.4
 - The « X » that follows has lower pT and whatever eta. For CMS, the comparison is done at particle level where the second jet has also pt>30 and |eta|<2.4
 - They do a "folding" from parton to particle level. Is their parton level equivalent to ours? I think so but... needs confirmation.
- ➤ I apply the C-factor given by CMS. (usually of the order of ~%)
 - Parton level to particle level

DISCLAIMER: Everything is at a very preliminary stage!

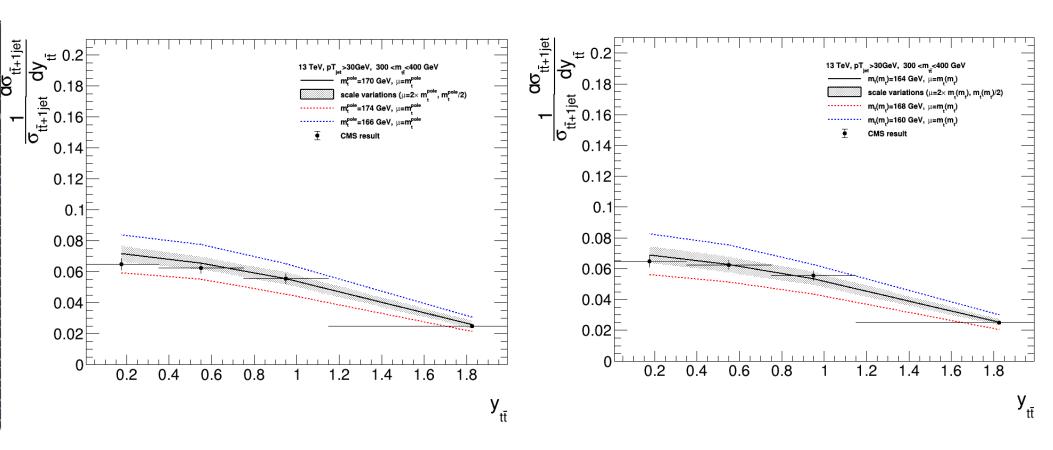
My masses points are a bit different than those shown by CMS.

Bin1

Pole

VS

running

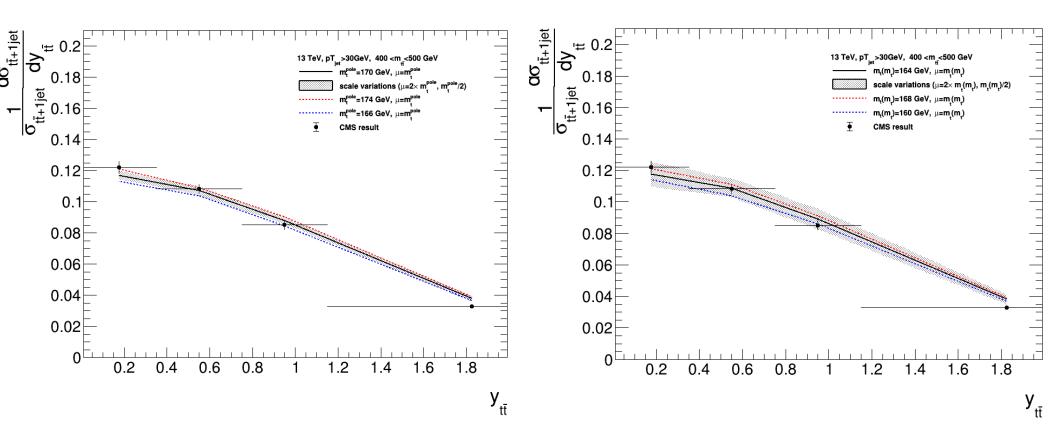


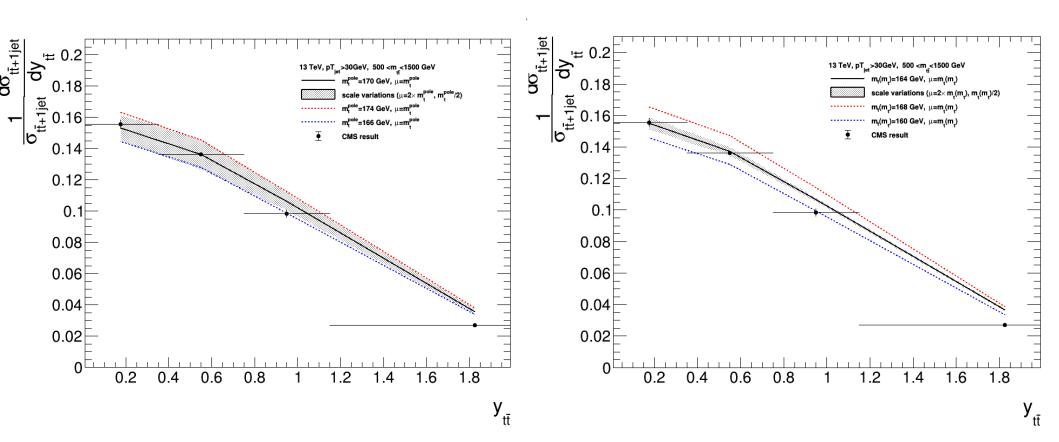
Bin₂

Pole

VS

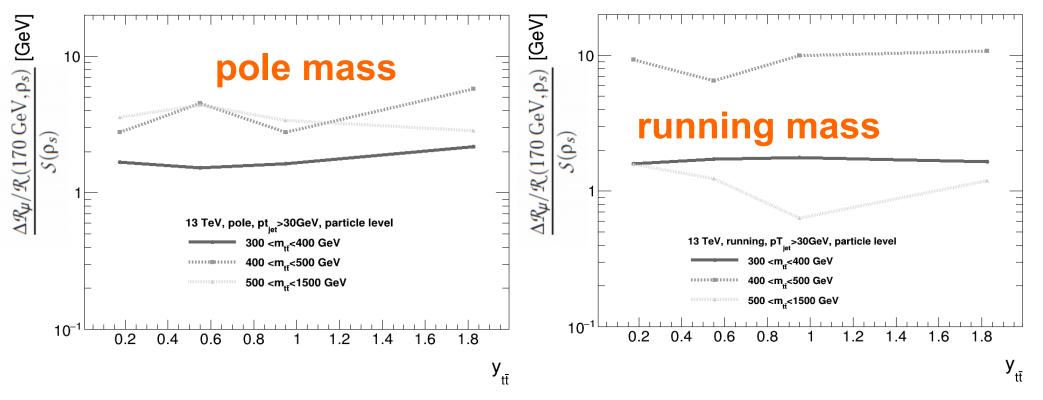
running





Bin3

Sensitivity: pole mass vs running scheme



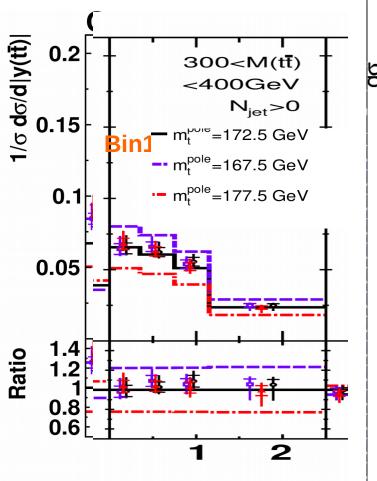
➤ For the running mass, we keep the sensitivity in the first bin (threshold!), and we add one for the highest invariant mass.

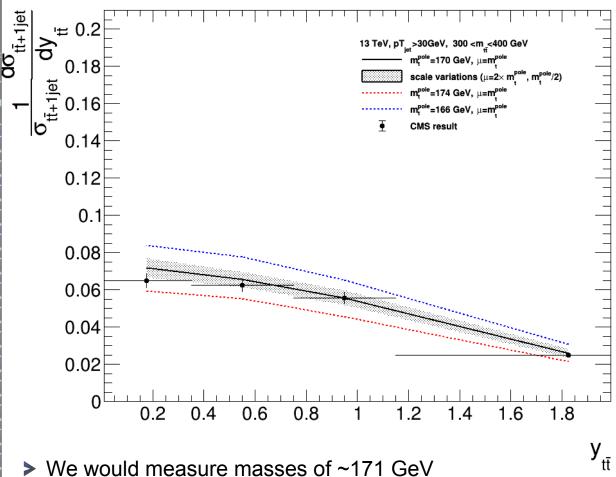
Some conclusions/thoughts

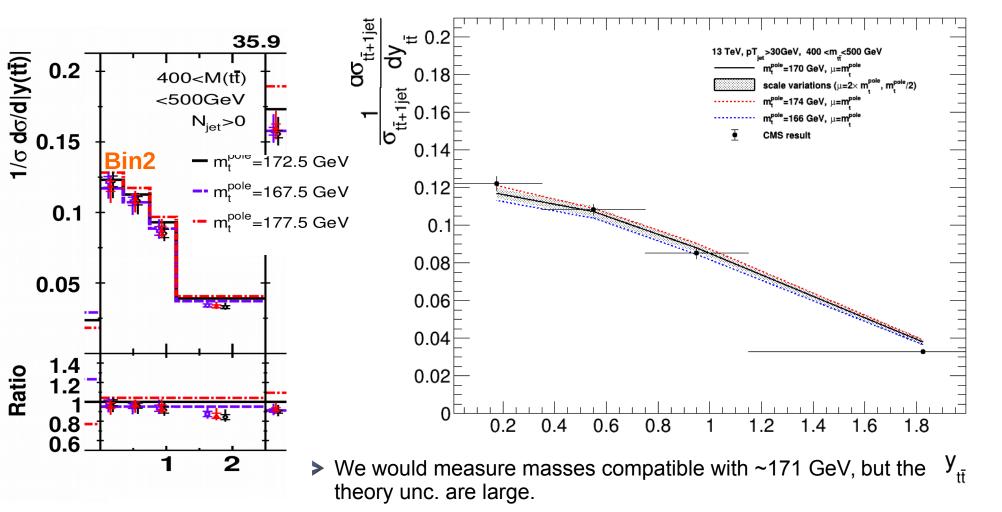
- > The precision in the calculation of different observables depends on the mass scheme.
 - Every observable/calculation is different.
- > For the CMS observable, the running mass scheme performs better than for the R-observable,
 - In comparison with the pole mass.
 - No other systematics are accounted!

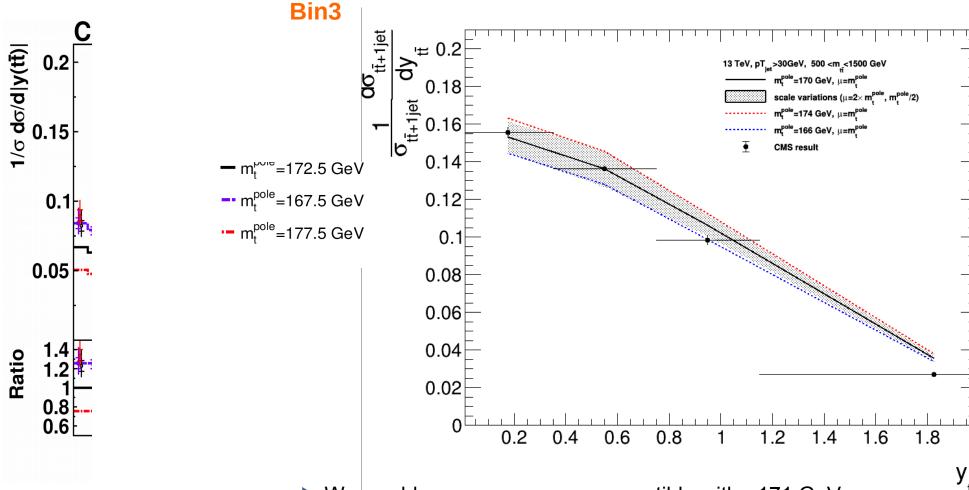
Lots of potential!

Back-up slides





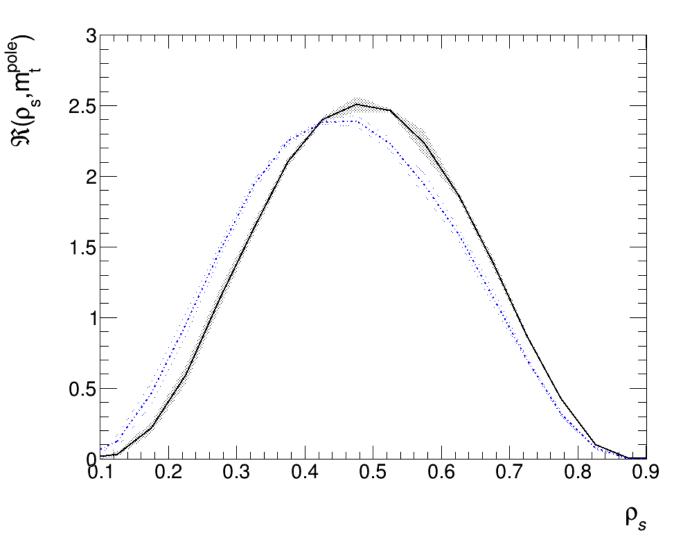




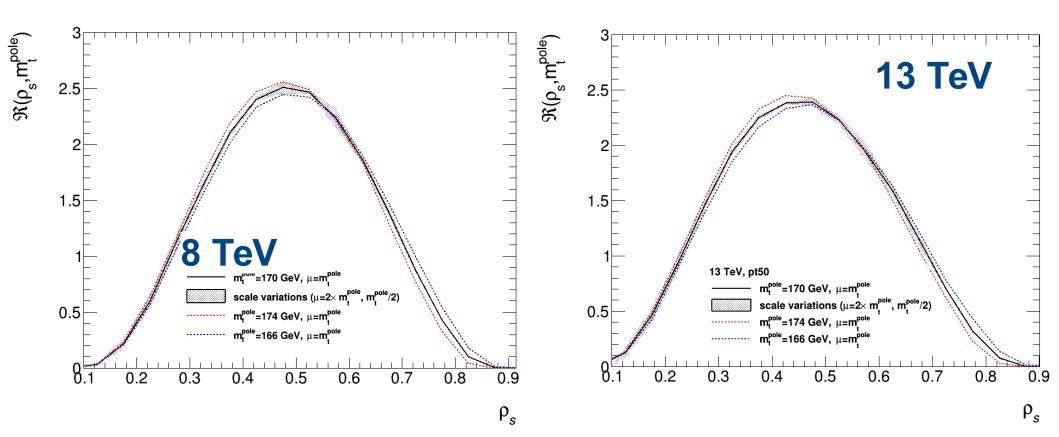
- ➤ We would measure masses compatible with ~171 GeV
- Again, CMS seems to predict lower masses...

R distribution

- > Blue 13 TeV,
- > Black, 8TeV
- both for pole mass and m=170 GeV
- > Shaded areas = scale uncertainties.



R distribution, pole mass



Theoretical sensitivity. (7 vs 8 TeV, pole mass)

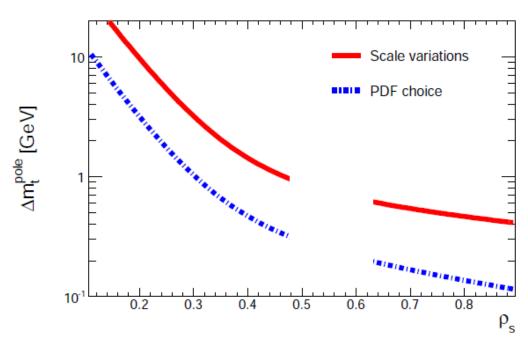
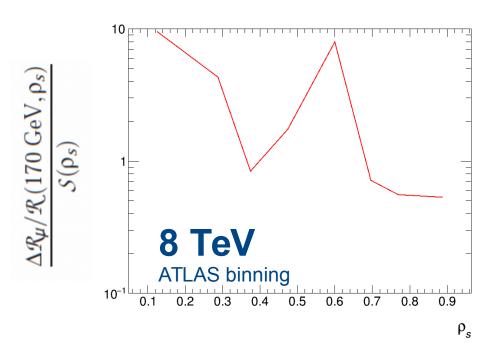
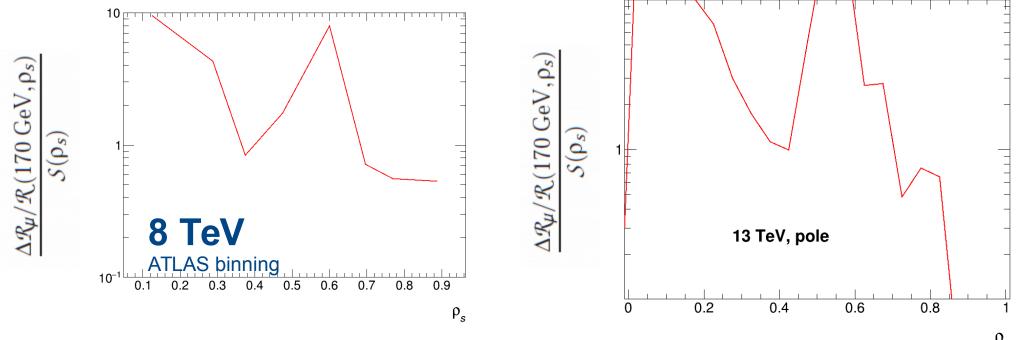


Fig. 6. Expected impact of scale (magenta line) and PDF (blue dashed line) uncertainties on the measured top-quark mass value. The region where \mathcal{R} is essentially insensitive to the top-quark mass is not shown.



Theoretical sensitivity. (8 vs 13 TeV, pole mass)



> In principle, the sensitivities are similar but the bins >0.8 are not usable for 13 TeV (almost no cross section!)

