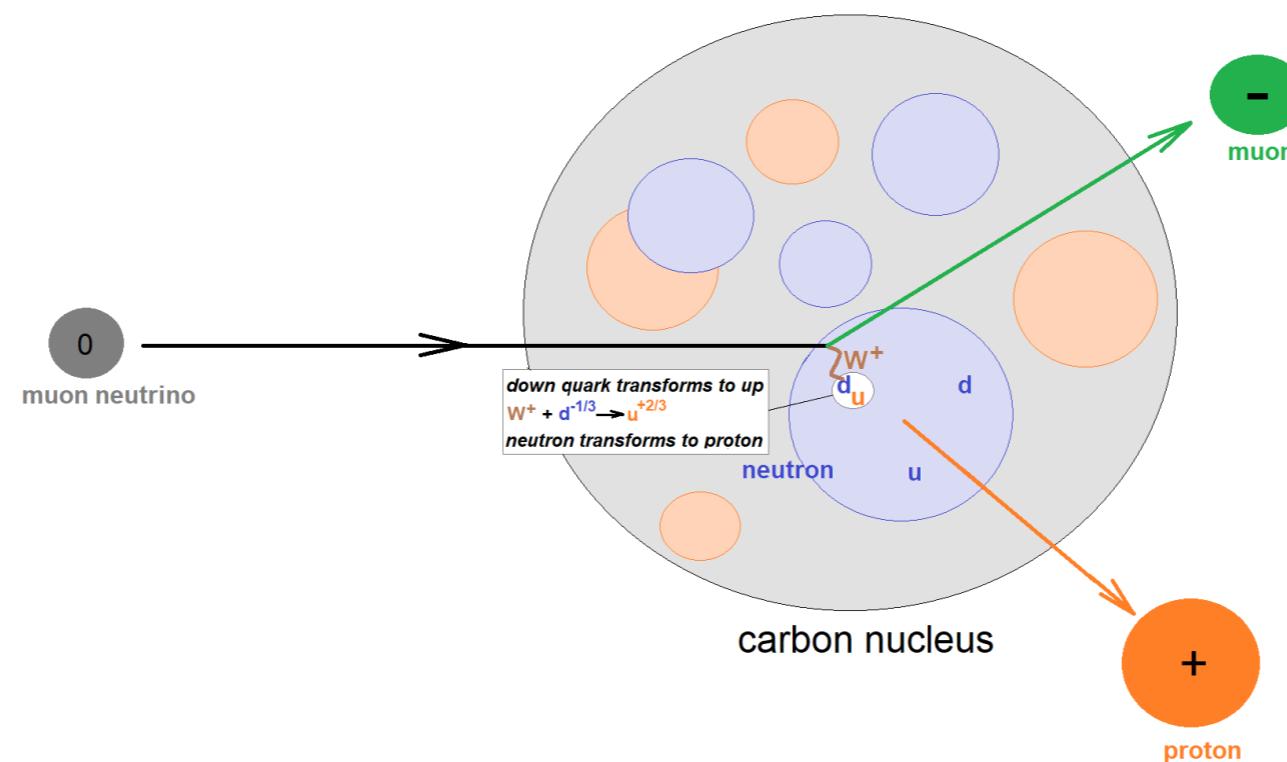


Introducción al ejercicio

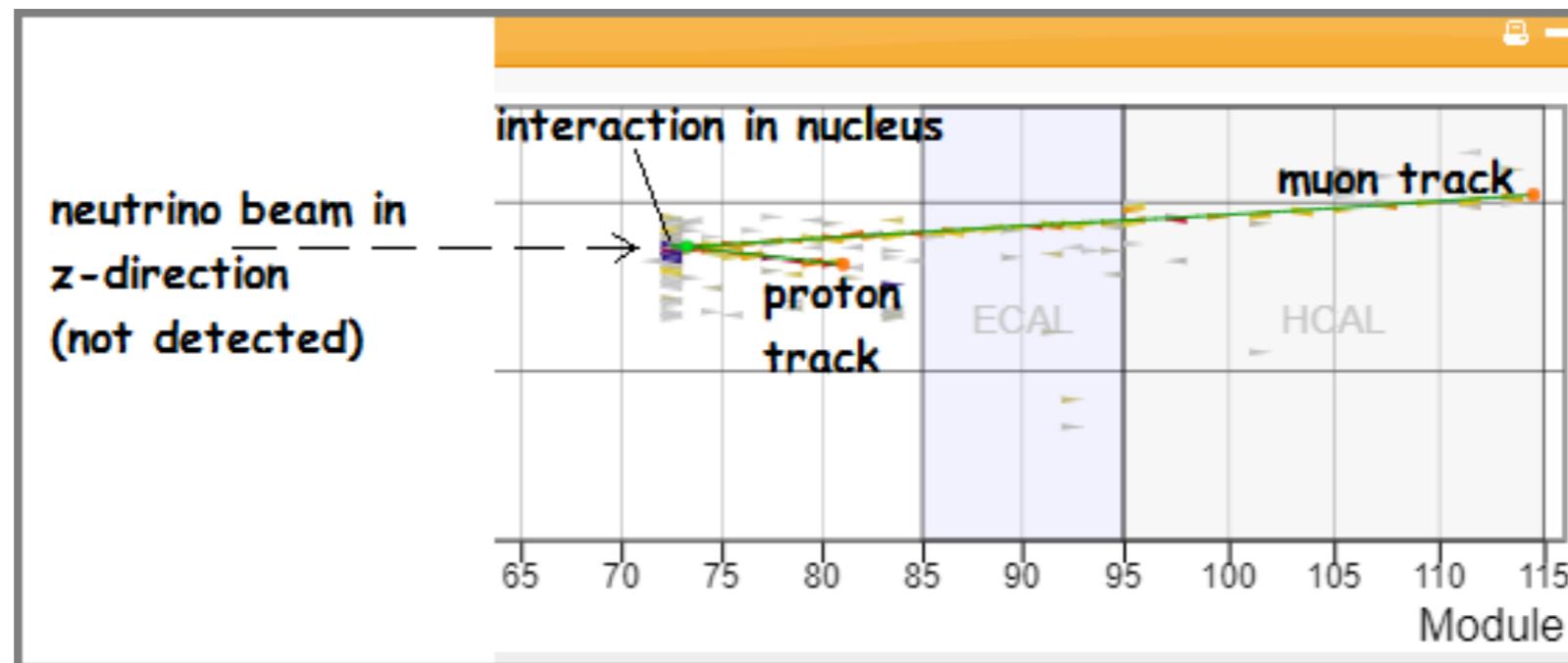

Michel Sorel, Mariam Tortola

Masterclass Hands on Particle Physics: ejercicio MINERvA
Abril 2019


MINERvA masterclass measurement

- The MINERvA masterclass measurement enables you to examine actual events from the MINERvA detector in the MINOS neutrino beamline at Fermilab
- It enables you to draw conclusions based on categorization of the data and the kinematics of the interactions

Signal and background events

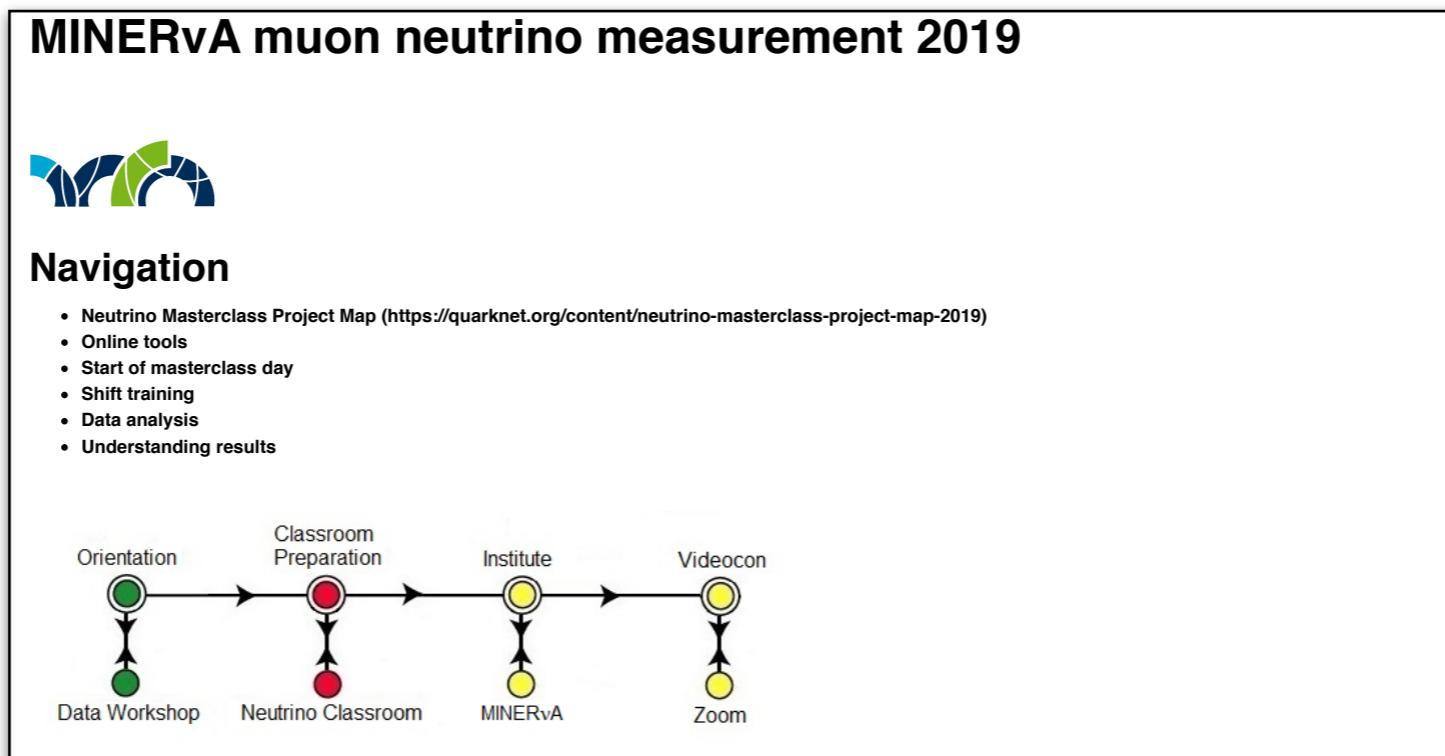

- There are both background and signal events
- In each signal event, a neutrino penetrates a nucleus in carbon target and undergoes a weak interaction with a neutron in that nucleus
 - The neutrino interacts with the neutron to become a muon, causing the neutron to become a proton!

- Background event: any other event type

Interaction kinematics

- While MINERvA cannot directly detect the neutrino, it detects and measures the kinematics of both the muon and the proton that emerge from the interaction
- You can find this kinematic information with Arachne, the MINERvA event display that you will use to visualize the events.
- You will then put this information into a spreadsheet which applies conservation of momentum to give the momentum of the system prior to the interaction in three dimensions.

Masterclass objectives



- Determine which events are **signal** events (*from which effective measurements may be made*) and which events are **background** (that cannot be used for measurements).
- Apply conservation of momentum and energy to measure the approximate **energy of a neutrino beam** from the Fermilab accelerator complex.
- Apply conservation of momentum and energy to measure the **properties of neutrons** in nuclei of atoms in the target of a neutrino beam.

Software

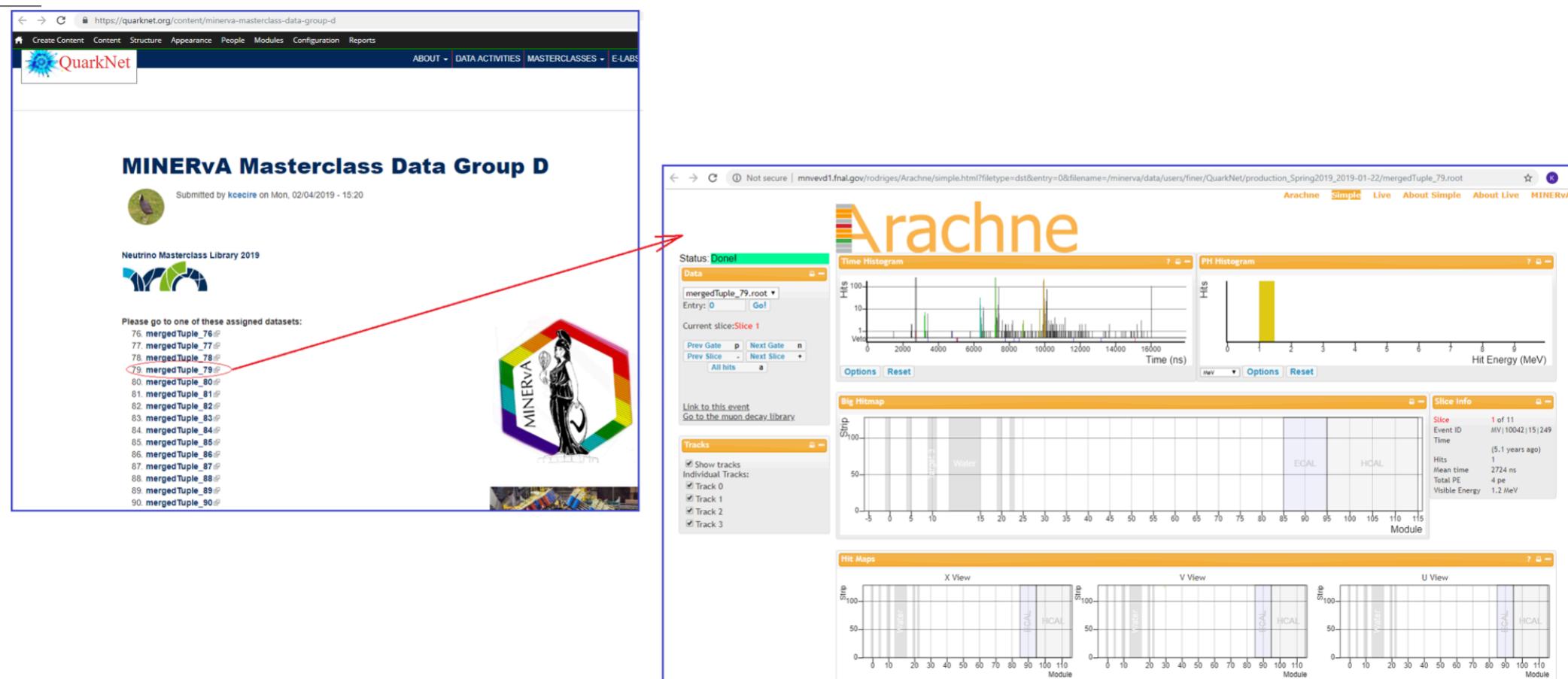
- The entire MINERvA masterclass measurement runs online in a browser
 - Please use **Google Chrome**, which should already be open at this page in your desktop, otherwise let us know!

- We will use the **Arachne** event display to visualize, select and analyse the events
- We will use **Google Sheets** to fill kinematic information, make plots and extract results

First Step: Find events

- Please work in pairs: two students per computer. Each pair of students is assigned a **unique** mergedTuple (a 50-event dataset)
 - Aula IV uses mergedTuples 51-75
 - Aula V uses mergedTuples 76-100

Date/time CT	Institute (Data Group)	Institute (Data Group)	Institute (Data)	Spreadsheet
Thu 14 Mar/11:45	Rochester (A)	Syracuse (E)		FNAL-14Mar2019
Fri 29 Mar 15:00	Barranquilla (B)	Lead (C)		FNAL-29Mar2019
Fri 29 Mar 21:00	Qingdao (D)			FNAL-29Mar2019
Sat 06 Apr/14:00	Fairfax (D)	Mayaguez (F, G)	Knoxville (E)	FNAL-06Apr2019A
Sat 06 Apr/16:00	Minneapolis (G)	Fort Collins (E)		FNAL-06Apr2019B
Thu 11 Apr/09:00	Valencia (C, D)			FNAL-11Apr2019
Thu 11 Apr/15:00	Batavia (F)			FNAL-11Apr2019

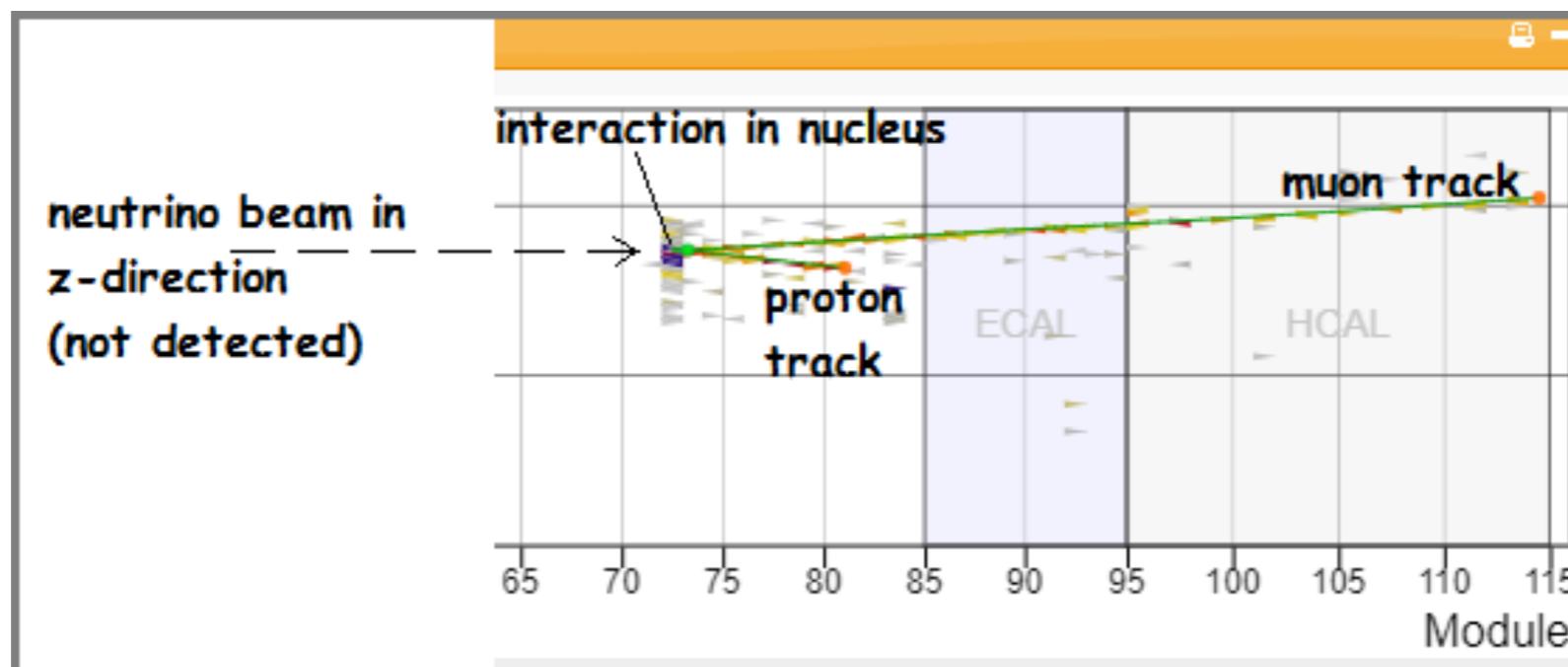

If >50 students are expected, contact [Masterclass Coordination](#) for more data groups.

All MINERvA Data for International Masterclasses:

- A. [mergedTuples 1-25](#)
- B. [mergedTuples 26-50](#)
- C. [mergedTuples 51-75](#)
- D. [mergedTuples 76-100](#)
- E. [mergedTuples 101-125](#)
- F. [mergedTuples 126-150](#)
- G. [mergedTuples 151-175](#)
- H. [practiceTuples](#) (includes teacherTuple and Archive)

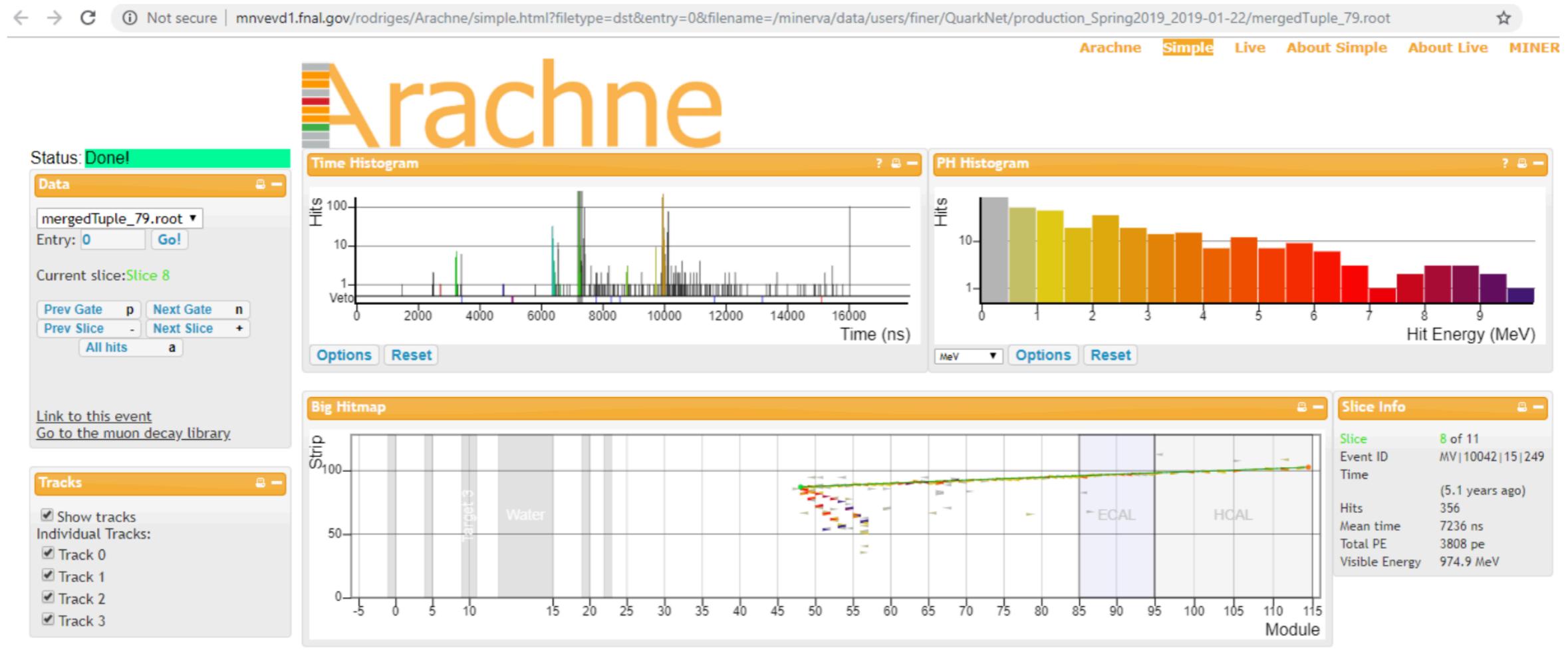
Second Step: Open and use Arachne

- When you click on your assigned mergedTuple, Arachne will open in a new tab

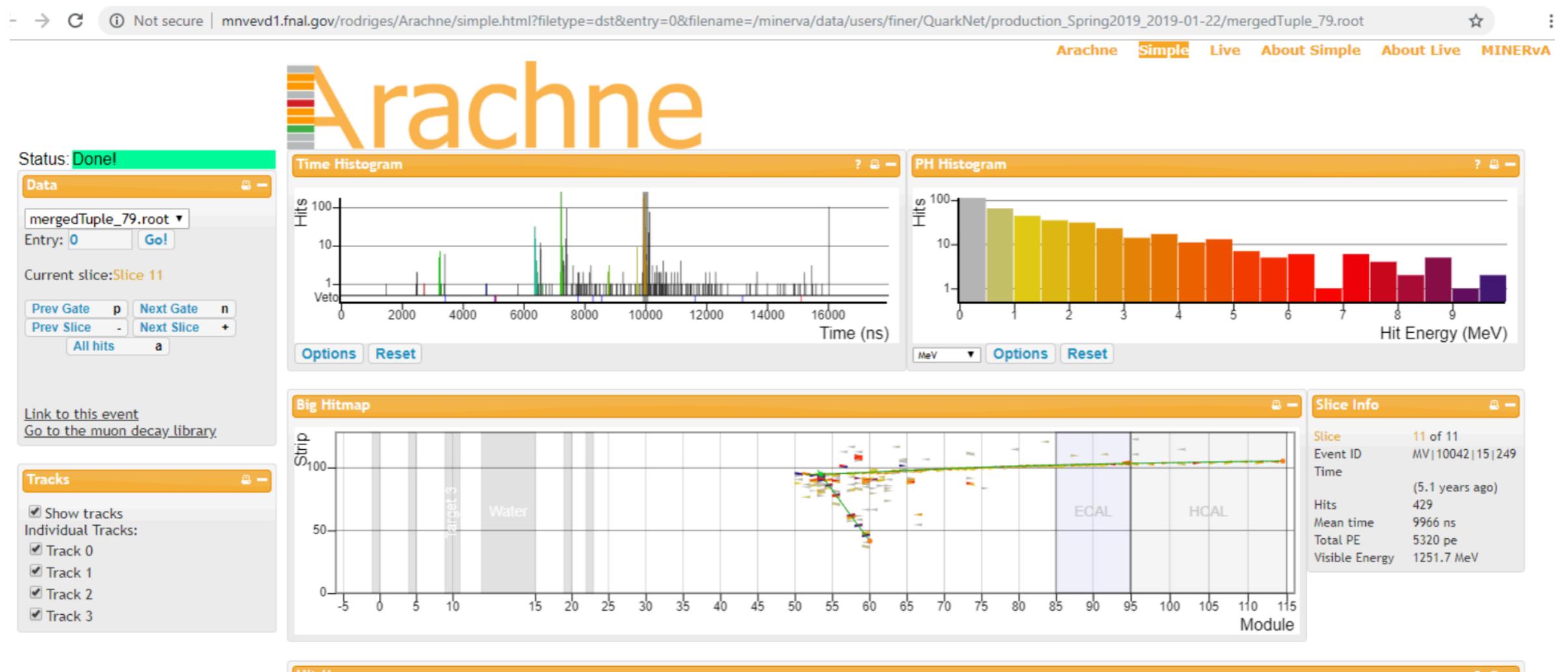


- Arachne will open at the initial time **Slice** in the first **Gate** (or event, shown as **Entry 0**; the next Gate will be Entry 1, etc.).
- In most cases, it will not initially show the event you are looking for. You must find it, if it is there, by advancing from Slice to Slice within the Gate.

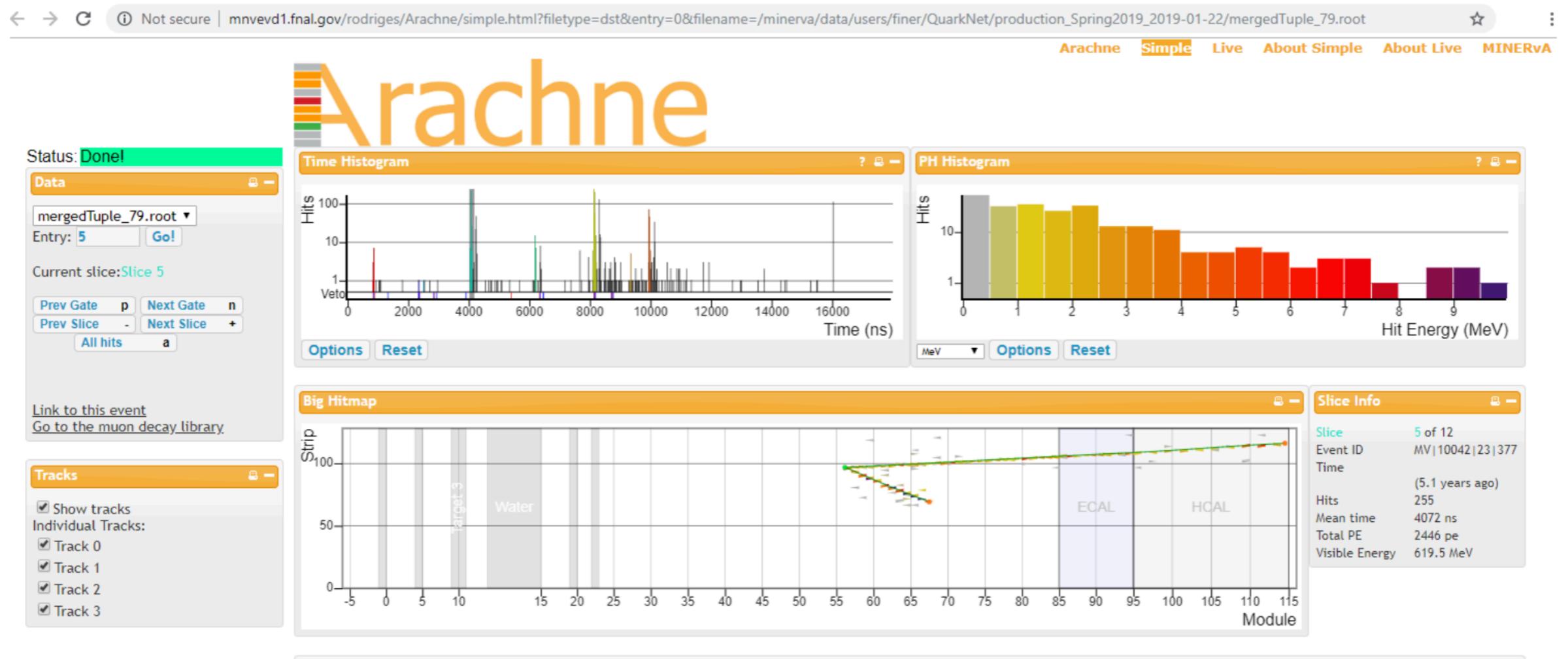
Second Step: Open and use Arachne



- You choose Next Slice, which moves to a slightly later time in the Gate with each click. The progress can be seen in the Time Histogram in Arachne.
- You advance the Slice until you find an instance of one long track and one short track coming from a common vertex. This is the actual event you seek:

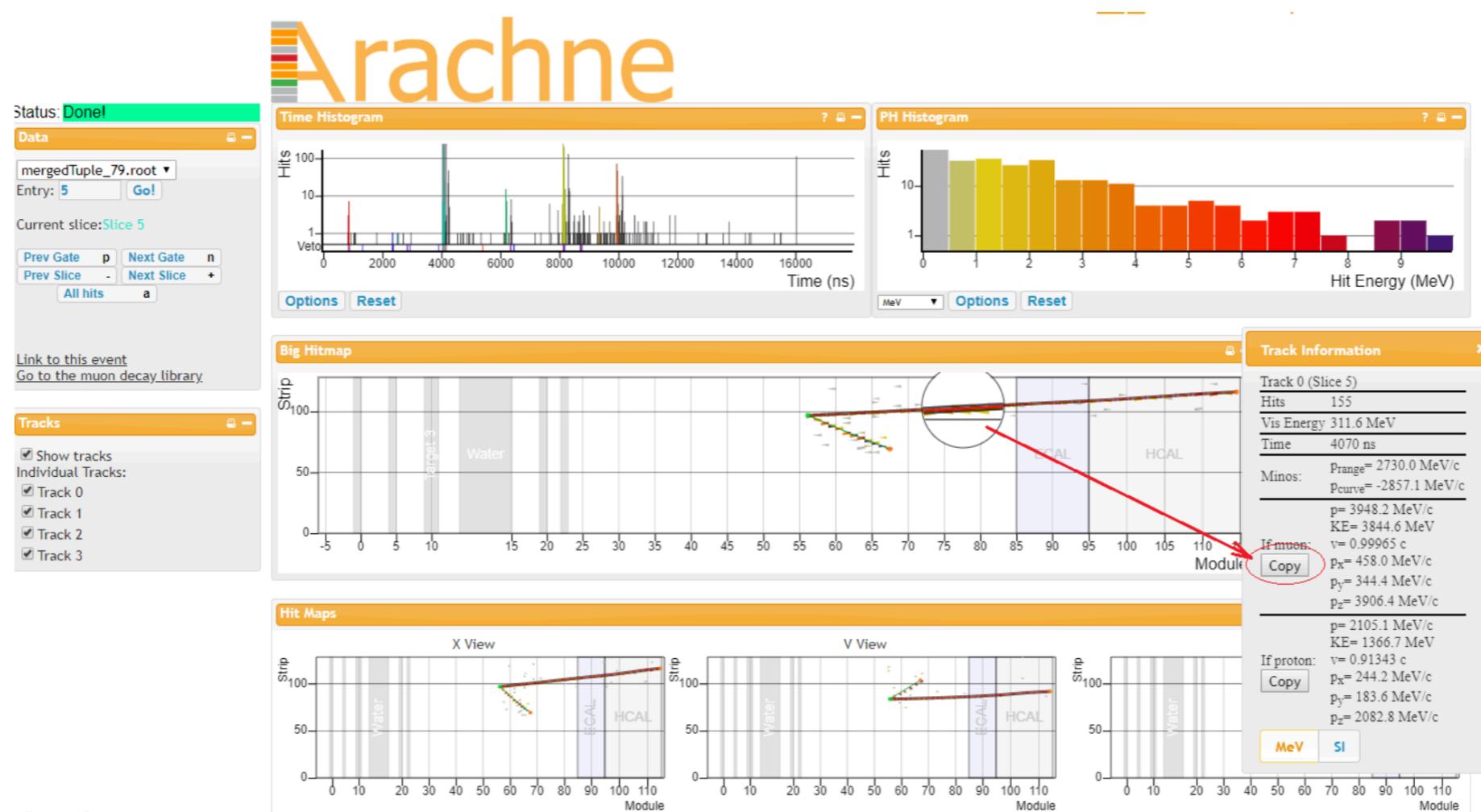

Second Step: Open and use Arachne

- In this particular Gate, we find two possible events but both are background.
- The first one, in Slice 8 of 11, has two short tracks rather than one:


Second Step: Open and use Arachne

- In this particular Gate, we find two possible events but both are background.
- The second one, in Slice 11 of 11, has a an extra track which appears to go backwards (negative z direction) from the vertex, plus several lines of red and orange dots also coming from the same place.

Second Step: Open and use Arachne


- Here is an example of a good signal event:

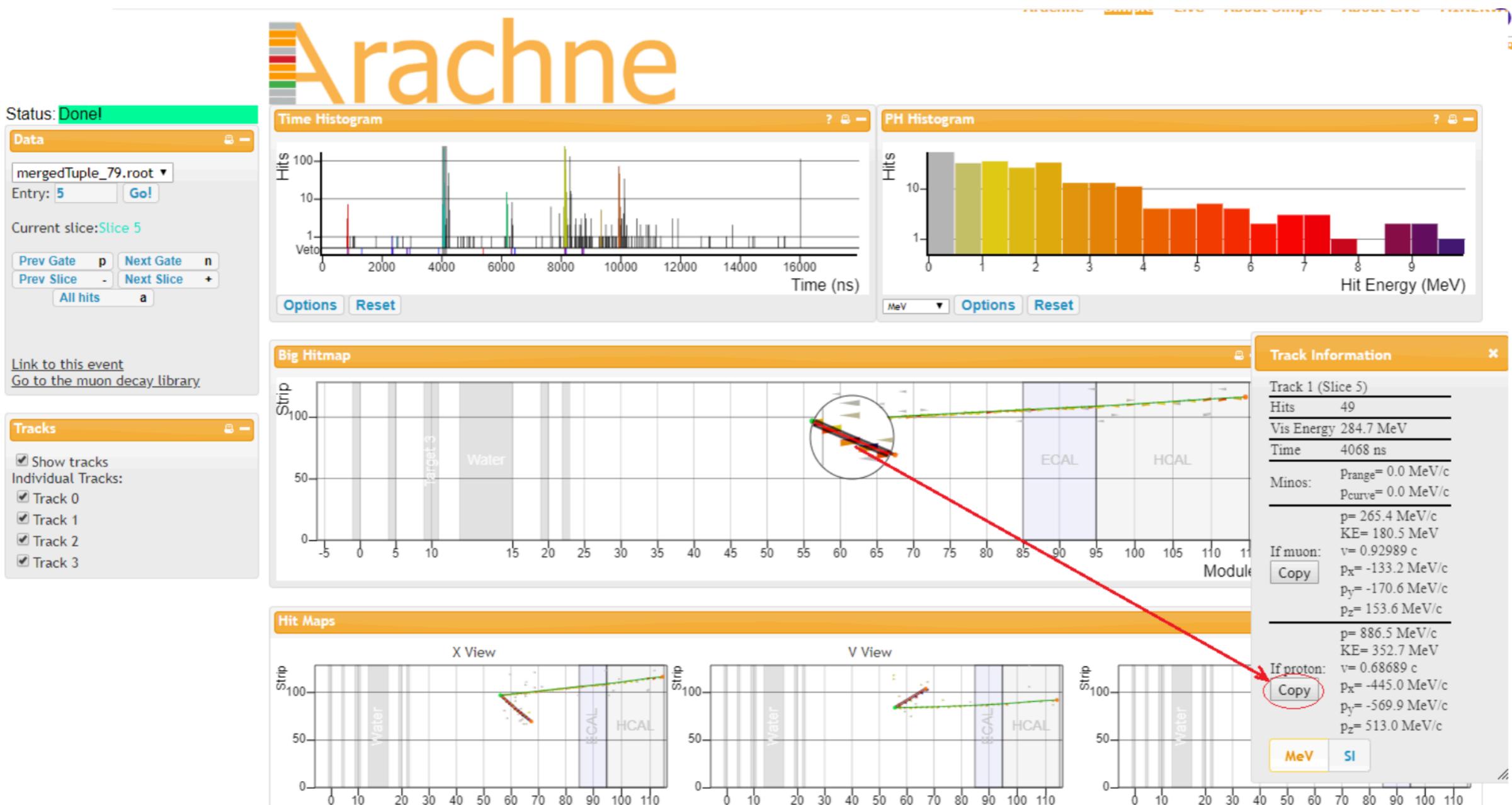
- Note we are in a different Gate!
- This is close to a "classic" event: one clear long track for the muon and one clear short track for the proton.

Second Step: Open and use Arachne

- Now you must find the kinematics from each track. Here we pick the long muon track:

- When you choose a track, the Track Information box pops up. Because this is a muon, you choose the Copy button for a muon.
- This copies the kinematic data for the muon to the computer clipboard.

Third Step: Enter data into the spreadsheet


- Track information is then pasted at the appropriate place in the Valencia Google sheet, in this case in the row for mergedTuple 79, Entry 5 and in the column under Muon KE (MeV):

3	merged		Background	Zoo	Muon				Proton				Net		
4	Tuple	Entry	(enter a 1)	(enter a 1)	KE (MeV)	v/c	px (MeV/c)	py (MeV/c)	pz (MeV/c)	KE (MeV)	v/c	px (MeV/c)	py (MeV/c)	pz (MeV/c)	px (MeV)
154		78	38		2,468.00	0.99917	127.87	-451.51	2,527.66	250.63	0.61	282.26	73.04	669.32	
155		78	39		4,180.98	0.9997	-290.25	322.75	4,262.65	4,180.98	1	-290.25	322.75	4,262.65	
156		78	40		2,783.10	0.99934	-181.33	-468.2	2,842.18	299.54	0.65	40.96	609.33	527.92	
157		78	41												
158		78	42		3,467.68	0.99957	311.9	-624.25	3,502.30	1,219.51	0.9	169.69	-339.63	1,905.48	
159		78	43		6,862.50	0.99989	579.99	-95.45	6,941.86	330.54	0.67	-61.04	308.27	794.1	
160		78	44		70.27	0.80069	56.54	-31.5	124.52	158.34	0.52	228.67	-127.41	503.58	
161		78	45		4,687.34	0.99976	-602.76	-335.44	4,741.27	158.34	0.52	228.67	-127.41	503.58	
162		78	46		2,879.91	0.99938	-369.07	-127.86	2,957.39	1,286.94	0.91	-249.61	-86.47	2,000.18	
163		78	47		3,890.06	0.99965	-295.93	433.85	3,959.00	1,397.32	0.92	-158.47	232.33	2,120.09	
164		78	48		5,784.31	0.99984	370.25	-586.18	5,847.42	169.58	0.53	-246.29	271.65	460.9	
165		78	49		3,074.27	0.99945	-228.59	-303.83	3,154.71	1,432.36	0.92	-156.6	-208.15	2,161.23	
166		78	50		5,756.19	0.99984	326.56	-411.38	5,836.67	5,784.31	1	370.25	-586.18	5,847.42	
167															
168															
169															
170															
171		79	0												
172		79	1		125.64	0.89036	111.97	-12.75	171.66	260.46	0.62	406.75	-46.31	623.59	
173		79	2												
174		79	3		2,745.79	0.99932	-396.07	-157.98	2,816.76	1,493.81	0.92	-311.93	-124.42	2,218.35	
175		79	4		235.04	0.60049	337.93	-438.13	435.93	235.04	0.6	337.93	-438.13	435.93	
176		79	5		3,844.64	0.999646564	457.9591639	344.430018	3,906.44						
177		79	6												
178		79	7												
179		79	8												
180		79	9												
181		79	10												
182		79	11												
183		79	12												
184		79	13												

The student next chooses and copy for the proton:

Third Step: Enter data into the spreadsheet

- For the same signal event, you then choose and copy proton track information:

Third Step: Enter data into the spreadsheet

- Then paste the proton kinematics in the next cell to the right of the muon numbers:

3	merged	Entry	Muon			Proton			Net			Net		nu-beam		
4	Tuple		KE (MeV)	v/c	px (MeV/c)	py (MeV/c)	pz (MeV/c)	KE (MeV)	v/c	px (MeV/c)	py (MeV/c)	pz (MeV/c)	px (MeV/c)	py (MeV/c)	pz (MeV/c)	
154		78	38	2,468.00	0.99917	127.87	-451.51	2,527.66	250.63	0.61	282.26	73.04	669.32	410.13	-378.47	3,196.98
155		78	39	4,180.98	0.9997	-290.25	322.75	4,262.65	4,180.98	1	-290.25	322.75	4,262.65	-580.50	645.50	8,525.30
156		78	40	2,783.10	0.99934	-181.33	-468.2	2,842.18	299.54	0.65	40.96	609.33	527.92	-140.37	141.13	3,370.10
157		78	41													
158		78	42	3,467.68	0.99957	311.9	-624.25	3,502.30	1,219.51	0.9	169.69	-339.63	1,905.48	481.59	-963.88	5,407.78
159		78	43	6,862.50	0.99989	579.99	-95.45	6,941.86	330.54	0.67	-61.04	308.27	794.1	518.95	212.82	7,735.96
160		78	44	70.27	0.80069	56.54	-31.5	124.52	158.34	0.52	228.67	-127.41	503.58	285.21	-158.91	628.10
161		78	45	4,687.34	0.99976	-602.76	-335.44	4,741.27	158.34	0.52	228.67	-127.41	503.58	-374.09	-462.85	5,244.85
162		78	46	2,879.91	0.99938	-369.07	-127.86	2,957.39	1,286.94	0.91	-249.61	-86.47	2,000.18	-618.68	-214.33	4,957.57
163		78	47	3,890.06	0.99965	-295.93	433.85	3,959.00	1,397.32	0.92	-158.47	232.33	2,120.09	-454.40	666.18	6,079.09
164		78	48	5,784.31	0.99984	370.25	-586.18	5,847.42	169.58	0.53	-246.29	271.65	460.9	123.96	-314.53	6,308.32
165		78	49	3,074.27	0.99945	-228.59	-303.83	3,154.71	1,432.36	0.92	-156.6	-208.15	2,161.23	-385.19	-511.98	5,315.94
166		78	50	5,756.19	0.99984	326.56	-411.38	5,836.67	5,784.31	1	370.25	-586.18	5,847.42	696.81	-997.56	11,684.09
167																
168																
169																
170																
171		79	0													
172		79	1	125.64	0.89036	111.97	-12.75	171.66	260.46	0.62	406.75	-46.31	623.59	518.72	-59.06	795.25
173		79	2													
174		79	3	2,745.79	0.99932	-396.07	-157.98	2,816.76	1,493.81	0.92	-311.93	-124.42	2,218.35	-708.00	-282.40	5,035.11
175		79	4	235.04	0.60049	337.93	-438.13	435.93	235.04	0.6	337.93	-438.13	435.93	675.86	-876.26	871.86
176		79	5	3,844.64	0.999646564	457.9591639	344.430018	3,906.44	352.6635494	0.686893643	-445.034096	-569.8872402	512.9732787	12.93	-225.46	4,419.41
177		79	6													
178		79	7													
179		79	8													
180		79	9													
181		79	10													
182		79	11													
183		79	12													
184		79	13													

- Note that the spreadsheet automatically calculates Net px, Net py, nu-beam pz

Third Step: Enter data into the spreadsheet

- Repeat this for all 50 entries (or gates)
- Put a “Background = 1” for entries with no signal events in any time slice, leaving empty muon and proton cells

FNAL-11Apr2019

File Edit View Insert Format Data Tools Add-ons Help *Last edit was made 5 hours ago by anonymous*

100% 123 Arial 10 B I S A

fx

	A	B	C	D	E	F	G	H	I	J	K	L	M	N
1														
2														
3														
4	merged		Background	Signal Event	Muon					Proton				
5	Tuple	Entry	(enter a 1)	Slice No.	KE (MeV)	v/c	px (MeV/c)	py (MeV/c)	pz (MeV/c)	KE (MeV)	v/c	px (MeV/c)	py (MeV/c)	pz (MeV/c)
6	51	0		1	4,000.00	1.00000	300.00	100.00		100.00	1.00	-400.00	500.00	100.00
7	51	1		4	4,000.00	1.00000	300.00	100.00		100.00	1.00	-400.00	500.00	100.00
8	51	2	1											
9	51	3	1											
10	51	4		7	4,000.00	1.00000	300.00	100.00		100.00	1.00	-400.00	500.00	100.00
11	51	5		7	4,000.00	1.00000	300.00	100.00		100.00	1.00	-400.00	500.00	100.00
12	51	6												

- **DONE!** This afternoon we will present our findings!