KM3NeT-ORCA for neutrino oscillation physics

Bruno Strandberg
on behalf of the KM3NeT collaboration
Nikhef
KM3NeT
November 28, 2018
Outline

1. Introduction to KM3NeT
2. NMO analysis
3. ORCA 1-line results
4. Deployment
5. Summary & outlook
Introduction to KM3NeT

KM3NeT - large volume neutrino telescopes at the bottom of the Mediterranean.

- **ARCA** - high energy ν astronomy.
- **ORCA** - oscillation research with atm. ν.

Images from [1, 2].
Figure: Illustration of ν_μ and ν_e event topologies [3].
Introduction to KM3Net

Rich scientific programme in ORCA:

1. Neutrino mass ordering (this talk);
2. ν_T appearance;
3. Non-standard interactions;
4. Sterile neutrinos;
5. Dark matter;
6. Neutrinos from supernova collapses;
8. ...

Most of these topics probe the boundaries of the Standard Model.
Rich scientific programme in ORCA:

1. Neutrino mass ordering (this talk);
2. ν_τ appearance;
3. Non-standard interactions;
4. Sterile neutrinos;
5. Dark matter;
6. Neutrinos from supernova collapses;
8. ...

Most of these topics probe the boundaries of the Standard Model. **Plus HE ν-physics with ARCA!**
- ν oscillations mean $\nu_1 \neq \nu_2 \neq \nu_3$.
- Current experiments have determined Δm^2_{21} and Δm^2_{31}, but not mass-ordering.

Figure: Illustration of two possible mass orderings [1].
NMO analysis: intro

1. ν_e prop. through Earth is affected by non-zero electron density (different for ν and $\bar{\nu}$).
NMO analysis: intro

1. ν_e prop. through Earth is affected by non-zero electron density (different for ν and $\bar{\nu}$).
2. Osc. patterns in $(E_\nu, L, \rho_e) \equiv (E_\nu, \cos \theta)$ are sensitive to the sign of Δm^2_{31}.
NMO analysis: intro

1. \(\nu_e \) prop. through Earth is affected by non-zero electron density (different for \(\nu \) and \(\bar{\nu} \)).
2. Osc. patterns in \((E_\nu, L, \rho_e) \equiv (E_\nu, \cos \theta) \) are sensitive to the sign of \(\Delta m^2_{31} \).

\[\nu_\mu + \bar{\nu}_\mu, \text{ normal ordering} \]

\[\cos \theta_{true}, \nu_\mu + \bar{\nu}_\mu, \text{ inverse ordering} \]

\[(\text{NO} - \text{IO})/\text{NO} \]

\[\text{Asymmetry} \]

\[E_\nu^{true} \]
NMO analysis: how-to

NMO measurement how-to:

1. Put lines in water and get data.
2. Separate events to track-like and shower-like.
3. Reconstruct $E, \cos\theta$.
4. Fit a model to data to establish Δm_{31}^2.

Diagrams showing tracks and showers with reconstructed ν, $\bar{\nu}$ distributions.
NMO analysis: PID & reco

Examples of PID classification efficiency and energy reconstruction.

Figure: Fraction of particles classified as tracks [3, 4].

Figure: Energy reconstruction of shower events [5].
NMO analysis: the model

Flux → Atm. flux \(\frac{1}{m^2 \cdot y} \)

+Oscillation → Osc. flux \(\frac{1}{m^2 \cdot y} \)

+Cross-sec. → Interacted \(\frac{1}{\text{MTon} \cdot y} \)

+Eff. mass → Detected \(\frac{1}{y} \)

Leads to a predicted number of events for each \(\nu_{e, \mu, \tau}^{\text{NC/CC}} \) in \(E^\text{true} \), \(\cos \theta^\text{true} \) bins.

Effective mass curve from [3].
NMO analysis: the model

Final step by detector response:

\[E_{f,i}^{\text{true}}, \cos \theta_{f,i}^{\text{true}} \rightarrow E_{c}^{\text{reco}}, \cos \theta_{c}^{\text{reco}}, \]

(1)

where \(f \) = flavor, \(i \) = NC/CC, \(c \) = reco class (track or shower).
NMO analysis: the model

Final step by detector response:

\[E_{f,i}^{\text{true}}, \cos \theta_{f,i}^{\text{true}} \rightarrow E_{c}^{\text{reco}}, \cos \theta_{c}^{\text{reco}}, \quad (1) \]

where \(f = \) flavor, \(i = \) NC/CC, \(c = \) reco class (track or shower).

The model gives event number expectation values for given oscillation parameters.
NMO analysis: the model

Final step by detector response:

\[
E_{f,i}^{true}, \cos \theta_{f,i}^{true} \rightarrow E_{c}^{reco}, \cos \theta_{c}^{reco},
\]

where \(f = \) flavor, \(i = \) NC/CC, \(c = \) reco class (track or shower). The model gives event number expectation values for given oscillation parameters.

Figure: Expectation values for tracks, 3 years, NO [3].

Figure: Expectation values for showers, 3 years, NO [3].
Currently, we have the model but no data.

Visualise the sensitivity from expectation values for NO & IO.

\[
\text{signed } \chi^2 = \frac{(\text{NO} - \text{IO})|\text{NO} - \text{IO}|}{\text{NO}}.
\]

Figure: Signed χ^2 for tracks, 3 years [3].

Figure: Signed χ^2 for showers, 3 years [3].
NMO analysis: sensitivity estimation

One method: Log-likelihood ratio ratio LLR:

\[TS = -2 \ln \frac{\max \mathcal{L}_{\text{NO}}}{\max \mathcal{L}_{\text{IO}}} = \chi^2_{\text{min}}(\text{NO}) - \chi^2_{\text{min}}(\text{IO}). \]
NMO analysis: sensitivity estimation

One method: Log-likelihood ratio LLR:

\[TS = -2 \ln \frac{\max \mathcal{L}_{\text{NO}}}{\max \mathcal{L}_{\text{IO}}} = \chi^2_{\text{min}}(\text{NO}) - \chi^2_{\text{min}}(\text{IO}). \] (2)
NMO analysis: sensitivity estimation

One method: Log-likelihood ratio LLR:

\[TS = -2 \ln \frac{\text{max} \mathcal{L}_{\text{NO}}}{\text{max} \mathcal{L}_{\text{IO}}} = \chi^2_{\text{min}}(\text{NO}) - \chi^2_{\text{min}}(\text{IO}). \quad (2) \]

Second method: \textit{Asimov} method [3].
NMO analysis: sensitivity estimation

Sensitivities to NMO with the two methods for two mass orderings.

Figure: Sensitivity to NMO in 3 years, normal ordering [3].

Figure: Sensitivity to NMO in 3 years, inverse ordering [3].
ORCA 1-line results: neutrino analysis

Neutrino candidates from 1 ORCA line.

Figure: Comparison of Monte-Carlo end detected events with 82 days live-time with 1 ORCA line. Analysis by D. Zaborov.
Figure: Atm. muon rate depth dependence measured by DOM multiplicities. Analysis by L. Massimiliano.
Several new lines will be deployed in the immediate future.

Interesting physics can be done already with a few lines!

Figure: Illustration of the deployment mechanism [2].

https://www.youtube.com/watch?v=omlFkdCkbYk
Summary & outlook

1. Main concepts for several analyses in place.
2. Exciting period of fast development: expectation for new lines and new sea data in the immediate future!
3. ORCA future prospects talks by Jannik and Dmitry.

Don't forget: we will also have the big ARCA detector!

Thank you for your attention!
1. Main concepts for several analyses in place.
Summary & outlook

1. Main concepts for several analyses in place.
2. Exciting period of fast development: expectation for new lines and new sea data in the immediate future!
Summary & outlook

1. Main concepts for several analyses in place.
2. Exciting period of fast development: expectation for new lines and new sea data in the immediate future!
3. ORCA future prospects talks by Jannik and Dmitry.
Summary & outlook

1. Main concepts for several analyses in place.
2. Exciting period of fast development: expectation for new lines and new sea data in the immediate future!
3. ORCA future prospects talks by Jannik and Dmitry.

Don’t forget: we will also have the big ARCA detector!
1. Main concepts for several analyses in place.
2. Exciting period of fast development: expectation for new lines and new sea data in the immediate future!
3. ORCA future prospects talks by Jannik and Dmitry.

Don’t forget: we will also have the big ARCA detector!

Thank you for your attention!
Sources:

