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Divergencies in QFT Amplitudes

However these divergencies must be unavoidable. This means:
I If the two zeroes in k�i merge at the same point and “pinch”

the contour of integration:

@D(pr ; ki ; �j )

@k�i

���
D=0

= 0 ;

I Endpoints singularities. Since k�i 2 R ! UV div. !
renormalization. For �j integrations these singularities are
important when �j = 0 or, if D does not depend on �j

(meaning that l2j = �m2
j ).



Landau Equations

8><>:
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These are necessary but not sufficient conditions for a “pinch
surface”.



Coleman-Norton trick

To find the true singularities a method was found in the ’65 by
Coleman and Norton.

Off-shell lines we have �j = 0. For an on-shell internal line we will
have that �j 6= 0 and @D=@k�i = 0.If we identify

�x�j � ��j l
�
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0
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we have that
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