



# PCI2009 Workshop at Rabat



## Tier3 status and plans in **Spain**

**S. González de la Hoz, M. Villaplana, J. Salt, E. Oliver,  
J. Sánchez, A. Lamas**

Instituto de Física Corpuscular (IFIC)  
Valencia, Spain  
(Centro Mixto Universitat de València-CSIC)





# Outline

- ATLAS Tier3@CERN
- Common Tier3 parts in Spain:
  - Batch analysis (resources coupled to Tier2)
  - Interactive analysis
- Tier3 facilities in Spain
  - UAM-Madrid
  - IFAE-Barcelona
  - IFIC-Valencia
- General remarks and conclusions





# ATLAS Tier3

- Tier-3s are **non-ATLAS** funded or controlled centers
- It is up to the different institutions to propose possible Tier-3 configurations
- **ATLAS Tier-3 Taskforce:**  
<https://twiki.cern.ch/twiki/bin/view/Atlas/AtlasTier3>
  - Try to **converge** the various existing Tier-3 prototypes on a **small number of models**
- Document the current **usage** in Atlas Tier-2 and Tier-3 sites
- Determine and make available **best practices guidelines**
- **Develop suggestion** for deployment at all Tier-3 sites
- Propose **test metrics** for the considered design and tabulate the results.

Main Goal: Provide a **document** + some **twiki pages** with installation recommendations in a Tier-3



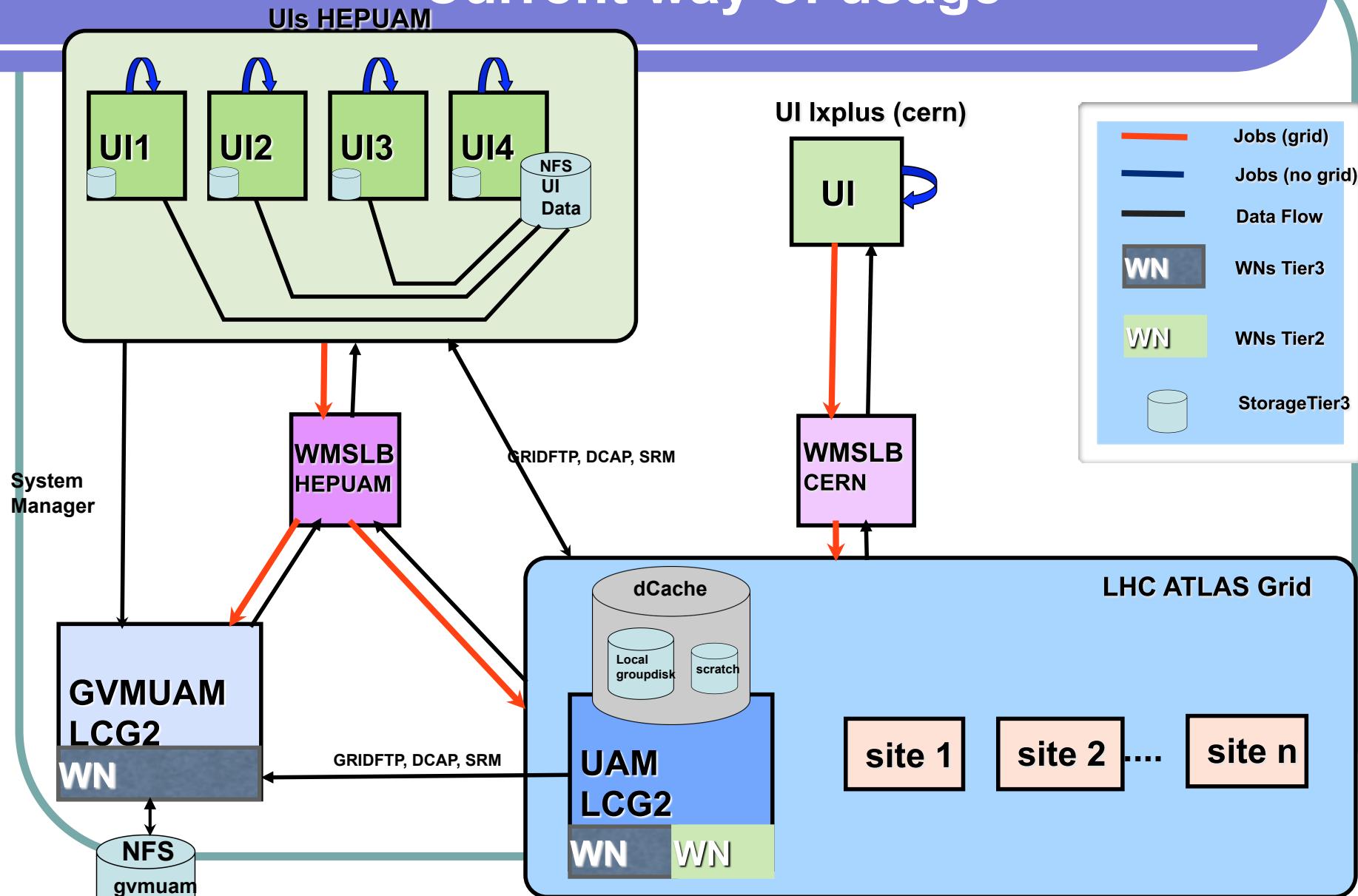
# Batch Analysis ("a la Grid") in Spain

- **Storage**

- Tier3 has access to the Tier2' SE (AOD, DPD,...) in native mode
- Grid access to the Tier3 storage

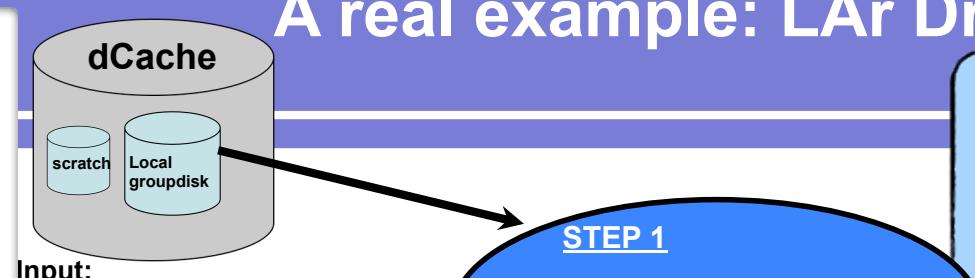
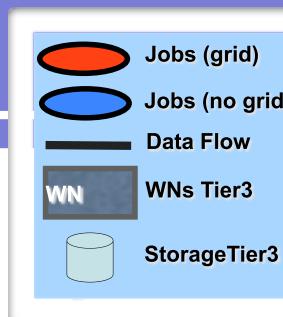
- **CPU (dedicated WN's)**

- Using different/shared analysis queues
  - WMS jobs need a local public queue
    - Ganga can manage to filter queues using my proxy certificate, that means neither ATLAS Central Production jobs nor user outside our cloud/site
  - New Analysis queue in Panda working on that




# Interactive Analysis (Outside Grid)

- **UI's (n User Interfaces)**
  - Same software as a WN.
  - Local checks, to develop analysis code before submitting larger jobs to the Tier2's via Grid.
- **Proof: Parallel ROOT Facility**
  - Exploiting intrinsic parallelism to analyze data in reasonable times.
  - Install PROOF in a PC farm for interactive analysis on DPD.



# Tier3 prototype at UAM-MADRID

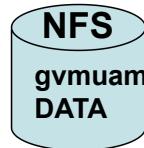
## Current way of usage



# Tier3 prototype at UAM-MADRID

## A real example: LAr Drift Time




Input:  
Cosmic RAW data (size  $\approx$  150 GB)  
Cond DB

### STEP 1

Framework: *Athena*  
RAM < 2GB  
Input access: dCache (dcap)

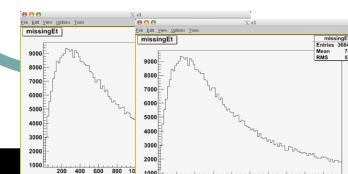
- On UIs (28 cores)
- Time lasted:  $\approx$  2 weeks
- Comments:
  - Good dCache performance.
  - Uncomfortable for users (input access and submitting jobs to all UIs)

Step 1 is done only once



Input:  
ROOT ntuple file (size  $\approx$  4 GB)

### STEP 2


Framework: *ROOT batch mode*  
RAM < 1GB  
Input access: NFS - posix



Input:  
 $\approx$ 700 ROOT files (size  $\approx$  20 MB each)

- On GVMUAM-LCG2  $\approx$  200 cores
- wms grid job type
- Time lasted:  $\approx$  10 hours
- Comments:
  - Rather efficient but need faster input file access.

Steps 2 and 3 have to be repeated many times for different studies of the analysis.

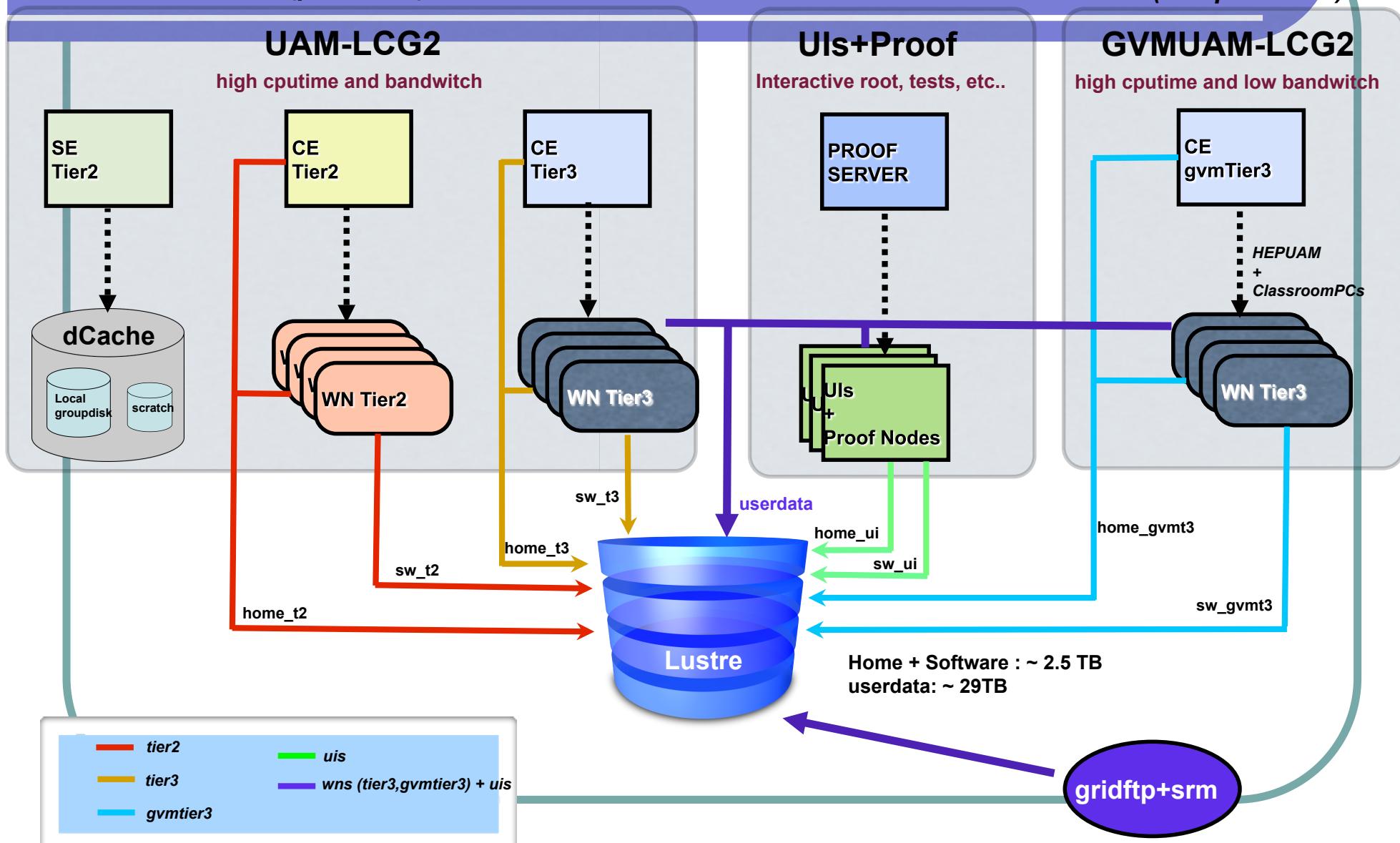


### STEP 3

Framework: *Interactive ROOT*  
RAM < 1GB  
Input access: NFS - posix

- On UI (one core only)
- Time lasted:  $\approx$  3 hours
- Comments:
  - Too much time.

- PROOF trials - enables interactive analysis with *ROOT* - (28 cores)
- All UIs as Nodes PROOF
- Time lasted:  $\approx$  10 min
- Comments:
  - Job was adapted.


# Tier3 prototype at UAM-MADRID

## Future configuration II



(published)

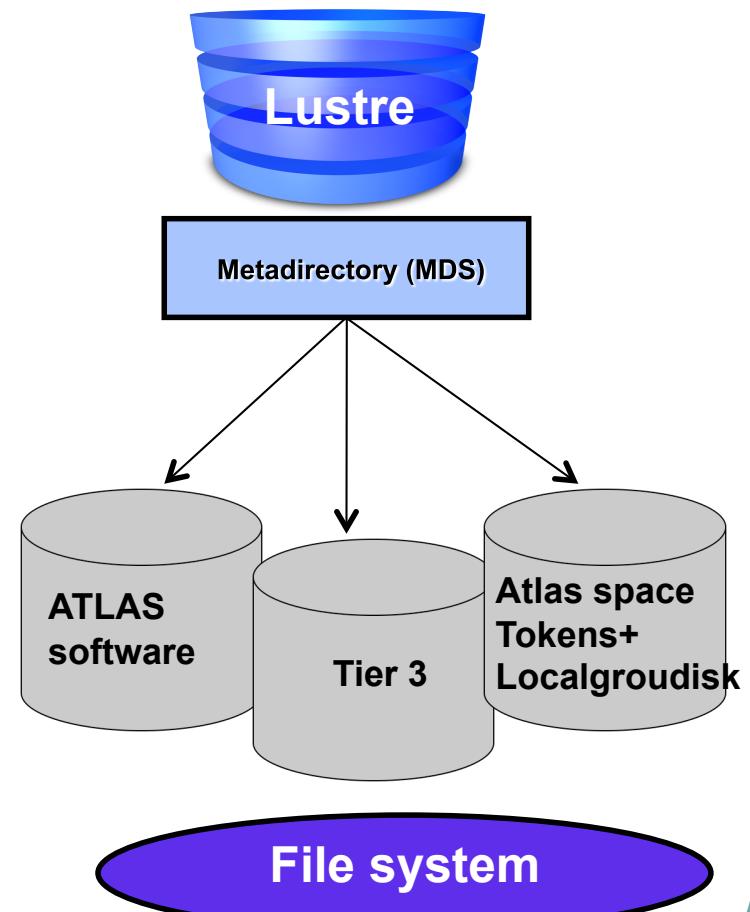
(not published)



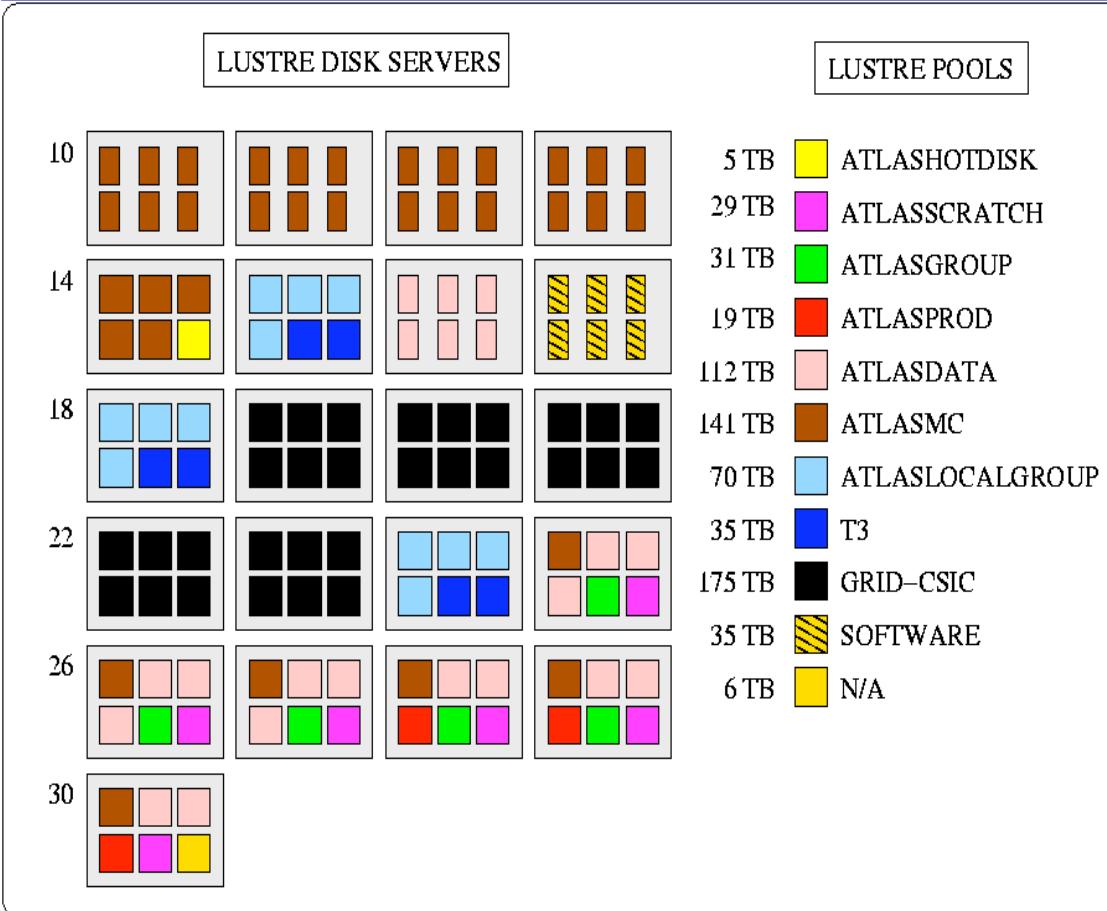
# Tier3 prototype at IFAE-Barcelona

## IFAE tier3 (what we have)

- We just started building the IFAE tier3 infrastructure. Until now physicists in the Institute **using few User Interfaces** for interactive analysis and **resources from the tier2** (sending jobs via Ganga)
- The tier3 is hosted at PIC together with the PIC tier1 and the IFAE tier2.
- 4 user interfaces (two slots each):
  - For grid jobs and root/athena interactive analysis.
  - In addition to glite-ui, Atlas software needed for analysis installed: root, ganga/panda clients, dq2...
- **1 CE** (not dedicated, but from IFAE tier2). ATLAS production releases are shared with tier2.
- **~30 TB of NFS-mounted disks & 2 Disk servers**. The I/O load on the servers has been low in the past and nfs performed well. Studying the possibility of implementing other file systems .


# Tier3 prototype at IFAE-Barcelona

## IFAE tier3 (plans for 2010)


- 1 dedicated person just recruited for the three sites: Carlos Osuna
  - **Increase the storage up to ~80 TB of disk for the data.**
  - **~100 batch cores as WNs**
  - **10-15 user interfaces for interactive analysis**
  - **A dedicated CE**
- Setup **PROOF** for parallel processing of root/AthenaRootAccess in the farm of User Interfaces.
- This together with an increase in the storage will allow users to reduce the need of data distributed analysis in favour of analysis in local cluster (currently users expend 95% of the total CPU time of the analysis in the tier2's).
- With the increase of disk space we plan to study other storage file systems (rather than nfs, **for instance xrootd**) already installed in some tier3's.

# Tier3 prototype at IFIC-Valencia

- Use a common technology for both Tier2 and Tier3
  - Lustre for data storage (+ Storm SRM)
    - Local access from all the machines (Posix)
  - UI to access Grid and run local test/program
  - WNs to provide CPU for both Tier2 and Tier3
    - Using share/dedicated CEs/queues
  - Take profit from ATLAS software installation
  - Proof on dedicated nodes accessing lustre
    - Evaluating the possibility to share Tier3's WNs



# Tier3 prototype at IFIC-Valencia

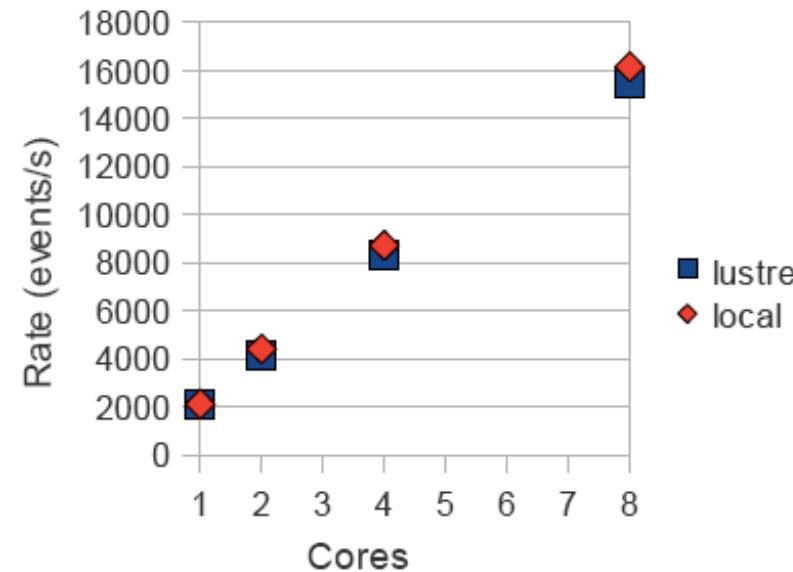


- The Tier3 is using three disk servers: gse15,18 and 24
- No overlap with Tier2 disk servers
- The only shared resource is the Lustre metadirectory (MDS).

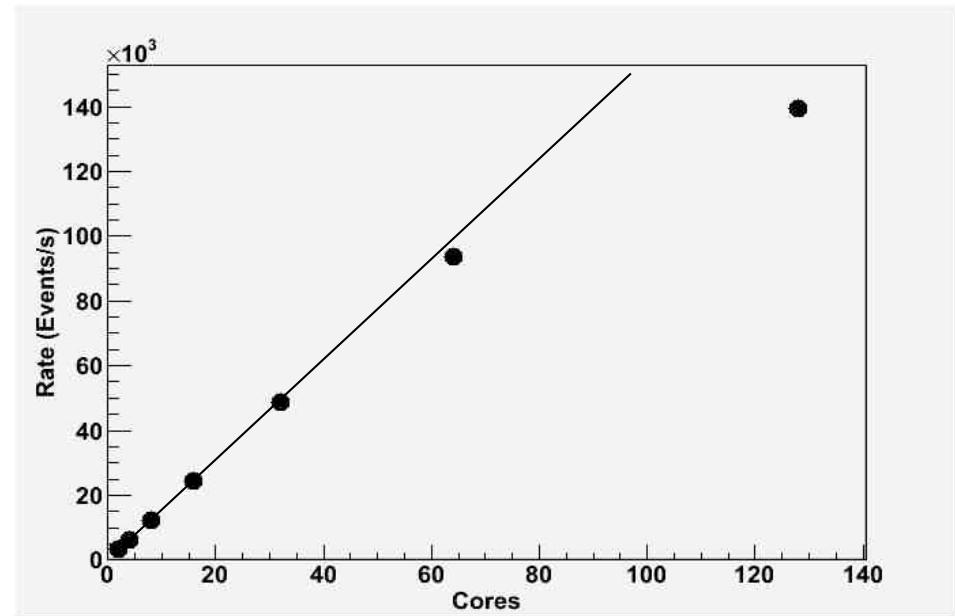


- Storage in our Tier3 (Lustre)
  - LOCALGROUPDISK
    - 60% (around 60 TB)
    - Under DDM, not quotas
  - T3
    - 40% (around 40 TB)
    - 1-2 TB per user
    - With quotas
    - Write enabled from UIs (Seen as local disk)

# Tier3 prototype at IFIC-Valencia


- Several **User Interfaces** and two **CE no-dedicated** to the Tier3
  - To have the ATLAS software (production releases & DDM tools) installed automatically
  - The user has to login in the UI's and they can send jobs to the Grid
  - It is possible to ask for development releases installation
  - In our case, every UI can see “Lustre” (/lustre/ific.uv.es/grid) as a local file system (Useful to read files).
- Access to **ATLAS software** and DDM tools via **Lustre** as a local file system in our UI
  - /lustre/ific.uv.es/sw/atlas/releases
    - local checks, to develop analysis code before submitting larger jobs to the Tier-1s-2s via Grid
  - The **Ganga** client is installed locally (AFS)  
source /afs/ific.uv.es/project/atlas/software/ganga/install/etc/setup-atlas.sh

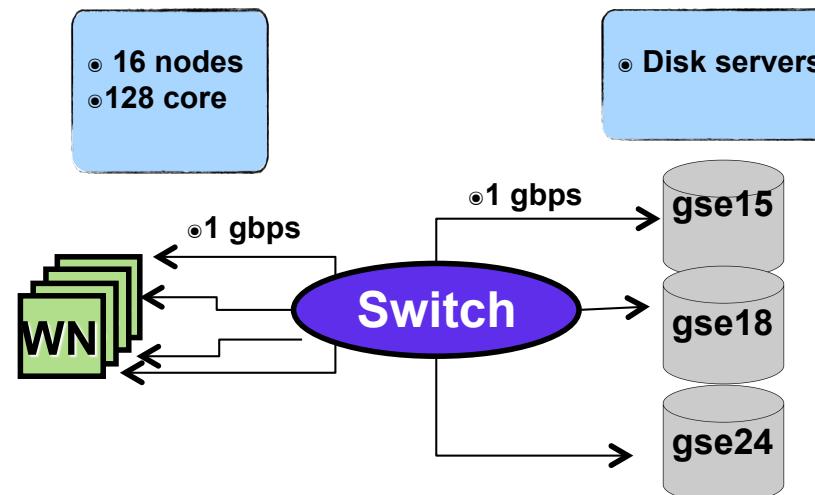
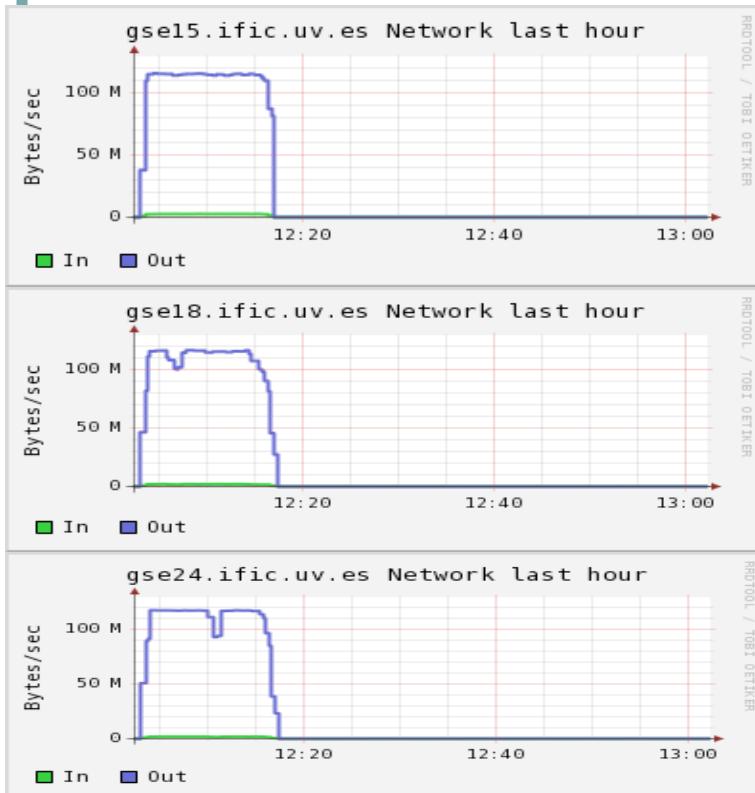
# PROOF test at IFIC-Valencia


- Interactive analysis on DPD/ntuples using **PROOF**
- Test using one UI with 8 cores (PROOF-Lite)
  - Dataset with 3684500 events (7675.24 MB), 372 files, 22MB per file
  - The data was stored **locally** and on **Lustre** file system
- Test on a cluster of machines
  - 128 cores (16 nodes)
    - 16 x HP BL460c, 8 cores, 2 x Intel Xeon E5420@2.5 GHz
    - 16 GB RAM
    - 2 HD SAS 146 GB (15000 rpm).
  - **Access to the data: Lustre**
    - To use the same technology as in our Tier2
  - **Xrootd used to start proof servers.**



- PROOF-Lite with 8 cores.
- The lustre file system shows a nearly equivalent behaviour as the local storage.





- Test using 128 cores
  - 16 nodes x 8 cores
  - ~ 1440 files
  - ~ 32 GB
  - Data was stored on Lustre file system



- With 128 cores we are loosing linearity because we are **limited by our disk server interface**

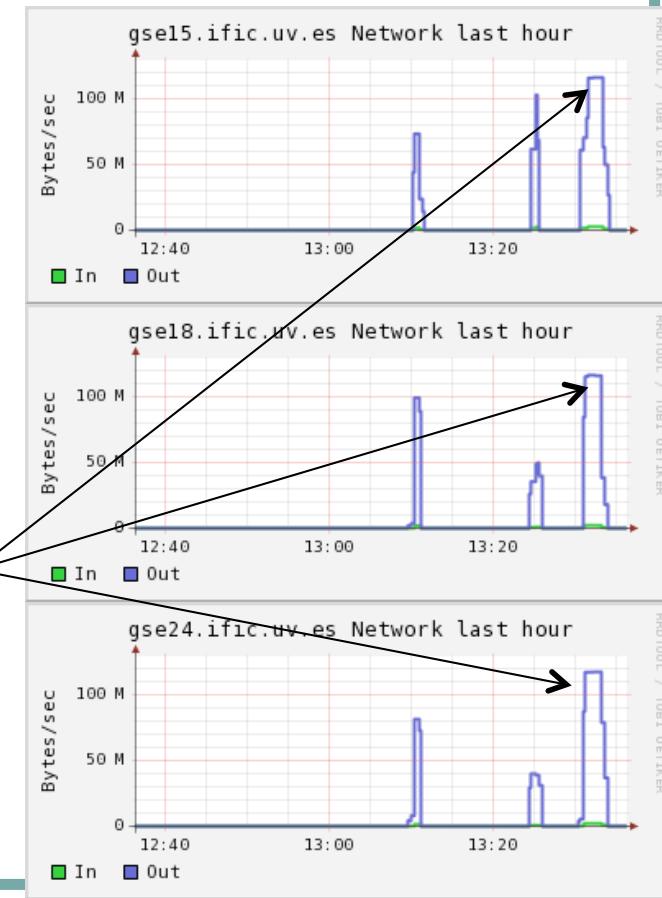


- Sequential read test



- Each core (total 128 in 16 nodes) reads 100 random files with dd (bs=32k)
- 10995 files (225 GB)
- Test result BW = 357 MB/s
- Disk servers interfaces were saturated.**




- Test using 4 proof simultaneous sessions with 128 cores each one over 3684500 events (372 files, 7 GB)

| N   | INI (s) | Time (s) | Rate (evt/s) | BW (MB/s) |
|-----|---------|----------|--------------|-----------|
| 128 | 2.5     | 36       | 101634.4     | 228.3     |

1 Proof session

| N     | INI(s) | Time (m:s) | Rate (evt/s) | BW (MB/s) |
|-------|--------|------------|--------------|-----------|
| 128   | 6.0    | 2:38       | 23234.3      | 53.8      |
| 128   | 8.1    | 2:39       | 23133.0      | 53.8      |
| 128   | 8.1    | 2:36       | 23530.9      | 54.4      |
| 128   | 7.3    | 2:37       | 23362.0      | 54.7      |
| Total |        |            | 93260.2      | 216.7     |

4 Proof session



- Good PROOF behaviour. Scalability is correct with this kind of user analysis. Concurrent use is possible without added degradation.
- Lustre performance is adequate and no sensible degradation was observed while concurrent access is made.
- Lustre performance is limited by disk server ethernet interface. Room is still open to improvement aggregating a second interface (channel bonding). Tests were already done (not presented here).
- The Tier-3 at IFIC-Valencia is no longer a prototype but a real working facility with around 20 users
- The design might change in the future according to users needs



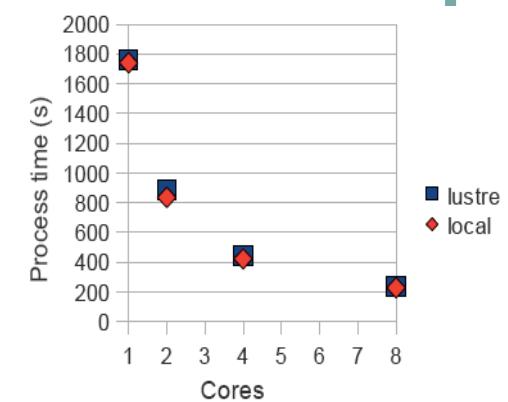
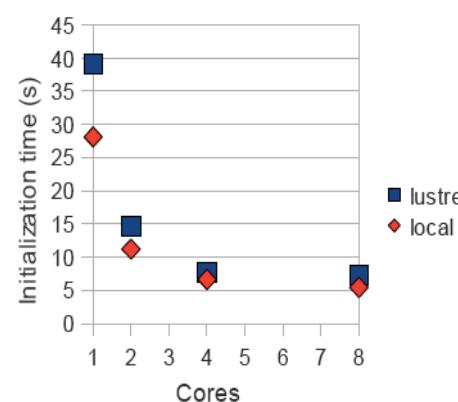
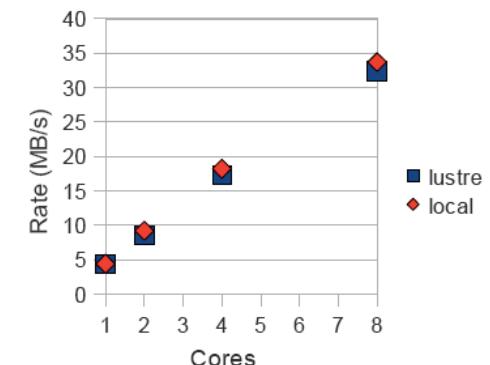
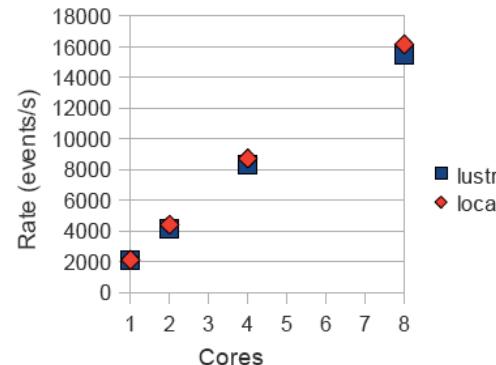
# General remarks and conclusions

- Transfers to the LOCALGROUPDISK space token via DDM/dq2 are not using the user proxy certificate. Quotas are not used and **therefore a user could fill in the whole disk space.**
- We need a dedicated Panda/Ganga analysis queues for our Tier3 and only "for our users". **How these queues are going to be managed?**
- How the **Tier3 Grid resources** are going to be considered by the ATLAS **global accounting?**
- Tier2 and Tier3 interaction
  - Batch analysis
    - Actually it is to add more resources to our Tier2 (like to have a bigger Tier2)
    - **If the Tier2 is well structured, this should not be a problem.**
      - To add more WNs and see that our CE is working fine
  - Interactive analysis
    - You are accessing to the data from the UI using the native protocol (Lustre, dcache. Etc.) and this could interfere with the Tier2.
    - But we are talking about 1 UI against all the Tier2's WNs, and therefore **the effect should be negligible.**
- All Spanish sites have a **batch and an interactive analysis facility**.
  - Batch: Extra Tier2 resources but in the same infrastructure and using the same technology (Lustre, dcache, etc..)
  - Interactive: UIs + PROOF+(Lustre, nfs,...)

# Backup



# General remarks and conclusions





- UAM, IFAE and IFIC Conclusions
  - These Tier3 facilities are starting just now. So far, there has not been a lot of analysis jobs. Therefore the Tier3 facilities has not been used in real cases (a lot of users running a lot of jobs) and they could change.
  - Using Lustre because is a posix distributed file system.
    - Add disc in an easy way
    - Posix file system: User can read Tier2 data from the UIs
  - Lustre giving similar performance to local storage
  - We need a dedicated Panda analysis queue for our Tier3 and only “for our users”

# Tier3 prototype at IFIC-Valencia



MUESTRA: 3684500 evts (7675.24 MB) 372 files 22MB po

|        | cores | ini  | proc | rate (evt/s) | rate (MB/s) |
|--------|-------|------|------|--------------|-------------|
| lustre | 1     | 39,1 | 1762 | 2090,2       | 4,4         |
|        | 2     | 14,6 | 888  | 4145,8       | 8,6         |
|        | 3     |      |      |              |             |
|        | 4     | 7,7  | 443  | 8307,1       | 17,3        |
|        | 5     |      |      |              |             |
|        | 6     |      |      |              |             |
|        | 7     |      |      |              |             |
|        | 8     | 7,2  | 237  | 15542,3      | 32,4        |
| local  | cores | ini  | proc | rate (evt/s) | rate (MB/s) |
|        | 1     | 28,1 | 1741 | 2115,1       | 4,4         |
|        | 2     | 11,2 | 836  | 4402,8       | 9,2         |
|        | 3     |      |      |              |             |
|        | 4     | 6,6  | 422  | 8718,7       | 18,2        |
|        | 5     |      |      |              |             |
|        | 6     |      |      |              |             |
|        | 7     |      |      |              |             |
|        | 8     | 5,4  | 228  | 16158        | 33,7        |





- Same Hammer Cloud test 993. Submitting jobs with Ganga to LOCAL (our UI) and PANDA backend (ANALY\_IFIC) using LUSTRE storage

|       | Gangajob | Dataset number | # Events | CPU | Elapsed time | Rate  |
|-------|----------|----------------|----------|-----|--------------|-------|
| Local | 16       | 121050         | 4        | 9%  | 354          | 0.01  |
|       | 17       | 121182         | 1701     | 24% | 184          | 9.24  |
|       | 18       | 121226         | 47       | 9%  | 354          | 0.13  |
|       | 19       | 121244         | 1645     | 19% | 462          | 3.56  |
|       | 22       | 121457         | 504      | 9%  | 435          | 1.16  |
|       | 25       | 121679         | 99       | 11% | 297          | 0.33  |
|       | 26       | 121683         | 1718     | 14% | 319          | 5.39  |
|       | 23       | 121847         | 13185    | 34% | 479          | 27.53 |
|       | 24       | 121874         | 2755     | 36% | 692          | 3.98  |
|       | Gangajob | Dataset number | # Events | CPU | Wallclock    | Rate  |
| Grid  | 0.1      | 121050         | 4        | 15% | 317          | 0.01  |
|       | 0.0      | 121182         | 1701     | 17% | 380          | 4.48  |
|       | 1.0      | 121226         | 47       | 16% | 318          | 0.15  |
|       | 1.2      | 121244         | 1645     | 14% | 684          | 2.4   |
|       | 2.2      | 121457         | 504      | 13% | 381          | 1.32  |
|       | 4.0      | 121679         | 99       | 16% | 318          | 0.31  |
|       | 4.1      | 121683         | 1718     | 20% | 319          | 5.39  |
|       | 12.0     | 121847         | 13185    | 28% | 624          | 21.13 |
|       | 12.1     | 121874         | 2755     | 21% | 1172         | 2.35  |



- Same HC test 993. With athena running on our UI (interactive analysis, time athena joboption.py)

Datasets (15613 events)

|        |           |        |
|--------|-----------|--------|
| 121874 | 92 files  | 1.7 GB |
| 121847 | 11 files  | 7.8 GB |
| total  | 103 files | 9.5GB  |

#### LOCAL STORAGE

| real   | user  | sys                                      |
|--------|-------|------------------------------------------|
| 12m10s | 5m59s | 13.689s                                  |
| 10m4s  | 5m53s | 12.201s                                  |
| 9m47s  | 5m57s | 12.479s                                  |
| 12m29s | 5m54s | 13.587s **without cleaning run directory |

#### LUSTRE STORAGE

|        |       |         |
|--------|-------|---------|
| 16m43s | 6m26s | 19.815s |
| 11m29s | 6m24s | 19.608s |



### Storage

- Shared home directory by UIs
- Shared storage area (posix) by UIs and WNs Tier3 (UAM-LCG2 and GVMUAM-LCG2)
- Lustre File System
  - high performance
  - scalability
  - **posix access**
- Lustre allows to share storage areas with posix access (home, software, etc...) **for Tier2 and Tier3**.
- The space token **LOCALGROUPDISK** will be kept on dCache Tier2 file system.

### Computing

- The publication of Tier3 resources is useful to be able to run ATLAS tools (e.g. private MC productions).
- PROOF: Parallel processing for interactive root analysis.
- UIs prepared to be used as PROOF nodes as well.