Heating up the chiral condensate with the Unruh thermal bath

Adrián Casado Turrión

XI CPAN Days Oviedo 2019

Departamento de Física Teórica Universidad Complutense de Madrid

In collaboration with Antonio Dobado

Introduction.

Introduction.

- In the 1970s, **Quantum Field Theory** was generalized to
 - arbitrary observers in Minkowski,
 - curved spacetimes.
- Several seminal results:
 - Hawking: black holes radiate until they evaporate;
 - horizons have an impact on field quantization.

Accelerated motion in flat spacetime.

Hyperbolic motion:

$$T^2 - X^2 = -\frac{1}{a^2}.$$

Two **branches**: L and R.

Asymptotes:

$$T = \pm X$$
 (null lines \Longrightarrow **horizon**).

The Unruh effect.

Thermalization Theorem (Lee, 1986): the restriction of the Minkowski vacuum state $|\Omega_M\rangle$ of *any* quantum field theory to R is given by

$$\rho_R = \operatorname{tr}_L |\Omega_M\rangle\langle\Omega_M| = \frac{\mathrm{e}^{-2\pi H_R/a}}{\operatorname{tr} \, \mathrm{e}^{-2\pi H_R/a}},$$

i.e. it is a thermal state at the Unruh temperature

$$T_{\rm U} = \frac{a}{2\pi}$$
 $(\hbar = c = G = k_{\rm B} = 1).$

This is the **generalization of the Unruh effect** to theories of interacting fields of arbitrary spin.

3

Accelerated motion in flat spacetime.

Comoving coordinates:

$$T = a^{-1}e^{ax} \sinh(at),$$

$$X = a^{-1}e^{ax} \cosh(at),$$

$$X_{\perp} = x_{\perp};$$

$$t, x, y, z \in \mathbb{R}.$$

$$\mathrm{d}s^2 = \mathrm{e}^{2ax}(\mathrm{d}t^2 - \mathrm{d}x^2) - \mathrm{d}x_\perp^2,$$

$$a(0) = a, \quad a(x) = a e^{-ax}.$$

Accelerated motion in flat spacetime.

Rindler coordinate:

$$\rho \equiv \frac{1}{a(x)} = \frac{e^{ax}}{a} \in (0, \infty),$$

$$ds^{2} = a^{2} \rho^{2} dt^{2} - d\rho^{2} - dx_{\perp}^{2}.$$

Euclidization
$$(t_E = it)$$
:

$$ds_{E}^{2} = a^{2} \rho^{2} dt_{E}^{2} + d\rho^{2} + dx_{\perp}^{2}.$$

$$t_{\rm E} \sim t_{\rm E} + \frac{2\pi}{a} \Rightarrow$$
 Thermal!

Spontaneous symmetry breaking and the Unruh effect.

The Unruh temperature is extremely small to be measured directly:

$$T_{\rm U} = \frac{a\hbar}{2\pi c k_{\rm B}} \simeq 3.97 \times 10^{-20} \frac{a}{g_{\oplus}} \text{ K}.$$

Furthermore, two questions arise:

- Is the Unruh effect just a formal result?
- Is acceleration completely analogous to temperature?

Spontaneous symmetry breaking and the Unruh effect.

The Unruh temperature is extremely small to be measured directly:

$$T_{\rm U} = \frac{a\hbar}{2\pi c k_{\rm B}} \simeq 3.97 \times 10^{-20} \frac{a}{g_{\oplus}} \text{ K}.$$

Furthermore, two questions arise:

- Is the Unruh effect just a formal result?
- Is acceleration completely analogous to temperature?

⇒ Does it lead to non-trivial dynamical effects (phase transitions)?

Spontaneous symmetry breaking and the Unruh effect.

The Unruh temperature is extremely small to be measured directly:

$$T_{\rm U} = \frac{a\hbar}{2\pi c k_{\rm B}} \simeq 3.97 \times 10^{-20} \frac{a}{g_{\oplus}} \text{ K}.$$

Furthermore, two questions arise:

- Is the Unruh effect just a formal result?
- Is acceleration completely analogous to temperature?

⇒ Does it lead to non-trivial dynamical effects (phase transitions)?

Our goal: trying to shed light on these issues by studying a physically relevant case.

The QCD phase transition.

QCD and its chiral symmetry.

- Quantum Chromodynamics (QCD) is the theory of strong interactions within the Standard Model.
- The Euclidean Lagrangian of two-flavour massless QCD,

$$\mathscr{L}_{\text{QCD}} = -\frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu} + i \bar{q} \gamma_\mu D_\mu q,$$

is invariant under global $SU(2)_L \times SU(2)_R$ transformations.

- This **chiral symmetry** is actually **spontaneously broken**, since it is *not* a symmetry of the hadronic spectrum.
 - **Nambu-Goldstone Theorem**: 3 NGBs, the **pions**.

QCD and its chiral symmetry.

Chiral symmetry is also **explicitly broken** by operators of the form $\bar{q}Mq = \bar{q}_L Mq_R + \bar{q}_R Mq_L$ (e.g. a **mass term** for the quarks).

The simplest of these operators is $\bar{q}q$, whose expectation value in the Minkowski QCD vacuum state is known as the **quark condensate**, which, at **finite temperature** T in flat spacetime, is given by

$$\frac{\langle \bar{q}q \rangle_T}{\langle \bar{q}q \rangle_0} = \begin{cases} \sqrt{1 - \frac{T^2}{T_c^2}} & \text{if } 0 \le T < T_c, \\ 0 & \text{if } T \ge T_c. \end{cases}$$

Consequently, chiral symmetry is **restored** for temperatures higher than $T_c = 2f_{\pi}$, with a **second order phase transition** taking place at T_c .

We can compute the Euclidean partition function of the **lowest-order effective description of low-energy QCD** in Rindler space,

$$Z_{\mathrm{NL}\sigma\mathrm{M}} = \int [\mathrm{d}\pi^a][\mathrm{d}\sigma][\mathrm{d}\lambda] \, \mathrm{e}^{-\Gamma[\pi^a,\sigma,\lambda]},$$

where the effective action in the exponent is

$$\Gamma[\pi^a, \sigma, \lambda] = \int d^4x \sqrt{g} \left(-\frac{1}{2} \pi^a \Box \pi^a - \frac{1}{2} \sigma \Box \sigma + \frac{\lambda}{2} (\pi^a \pi^a + \sigma^2 - f_\pi^2) \right),$$

with $\pi^a \pi^a + \sigma^2 = f_{\pi}^2$ and $\langle \sigma \rangle \propto \langle \bar{q}q \rangle$.

Why an effective description? The two phases of hadronic matter.

The functional integral over the pion fields is Gaussian. \checkmark

What about the remaining integrals in σ , λ ?

- \implies Saddle-point approximation.
 - Large-N limit: $f_{\pi}^2 \equiv NF^2$, $F \neq F(N)$.
 - The fields are expanded around $(\bar{\sigma}, \bar{\lambda})$, with

$$\left. \frac{\delta \Gamma[\sigma, \lambda]}{\delta \sigma} \right|_{\sigma = \bar{\sigma}} = 0, \qquad \left. \frac{\delta \Gamma[\sigma, \lambda]}{\delta \lambda} \right|_{\lambda = \bar{\lambda}} = 0.$$

$$\implies \bar{\sigma}^2(x) = \langle \sigma(x) \rangle_a^2 = \langle \sigma^2(x) \rangle_a.$$

It is easy to check that $\bar{\sigma}$ and $\bar{\lambda}$ are then the solutions of

$$\frac{\delta\Gamma}{\delta\sigma(x)} = -\Box\sigma + \lambda\sigma = 0,$$

$$\frac{\delta\Gamma}{\delta\lambda(x)} = \frac{1}{2}(\sigma^2 - f_\pi^2) + \frac{N}{2}G(x, x; \lambda) = 0,$$

where the Euclidean Green function $G(x, x'; \lambda)$ satisfies

$$(-\Box + \lambda)_x G(x, x'; \lambda) = \frac{\delta^4(x - x')}{\sqrt{g}}.$$

This system of equations can be solved in the limit $\lambda \simeq 0$.

Defining the **critical acceleration** as

$$a_c^2 \equiv \frac{48\pi^2 f_\pi^2}{N} \neq a_c^2(N),$$

we obtain, for the **quark condensate**,

$$\frac{\langle \bar{q}(x)q(x)\rangle_a}{\langle \bar{q}(0)q(0)\rangle_0} = \sqrt{1 - \frac{a^2}{a_c^2}} e^{-2ax}.$$

The condensate **vanishes** if $\begin{cases} x = 0, \ a \ge a_c \text{ (thermal-like!)}, \text{ or} \\ x \le x_c \equiv \frac{1}{a} \ln \left(\frac{a}{a_c} \right) < 0. \end{cases}$

[A. C.-T., A. Dobado, Phys. Rev. **D 99** 125018 (2019), arXiv:1905.11179]

Conclusions.

- The Unruh effect can be extended to any quantum field theory using Lee's **Thermalization Theorem**.
- This powerful functional formalism allows us to determine whether acceleration is able to trigger phase transitions.
- In particular, we have found that **chiral symmetry is restored by acceleration**, with the results being equivalent to the inertial, thermal case: $a_c = 4\pi f_{\pi} = 2\pi T_c$ (for N = 3 pions).
- At least in principle, our results may have **applications** in Cosmology, Astrophysics and (maybe) Heavy-Ion Collisions.

Thank you!

¡Muchas gracias!