

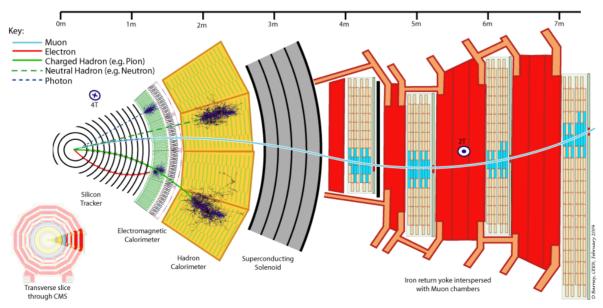
<u>Outline</u>

Track fitting

- Basic ideas & concepts
- Basic formulae
- Pattern recognition
- Track fitting with Kalman filter

Data analysis flow in HEP experiments

Goal is to record the data registered by sensors when beams collide



Data analysis flow in HEP experiments

Sensors react to the passage of particles and produce signals

- Usually as electric pulses

Digitization: convert those pulse into digits

Trigger

- Whenever an interesting event happens
 - Whatever "interesting" means

Record the data

- In digital format
- In disk or tape

Event reconstruction

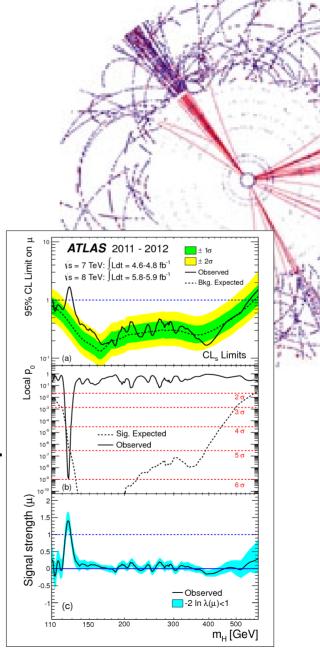
- Tracker hits → tracks
- Calorimetry → energy deposition
- Bear in mind the calibration, geometry, etc.

Event analysis & selection

According to the reconstructed objects

Physics results

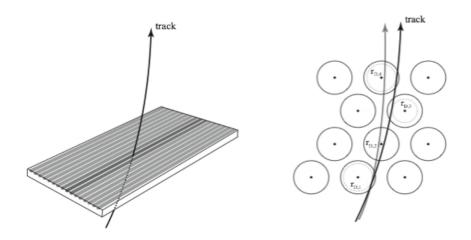
- Eureka!

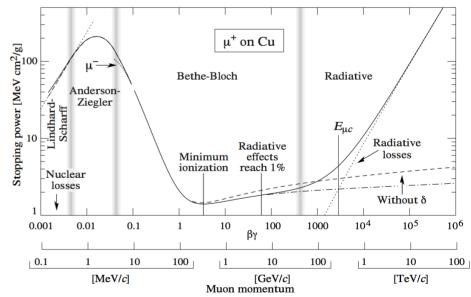


Introduction: tracking what for ?

- Tracking allows to determine the properties of those charged particles present in an experiment
 - Where is the particle?
 - Where does it go?
 - Which is its velocity?
- Tracking is possible because charged particles interact with detector material
 - Energy loss by ionization: radiation detection
 - Bethe-Bloch formula

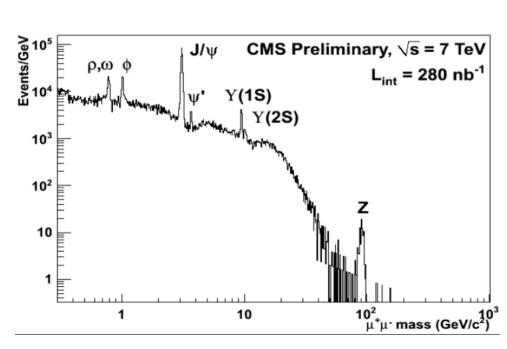
$$\left\langle \frac{dE}{dx} \right\rangle = -Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2 m_e c^2 \beta^2 \gamma^2 T_{max}}{I^2} - 2 \beta^2 - \frac{\delta(\beta \gamma)}{2} \right]$$

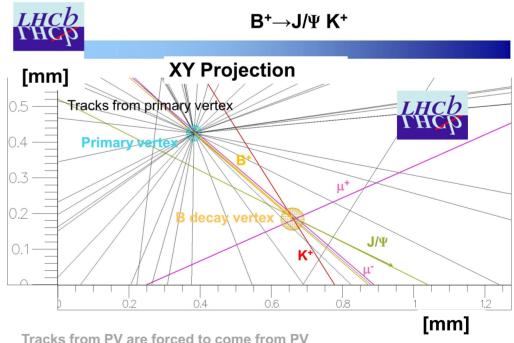




Introduction: tracking what for ?

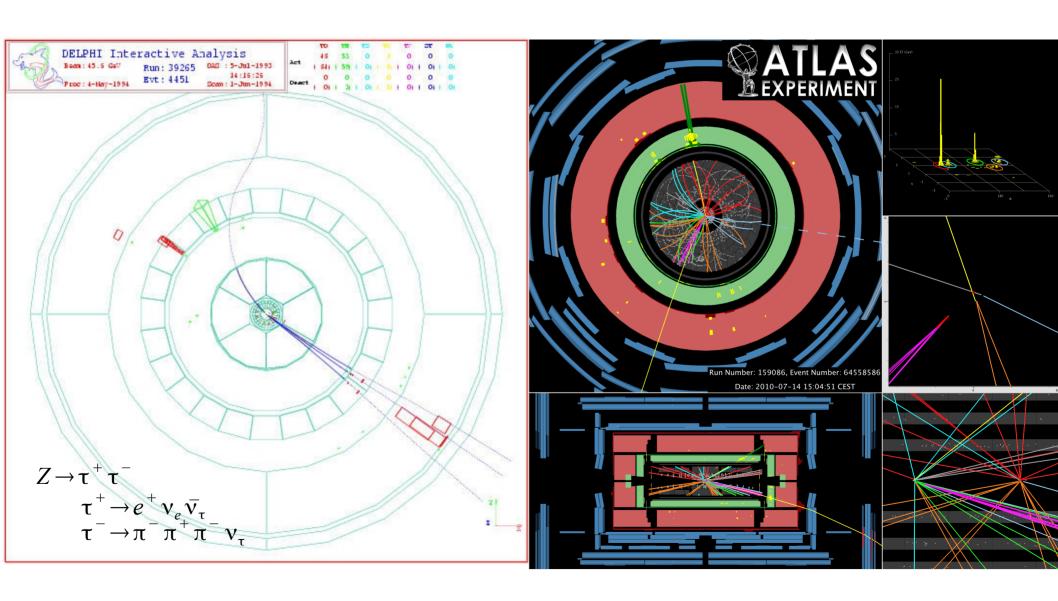
- A good performance of the Track Fitting is a key ingredient of the success of the physics program of the HEP experiments
 - An accurate determination of the charged particles properties is necessary
 - Invariant masses have to be determined with precision and well estimated errors
 - Secondary vertices must be fully reconstructed: evaluate short lifetimes
 - Kink reconstruction: on flight decays





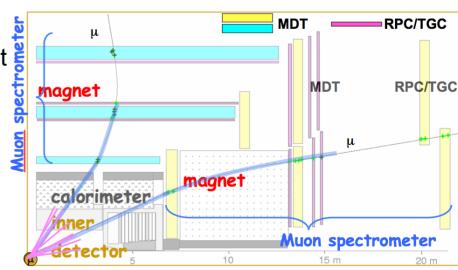
Introduction: tracking what for?

 Tracking allows to determine the properties of those charged particles present in an experiment



Introduction: tracking what for ?

- Challenges for the tracking systems of the LHC detectors
 - Momenta of particles in the final state ranging from MeV to TeV
 - High multiplicity of charged particles (up to 1000 for $\mathscr{L} \sim 10^{34} \text{cm}^{-1} \text{s}^{-1}$)
 - Even higher for heavy ion collisions
 - Large background from secondary activities of the particles
 - Multiple Coulomb Scattering in detector frames, supports, cables, pipes...
 - Complex modular tracking systems combining different detection technologies, different resolutions
 - Resolutions that vary as a function of the momentum (p), polar angle (θ) or pseudorapidity (η)
 - Very high event rates leading to large amount of data
 - with demanding requirements of CPU and storage → Tracking CPU budget

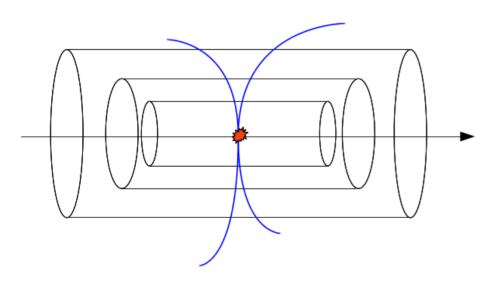


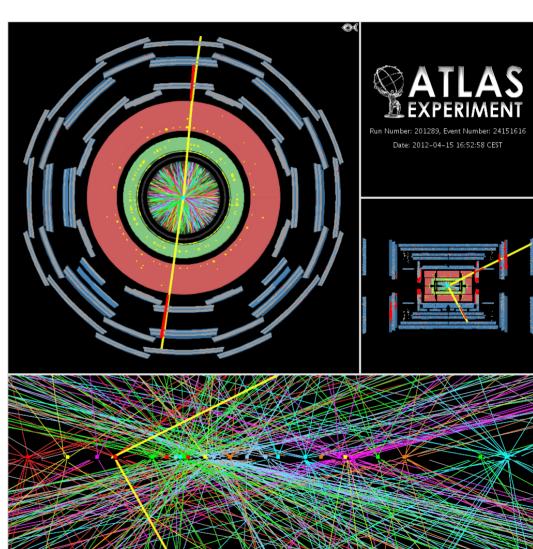
Introduction: tracking what for?

 Finding where the particle was originated tell us much about the physics: primary vertex, secondary vertex or material interactions

Vertex fitting capabilities depend on tracking performance (specially in impact parameter and space point resolution)

Primary vertex



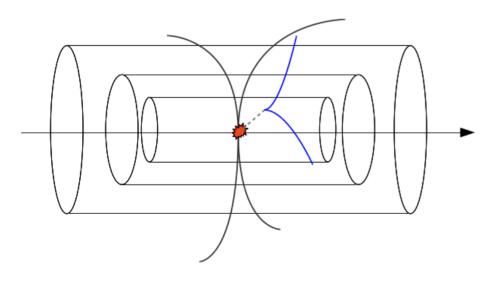


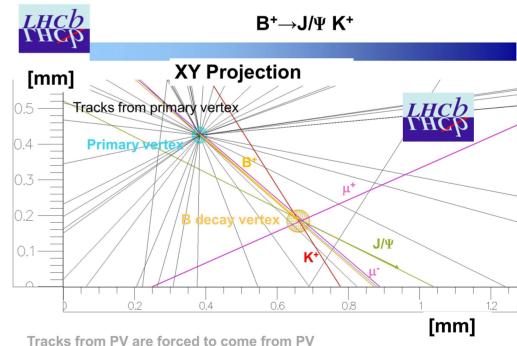
Introduction: tracking what for?

 Finding where the particle was originated tell us much about the physics: primary vertex, secondary vertex or material interactions

Vertex fitting capabilities depend on tracking performance (specially in impact parameter and space point resolution)

Secondary vertex: particle decay



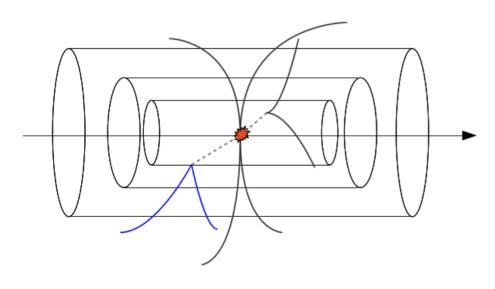


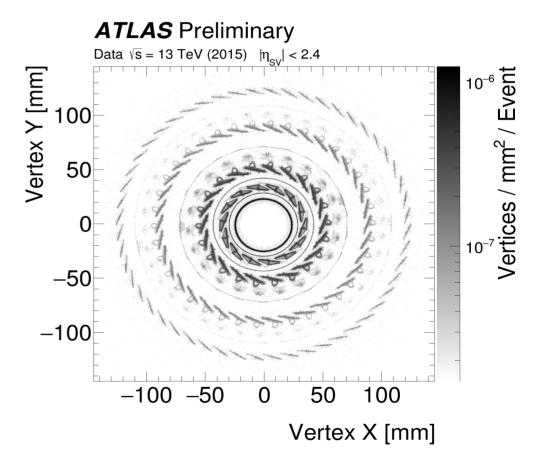
Introduction: tracking what for ?

 Finding where the particle was originated tell us much about the physics: primary vertex, secondary vertex or material interactions

Vertex fitting capabilities depend on tracking performance (specially in impact parameter and space point resolution)

Secondary vertex: material interaction





<u> Basic ingredients</u>

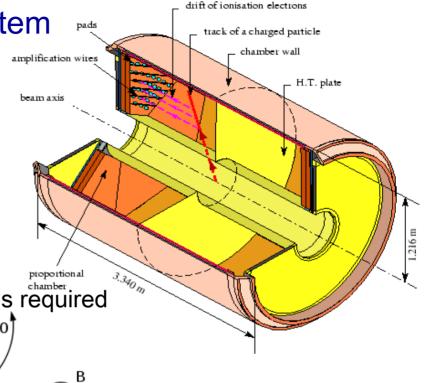
Basic ingredients of the tracking system

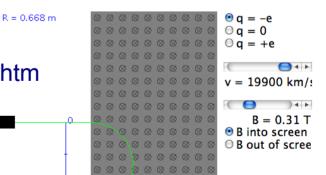
- $|q| = 1, 2 (e, \mu, \pi, k, p, \alpha, d,...)$
- Ionization detector
 - Continuous (e.g.: gas detectors)
 - Discrete (e.g.: silicon planar detectors)
- Magnetic field (no strictly necessary)

Necessary if momentum determination is required

$$(\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})$$

- Example: Nice Java applet
 - http://www.lon-capa.org/~mmp/kap21/cd533capp.htm
- Usually E=0 inside detectors or quite small
 - Negligible effects on tracks
 - E > 0 necessary for ionization charge collection
- The bending of the trajectory is due to B field





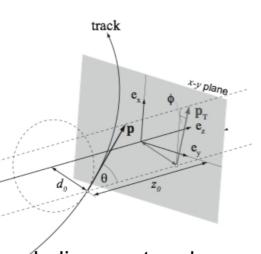
Lorentz Force

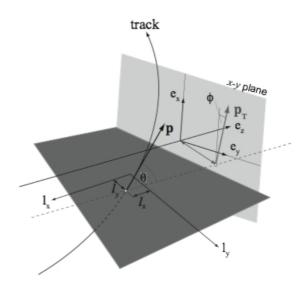
Track parameters

- A trajectory can be parametrized with just 5 parameters at a surface
 - x, y, φ, θ, v
- The track extrapolation to detector surfaces usually requires a different parametrization
 - Optimization
 - Track parameters given in the local reference frame of the surface
 - Error matrix propagation!
- The track is characterized by its 5 parameters as given at the "perigee surface" & using the global reference coordinate system
 - $d_0, z_0, \phi_0, \theta_0, q/p$
 - d_0 , z_0 , ϕ_0 , $\cot\theta_0$, $q \cdot p_T$
 - d_0 , z_0 , ϕ_0 , η , q/p

The choice of parametrization depends on the detector layout

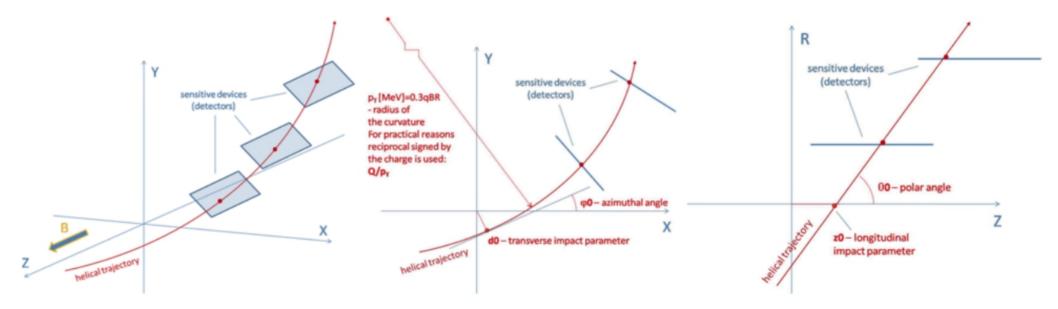
- Track extrapolation
 - Heavily used in tracking code and alignment code





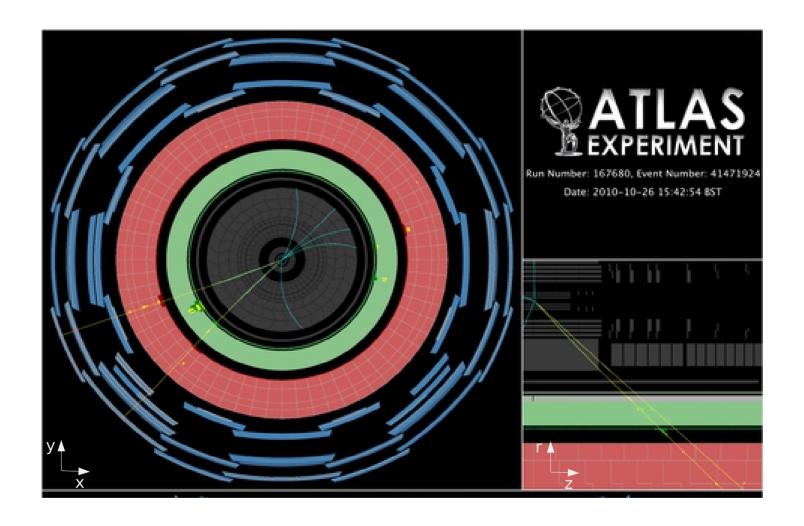
Track parameters

- Remember: The track is characterized by its 5 parameters as given at the "perigee surface"
 - At each sensor surface one can use a different parametrization
 - Track parameters given in the local reference frame of the surface
 - Error/Covariance matrix

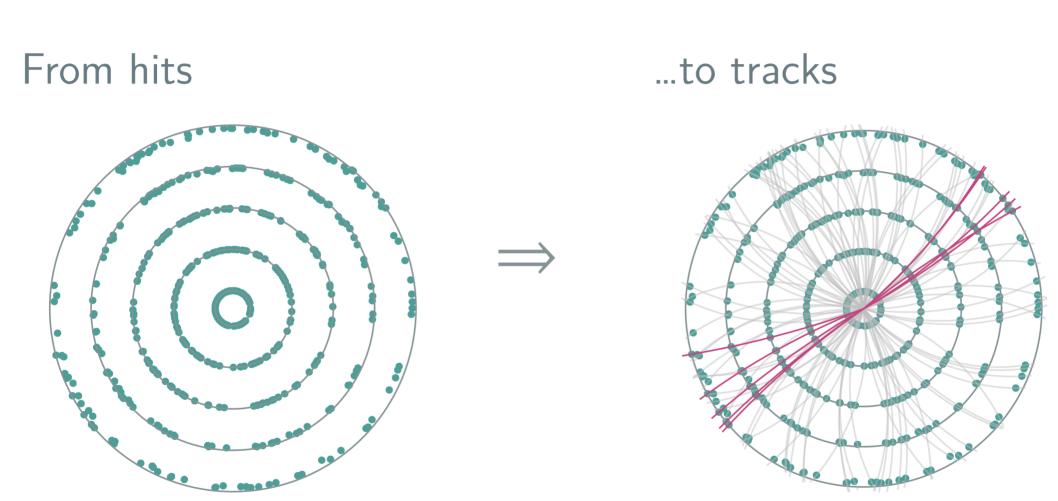


The choice of parametrization depends on the detector layout

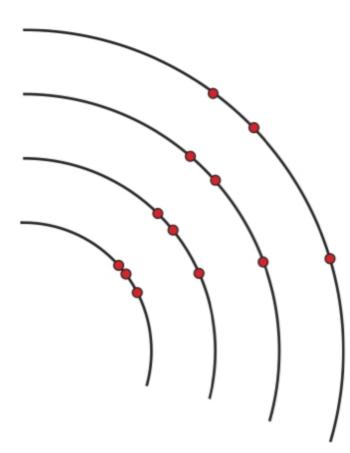
Motion of a charged particle in a uniform magnetic field



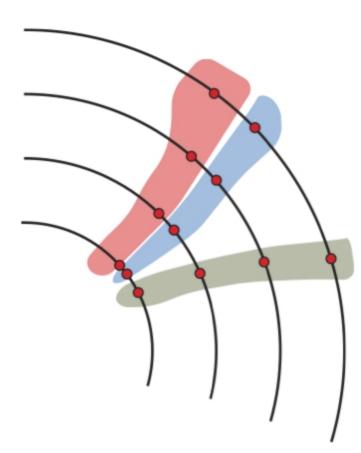
$$\vec{F} = q \vec{v} \times \vec{B}$$
 $p_T(GeV/c) = 0.3 q B(T) \rho(m)$



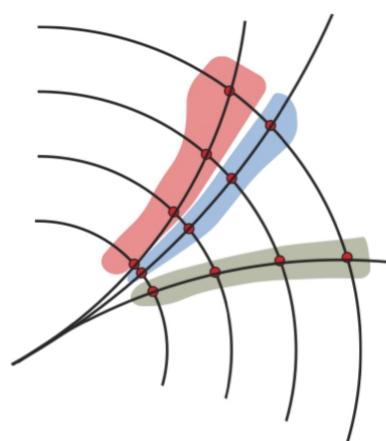
- The main goal of the pattern recognition is to associate hits to tracks
 - Efficient: all hits
 - Robust: no noise and no hits from other tracks
- Pattern recognition is a field of applied mathematics
 - It makes use of statistics, cluster analysis, combinatorial optimization, etc
 - The choice of the algorithm depends heavily in the type of measurements
 - 2D vs 3D points
 - And in the track model
 - Detector shape and B field
 - Hough space transform, template matching, minimum spanning tree, local pattern recognition
- Hit-to-track association
 - Defined by pattern recognition
 - Later altered by tracking
 - Removing bad hits & outliers
 - Noisy channels tend to be the "party spoilers"



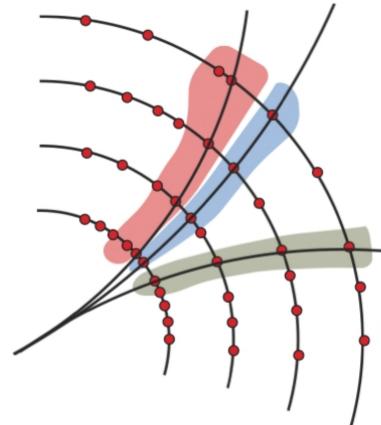
- The main goal of the pattern recognition is to associate hits to tracks
 - Efficient: all hits
 - Robust: no noise and no hits from other tracks
- Pattern recognition is a field of applied mathematics
 - It makes use of statistics, cluster analysis, combinatorial optimization, etc
 - The choice of the algorithm depends heavily in the type of measurements
 - 2D vs 3D points
 - And in the track model
 - Detector shape and B field
 - Hough space transform, template matching, minimum spanning tree, local pattern recognition
- Hit-to-track association
 - Defined by pattern recognition
 - Later altered by tracking
 - Removing bad hits & outliers
 - Noisy channels tend to be the "party spoilers"



- The main goal of the pattern recognition is to associate hits to tracks
 - Efficient: all hits
 - Robust: no noise and no hits from other tracks
- Pattern recognition is a field of applied mathematics
 - It makes use of statistics, cluster analysis, combinatorial optimization, etc
 - The choice of the algorithm depends heavily in the type of measurements
 - 2D vs 3D points
 - And in the track model
 - Detector shape and B field
 - Hough space transform, template matching, minimum spanning tree, local pattern recognition
- Hit-to-track association
 - Defined by pattern recognition
 - Later altered by tracking
 - · Removing bad hits & outliers
 - Noisy channels tend to be the "party spoilers"

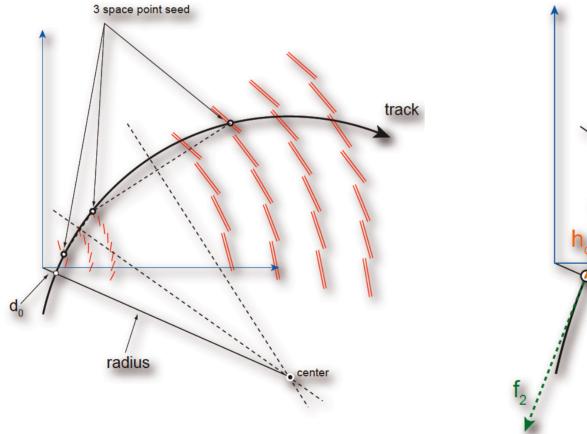


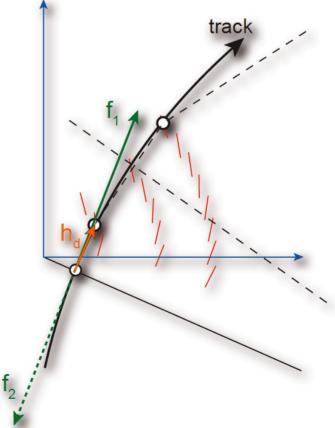
- The main goal of the pattern recognition is to associate hits to tracks
 - Efficient: all hits
 - Robust: no noise and no hits from other tracks
- Pattern recognition is a field of applied mathematics
 - It makes use of statistics, cluster analysis, combinatorial optimization, etc
 - The choice of the algorithm depends heavily in the type of measurements
 - 2D vs 3D points
 - And in the track model
 - Detector shape and B field
 - Hough space transform, template matching, minimum spanning tree, local pattern recognition
- Hit-to-track association
 - Defined by pattern recognition
 - Later altered by tracking
 - · Removing bad hits & outliers
 - Noisy channels tend to be the "party spoilers"
- In summary: pattern recognition is an art on its own



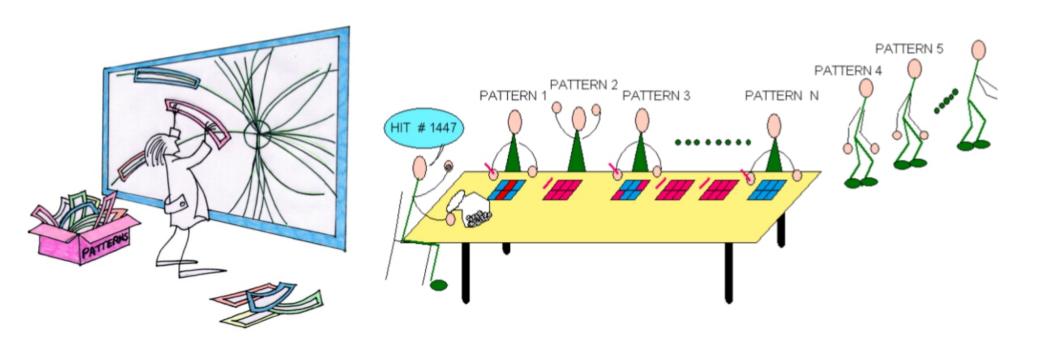
3 points seed:

 Adding other measurements: (inside-out or outside-in) may use 3 consecutive measurements (compute a circle) and extrapolate the track (outwards or inwards) attaching near-by measurements





- It is possible to perform an online pattern recognition for a fast online tracking
 - Why fast tracking?
 - Online one has a limited time to decide if the event is stored or discarded
 - A finite set of track topologies is used.
 - p_T based and possible routes from collision point
 - Possibility to implement a "fast tracking" based trigger
 - Trigger on secondary vertices → online B-tagging



- Hough transform it is a technique for digital image detection
 - It can detect the points that belong to a line (straight, circle, ellipse, helix...)
 - So the points coordinates satisfy the line equation
 - The Hough space has as many dimensions as the number of parameters to determine
 - Straight line (2D): 2. Circle (2D): 3. Helix (3D): 5
 - Then take all possible tuples (of track parameters) that will pass by each point
 - Infinite combinations → discretize &/or use constraints (e.g.: particles were originated at the center of the detector).
 - Count how many times a given parameter tuple is possible / find intersections
 - Select the most frequent parameter tuple (more intersections)
 - Use the points for the track fitting
 - Initial track parameters → use most frequent parameter tuple
- Example: straight line
 - Points are given as many available (x, y) tuples. 2D space: $y = x \tan \theta + y_0$
 - Lines are given as $(\tan \theta, y_0)$ tuples Hough space: $y_0 = y x \tan \theta$
 - Solve: draw lines in Hough space and check for intersections

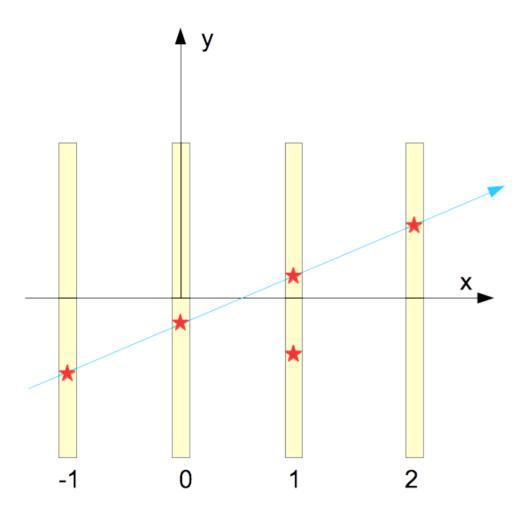


Table 2: List of hits recorded in this event. In total 5 hits: 4 hits from the track plus a noise hit. Units are arbitrary.

X	у
-1	-0.18
O	0.39
1	1.02
1	0.77
2	1.57

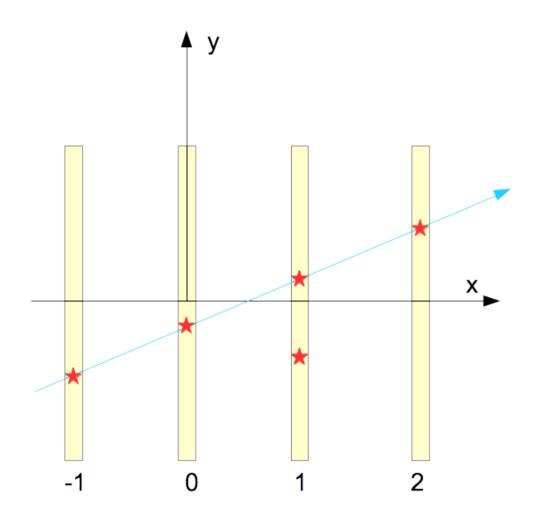
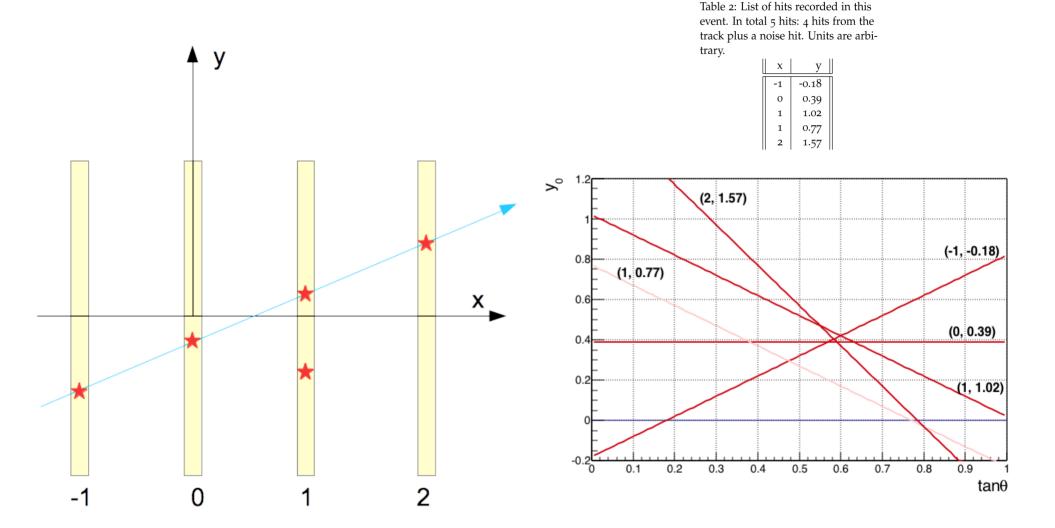


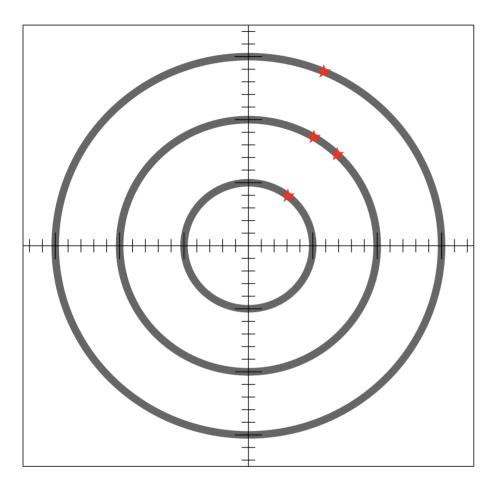
Table 2: List of hits recorded in this event. In total 5 hits: 4 hits from the track plus a noise hit. Units are arbitrary.

X	у
-1	-0.18
О	0.39
1	1.02
1	0.77
2	1.57



2D space: $y = x \tan \theta + y_0$

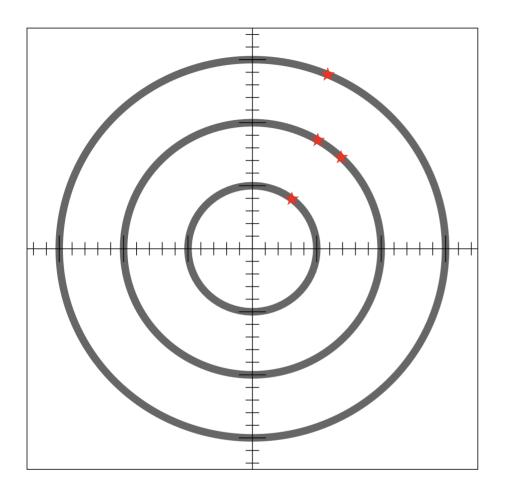
Hough space: $y_0 = y - x \tan \theta$



$$r^{2} - 2 r (\rho + d_{0}) \sin(\alpha - \phi_{0}) + (\rho + d_{0})^{2} = \rho^{2}$$
$$(d_{0} \to 0) : r - 2 \rho \sin(\alpha - \phi_{0}) = 0$$

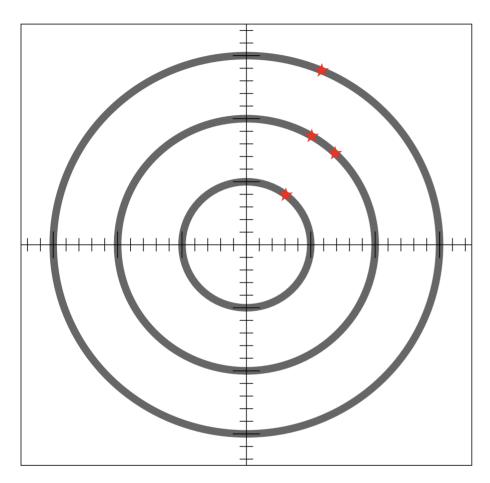
Table 3: List of hits recorded in this event. In total 4 hits: 3 hits from the track plus a noise hit.

x [mm]	y [mm]
61.3	79.0
101.6	172.3
137.8	145.0
117.1	276.2



x [mm]	y [mm]	<i>r</i> [m]	α [rad]
61.3	79.0	0.1	0.9107
101.6	172.3	0.2	1.0381
137.8	145.0	0.2	0.8107
117.1	276.2	0.3	1.1698

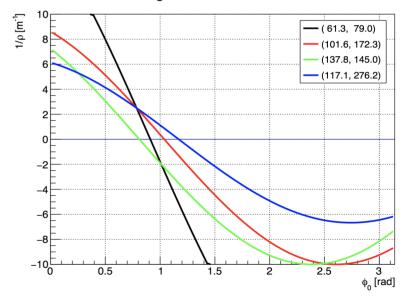
$$r^{2} - 2 r (\rho + d_{0}) \sin(\alpha - \phi_{0}) + (\rho + d_{0})^{2} = \rho^{2}$$
$$(d_{0} \to 0) : r - 2 \rho \sin(\alpha - \phi_{0}) = 0$$



$$r^{2} - 2 r (\rho + d_{0}) \sin(\alpha - \phi_{0}) + (\rho + d_{0})^{2} = \rho^{2}$$
$$(d_{0} \to 0) : r - 2 \rho \sin(\alpha - \phi_{0}) = 0$$

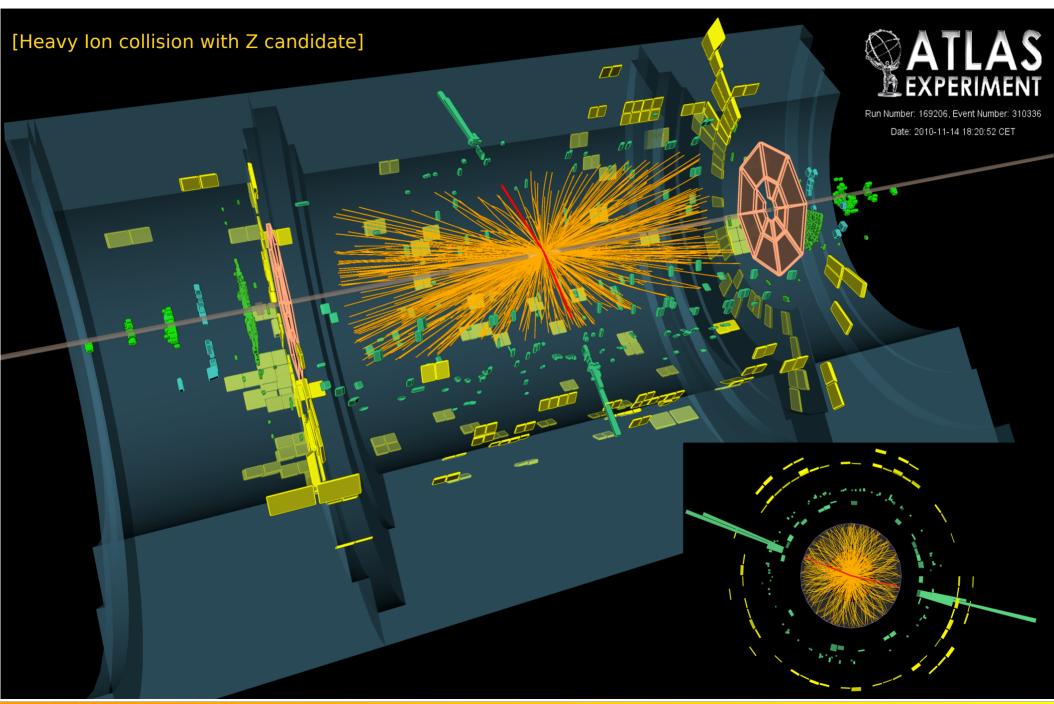
x [mm]	y [mm]	<i>r</i> [m]	α [rad]
61.3	79.0	0.1	0.9107
101.6	172.3	0.2	1.0381
137.8	145.0	0.2	0.8107
117.1	276.2	0.3	1.1698

Hough transform for a cercle



$$\frac{1}{\rho} = \frac{2 \sin(\alpha - \phi_0)}{r}$$

Example of event with many tracks



Track fitting with Kalman filter

- The Kalman filter was developed by R.E. Kalman during the 1950's
 - To solve differential matrix equations without matrix inversions
 - It is a method of estimating the states of dynamic systems
 - Applied by the NASA in the rocket trajectory control for the Apollo program
 - Military applications: compute plane trajectory by radar tracking

Assumption:

- The trajectory of a particle between two adjacent surfaces is described by a

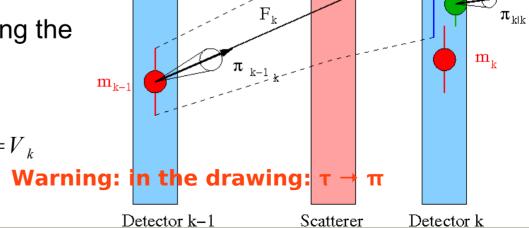
deterministic function plus random disturbances (material effects, etc)

The system equation: propagates the estate in one surface to the next

$$\tau_k = F_k(\tau_{k-1}) + P_k \delta_k \qquad \langle \delta_k \rangle = 0 \qquad Cov(\delta_k) = Q_k$$

 The measurement equation: mapping the track in the surface and considers some measurement error

$$m_k = H_k(\tau_k) + \varepsilon_k \qquad \langle \varepsilon_k \rangle = 0 \qquad Cov(\varepsilon_k) = V_k$$



Track fitting with Kalman filter

- The aim is to estimate the track parameters from the observations
 - From *k-1* observations and a *k*th measurement: obtain a new *k* estimate

$$\{\{\boldsymbol{m}_{1},\ldots,\boldsymbol{m}_{k-1}\}, \quad \boldsymbol{\tau}_{k-1}\} + \boldsymbol{m}_{k} \rightarrow \boldsymbol{\tau}_{k}$$

- Prediction

$$\boldsymbol{\tau}_{k|k-1} = \boldsymbol{F}_k(\boldsymbol{\tau}_{k-1}) + \boldsymbol{P}_k \boldsymbol{\delta}_k$$

and its covariance matrix (error):

$$C_{k|k-1} = F_k C_{k-1|k-1} F_k^T + P_k Q_k P_k^T$$

- **Filtering**, based on $\tau_{k/k-1}$ and m_{k} :
 - It consists in minimizing the following:

$$L(\mathbf{\tau}_{k}) = (\mathbf{m}_{k} - H_{k}(\mathbf{\tau}_{k}))^{T} V_{k}^{-1} (\mathbf{m}_{k} - H_{k}(\mathbf{\tau}_{k})) + (\mathbf{\tau}_{k|k-1} - \mathbf{\tau}_{k})^{T} C_{k|k-1} (\mathbf{\tau}_{k|k-1} - \mathbf{\tau}_{k})$$

The solution should be well known by now:

$$\boldsymbol{\tau_{k|k}} = \boldsymbol{\tau_{k|k-1}} - \left[(\boldsymbol{H}_{k}^{T} \boldsymbol{V}^{-1} \boldsymbol{H}_{k}) + \boldsymbol{C}_{k|k-1} \right]^{-1} \left[\boldsymbol{H}_{k}^{T} \boldsymbol{V}^{-1} (\boldsymbol{m_{k}} - \boldsymbol{H}_{k} (\boldsymbol{\tau_{k}})) \right]$$

And its covariance matrix (error):

$$C_{k|k} = [(H_k^T V^{-1} H_k) + C_{k|k-1}]^{-1}$$

- The residual is thus:

$$r_{k|k} = m_k - H_k \tau_{k|k}$$

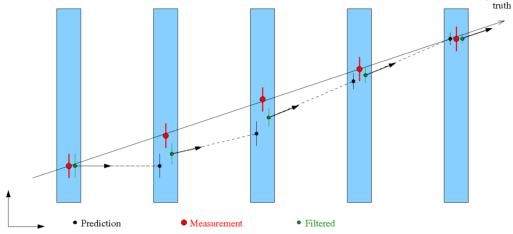
• Which allows to compute a χ^2 in order to test the goodness of the fit

that needs some smoothing.

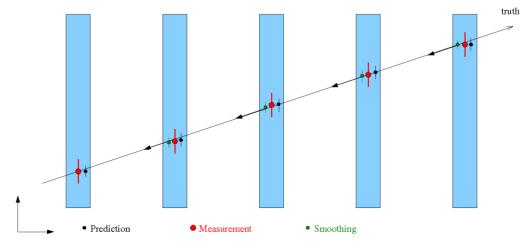
$$\chi_{k|k}^2 = \boldsymbol{r}_k^T V_k^{-1} \boldsymbol{r}_k \qquad \chi^2 = \sum_k \chi_k^2$$

Track fitting with Kalman filter

- Estimate of the track parameters and state at the detector surfaces
 - Filtering from estimate k-1 to k
 - Outer points estimates have more information than inner points

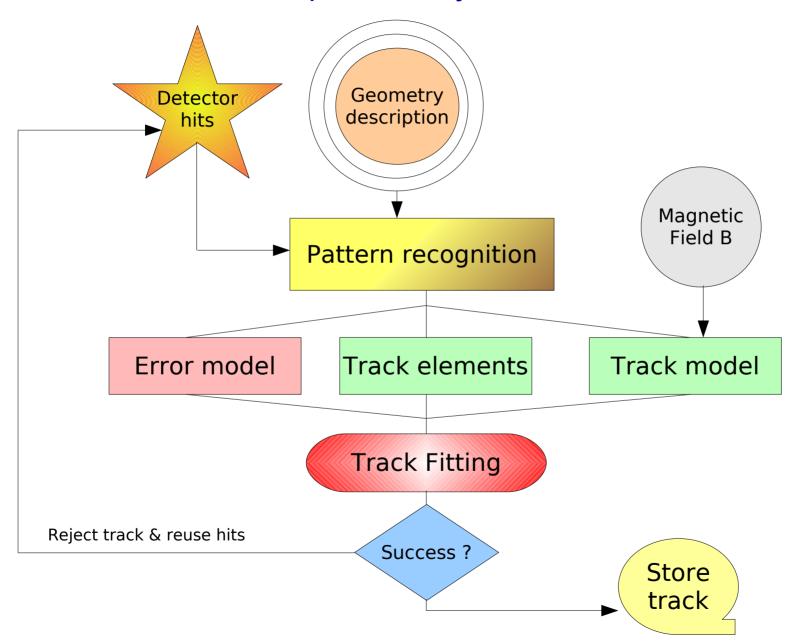


- Smoothing: from estimate k to k-1 (sort of backward filter)
 - All points estimates have the same information



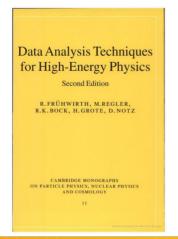
Track fitting summary

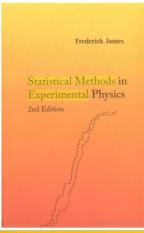
From detector hits to particle trajectories

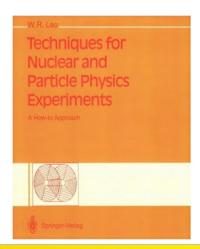


Bibliography

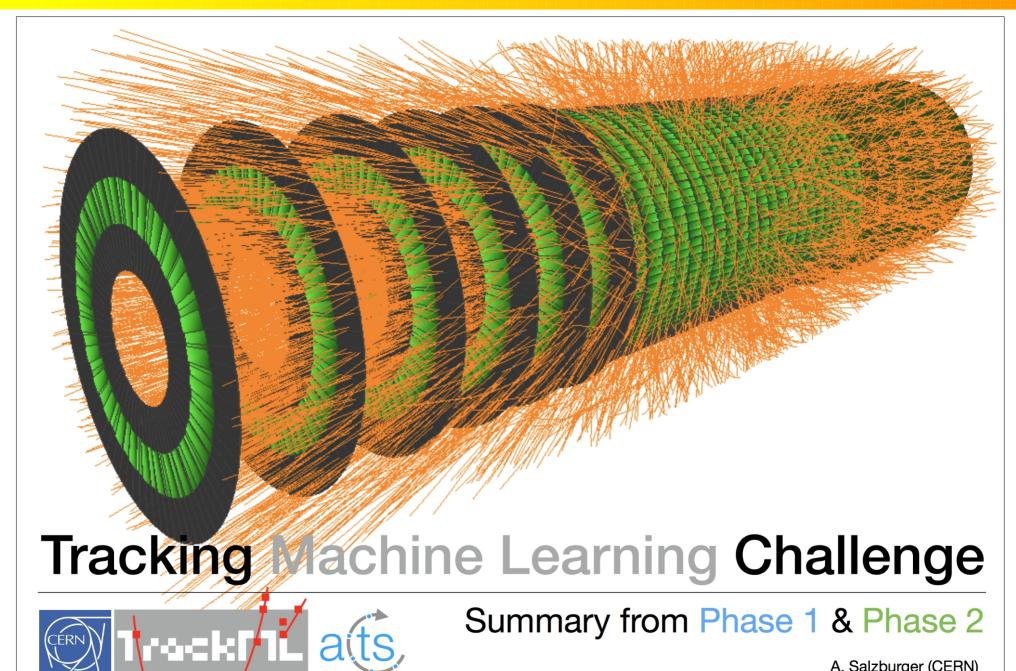
- "Data Analysis Techniques for High-Energy Physics"
 - R. Früwirth et al.
- "Statistical Methods in Experimental Physics"
 - F. James
- "Introduction to experimental particle physics"
 - R. Fernow
- "Techniques for Nuclear and Particle Physics Experiments"
 - W.R. Leo
- "Inner Detector Reconstruction: tracking"
 - A. Salzburger
 - Artemis school, 15-19 September 2008, MPI Munich, Germany





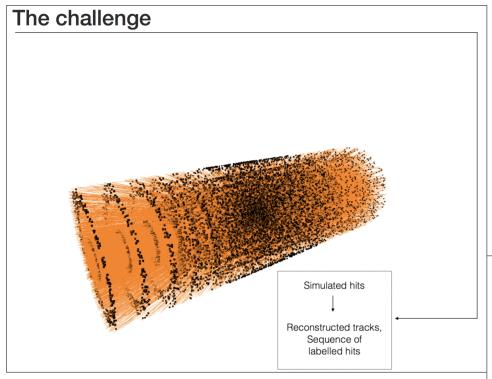


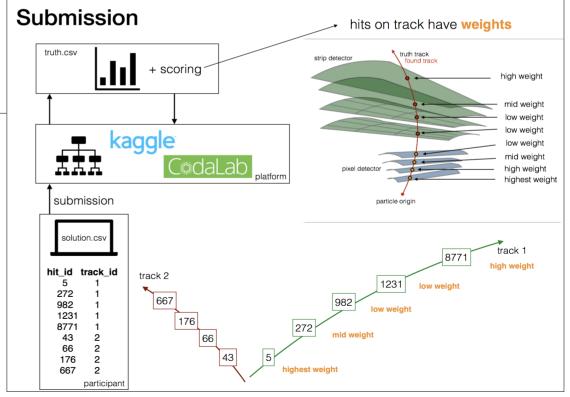
Tracking ML challenge



A. Salzburger (CERN) @SaltvBurger

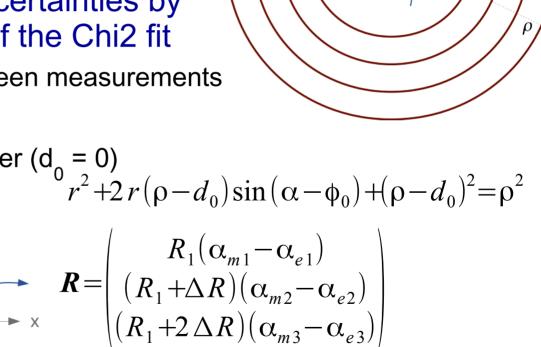
Tracking ML challenge



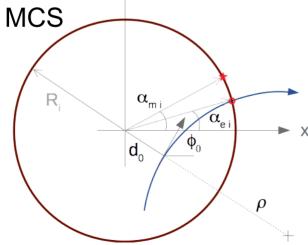


<u>Example: circular tracks</u>

- Consider circular tracks in 2D (X,Y)
- 4 circular sensor layers centered at (0,0)
 - First layer at R_1 , the rest uniformly spaced by ΔR
 - Resolution: σ (same for all layers)
- Track parameters: d₀, ρ & φ₀
- Estimate track parameter uncertainties by inverting the track fit matrix of the Chi2 fit
 - Residuals: arc difference between measurements and extrapolations



d



$$\delta \tau = -\left[\left(\frac{dr}{d\tau} \right)^T V^{-1} \left(\frac{dr}{d\tau} \right) \right]^{-1} \left[\left(\frac{dr}{d\tau} \right)^T V^{-1} r \left(\tau_0 \right) \right]$$