neutrino interactions in MicroBooNE

Supraja Balasubramanian
11.06.2019 | Yale University
Invisibles19 Workshop
Booster Neutrino Beam

The MicroBooNE Experiment

~99.5% ν_μ

MicroBooNE Preliminary
The MicroBooNE Detector

A Liquid Argon Time Projection Chamber: ionization charge + scintillation light

Combine topological & calorimetric information from 3 planes to get full 3D reconstruction of neutrino interaction.
\(\nu \)-Argon Cross Sections in MicroBooNE

- \(E_\nu \sim 0.8 \text{GeV} \)
- \(\nu \)-Ar cross sections useful for
 - nuclear effects
 - testing generators
 - \(\nu \) flux & energy for oscillations experiments.

Booster Neutrino Beam

\[\nu_p \rightarrow \nu_\mu \rightarrow W^+ \rightarrow \mu^- + \nu \]

Target

\[n \rightarrow p + \Delta + \pi^0 \]

NuMI

\[\nu_e \rightarrow e^- + W^+ \rightarrow e^- + p^+ \]
\(\nu \) CC inclusive

Signal: interactions with a neutrino-induced muon.

I. Cosmic rejection [1\(\nu \) every 15k cosmic rays]:

- Use scintillation light as trigger
- Check if coincident with beam spill
- Track selection

II. Neutrino vertex & track selection

- Fiducial volume, topological & calorimetric selection

arXiv:1905.09694
First single & double differential cross-section measurement on Argon at low energy
[paper on arXiv, submitted to PRL]

\[\nu_\mu \text{ CC inclusive}\]

- Compared to 4 generator models
- Full angular & momentum coverage
Signal: interactions with a neutrino-induced muon that produce a single π^0.

I. Cosmic rejection
II. Neutrino vertex & track selection
III. Shower reconstruction & π^0 event selection

→ first fully automated EM shower reconstruction in a LArTPC.

Phys. Rev. D 99, 091102(R) (2019)
Scaling of final state interactions in GENIE
agreement across deuterium, carbon, argon.

Differential cross-section measurement with
higher efficiency underway.
Summary

MicroBooNE is a LArTPC @ Fermilab’s SBN program.

Physics: neutrino oscillations & neutrino-Argon cross sections.

Recent results: single & double differential cross sections in ν_μ CC channels [inclusive, π^0].

In progress: ν_μ CC Np, ν_μ CC K^+, ν_e-Ar cross section,...
Thank you!
Backup
LSND & MiniBooNE anomalies

observed an excess of electromagnetic events on a scale of $\Delta m^2 \sim 1$eV2!

oscillation signal from additional sterile neutrino [electron-like]

OR

unknown photon background [photon-like]?

“low energy excess”

2. FERMILAB-PUB-18-219, LA-UR-18-24586
\textbf{e/\gamma separation in MicroBooNE}

Both electrons & photons produce electromagnetic showers.

\textbf{e/\gamma separation based on:}

- Distance from neutrino vertex
- Stopping power \([dE/dx]\)

MicroBooNE can solve the “low energy excess” puzzle.
ν_μ CC inclusive

arXiv:1905.09694
Total cross-section measurement on Argon at low energy
[paper published in PRD, 2019]
Signal: interactions with a neutrino-induced muon that produce at least 1 proton & no mesons.

I. Cosmic rejection [1ν every 15k cosmic rays]
II. Neutrino vertex & track selection
III. Proton identification

→ LArTPC’s can detect protons at lower momenta than scintillator detectors [~47 MeV].
ν_e with NuMI

- Higher ν_e content than BNB.
- Can use as cross-check for ν_e search in BNB.
nuclear effects

➔ Argon nucleus is large
 ➞ sensitivity to nuclear effects
➔ electroweak nuclear physics
 ◆ short range correlations
 ◆ meson-exchange currents
 ◆ relative phase approximation

<table>
<thead>
<tr>
<th>Model element</th>
<th>GENIE Default</th>
<th>GENIE Alternative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear Model</td>
<td>Bodek-Ritchie Fermi Gas</td>
<td>Local Fermi Gas</td>
</tr>
<tr>
<td>Quasi-elastic</td>
<td>Llewellyn-Smith</td>
<td>Nieves</td>
</tr>
<tr>
<td>Meson-Exchange Current</td>
<td>Empirical</td>
<td>Nieves</td>
</tr>
<tr>
<td>Resonant</td>
<td>Rein-Seghal</td>
<td>Berger-Seghal</td>
</tr>
<tr>
<td>Coherent</td>
<td>Rein-Seghal</td>
<td>Berger-Seghal</td>
</tr>
<tr>
<td>FSI</td>
<td>hA</td>
<td>hA2014</td>
</tr>
</tbody>
</table>