T2K NEUTRINO EXPERIMENT
RECENT RESULTS AND PLANS

Alexander Izmaylov
Instituto de Fisica Corpuscular (UV and CSIC), Valencia, Spain
and Institute for Nuclear Research, INR RAS (Moscow, Russia)
on behalf of the T2K Collaboration

H2020 Oscillation physics Workshop, Valencia
NEUTRINO OSCILLATIONS

Neutrino mixing: Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
0 & s_{13} e^{-i\delta_{CP}} \\
1 & 0 \\
0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

\[c_{ij} = \cos \theta_{ij}\]
\[s_{ij} = \sin \theta_{ij}\]
\[\Delta m^2_{ij} = m_i^2 - m_j^2\]

Oscillations governed by *PDG 2016*

- three mixing angles:
 - \(\theta_{12} \approx 34^\circ, \theta_{13} \approx 9^\circ, \theta_{23} \approx 45^\circ\)
- two mass squared differences:
 - \(\Delta m^2_{21} \approx 7.6 \times 10^{-5} \text{ eV}^2\) and \(|\Delta m^2_{32}| \approx 2.4 \times 10^{-3} \text{ eV}^2\)
- source-detector baseline and neutrino energy

Open questions:
- CP-violation in lepton sector? \(\delta_{CP}\) value?
- Mass hierarchy (MH), “normal” (NH) or “inverted” (IH):
 - \(m_1 < m_2 \ll m_3\) or \(m_3 \ll m_1 < m_2\)?
- Octant of \(\theta_{23}\): <, > or \(\leq 45^\circ\)?
- Dirac/Majorana, steriles, CPT…
T2K (TOKAI-TO-KAMIOKA) EXPERIMENT

- World-leading neutrino oscillations physics project
- T2K — long-baseline neutrino oscillation accelerator experiment in Japan
- International collaboration:
 - ~500 members, 67 institutes, 12 countries
T2K Experiment International Collaboration

~ 500 members, 67 institutes, 12 countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Organizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>CEA Saclay, IPN Lyon, LLR E. Poly., LPNHE Paris</td>
</tr>
<tr>
<td>Germany</td>
<td>Aachen</td>
</tr>
<tr>
<td>Japan</td>
<td>ICRR Kamioka, ICRR RCCN, Kavli IPMU, KEK</td>
</tr>
<tr>
<td>Switzerland</td>
<td>U. Bern, U. Geneva</td>
</tr>
<tr>
<td>Vietnam</td>
<td>IFIRS, IOP, VAST</td>
</tr>
<tr>
<td>Russia</td>
<td>INR RAS</td>
</tr>
<tr>
<td>Spain</td>
<td>IFAE, Barcelona, IFIC, Valencia, U. Autonoma Madrid</td>
</tr>
<tr>
<td>Switzerland</td>
<td>U. Liverpool, U. Sheffield, U. Warwick</td>
</tr>
<tr>
<td>Vietnam</td>
<td>IFIRS, IOP, VAST</td>
</tr>
</tbody>
</table>
T2K DESIGN

- Near and Far detectors
- Off-axis (anti)muon-neutrino beam
- Energy peaked at oscillation maximum (E~0.6 GeV)
- Neutrino and antineutrino enhanced modes via horn polarity switching
- Dominant process for ν detection: charged-current quasi-elastic interactions (CCQE)
- Reduced intrinsic ν_e contamination ($\leq 1\%$)
- Reduced backgrounds from high-energy tail
NEUTRINO OSCILLATIONS IN T2K

\[P(\nu_\mu \rightarrow \nu_\mu) \simeq 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23}) \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E} \right) \]

"Disappearance" channel
- Precise measurement of "atmospheric" parameters \(\theta_{23} \) and \(\Delta m_{32}^2 \) and CPT test via \(\nu \) vs anti-\(\nu \) analysis

\[P(\nu_\mu \rightarrow \nu_e) \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \times \frac{\sin^2[(1 - x)\Delta]}{(1 - x)^2} \]

- Leading term
- CP-violating: \(-\alpha \sin \delta_{CP} \times \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \times \sin \Delta \frac{\sin[x\Delta]}{x} \frac{\sin[(1 - x)\Delta]}{(1 - x)} \]
- CP-conserving: \(+\alpha \cos \delta_{CP} \times \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \times \cos \Delta \frac{\sin[x\Delta]}{x} \frac{\sin[(1 - x)\Delta]}{(1 - x)} \]
- \(+O(\alpha^2) \)

\[\alpha = \left| \frac{\Delta m_{21}^2}{\Delta m_{31}^2} \right| \sim \frac{1}{30} \quad \Delta = \frac{\Delta m_{31}^2 L}{4E} \quad x = \frac{2\sqrt{2}G_F N_e E}{\Delta m_{31}^2} \]

"Appearance" channel: measuring \(\theta_{13} \) and probing CP-violation (CPV)
- Leading term defines the octant of \(\theta_{23} \): <, > or = 45
- Sub-leading term accounts for CPV: enhanced effect when comparing neutrino and antineutrino data

* T2K leading efforts
T2K DATA TAKING

- POT (Protons on Target) for present results (Jan 2010 - May 2018):
 - 1.51×10^{21} (ν mode) + 1.65×10^{21} (anti-ν mode) POT (47.8% : 52.2%)

2010:
- start operation

2018:
- stable operation at ~480 kW
- 50/50 for FHC/RHC

23 Jan. 2010 – 31 May 2018
- POT total: 3.16×10^{21}

T2K results release:
- ν_e app 2.5σ
- ν_μ 1st release
- ν_e app 7.3σ
- 1st constraint on δ_{CP}
- ν_μ highest precision on θ_{23}

2018 results
- FHC: 1.49×10^{21} POT
- RHC: 1.12×10^{21} POT
FITTED FLUX PARAMETERS

Fitted flux parameters are generally near their nominal value of 1.0. Most of the fitted flux parameters fall within their assigned 1 sigma prior uncertainty.

Super-K Neutrino Mode Flux

Super-K Antineutrino Mode Flux

Neutrino Energy (GeV)

NEAR DETECTOR MEASUREMENTS

- On-axis detector INGRID
- Iron-scintillator layers
- Day-by-day monitoring of the \(\nu \) beam position and rate
- Off-axis detector ND280
- Detectors in 0.2 T B field
- Tracker:
 - Time projection chambers
 - Scintillator fine-grained detectors

Super-K flux parameters

Example: neutrino candidate in antineutrino mode
ND280 ANALYSIS

Example samples

- Fit to ND280 samples constrains neutrino flux and cross-section model
- Reduce systematic uncertainty for oscillation analysis: $\approx 12\% \rightarrow \approx 6\%$
- Many cross-section results with ND280 data
FAR DETECTOR MEASUREMENTS
SUPER-KAMIOKANDE (SUPER-K)

- 50 kton water-Cherenkov tank
- Separate e/μ-like rings:
 - <1% misidentified μ as e
- π⁰ rejection
- No magnetic field

- 5 Super-K samples used for analysis
- l-ring μ and e-like events in ν and anti-ν modes + CC1π e-like for ν mode
T2K ANALYSIS STRATEGY

Two approaches: frequentist and Bayesian (MCMC) to obtain/present final results
T2K FAR DETECTOR SAMPLES

Energy distribution

ν-mode

anti-ν-mode

* T2K Preliminary
ANALYSIS RESULTS: ATMOSPHERIC PARAMETERS θ_{23} AND Δm^2_{32}

- T2K continues to favour maximal mixing
- Interesting tensions with NOVA
- More data needed to improve the results

<table>
<thead>
<tr>
<th>$\sin^2 \theta_{23}$</th>
<th>Normal</th>
<th>Inverted</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$0.536^{+0.031}_{-0.046}$</td>
<td>$0.536^{+0.031}_{-0.041}$</td>
</tr>
<tr>
<td>$</td>
<td>\Delta m^2</td>
<td>_{(10^{-3} \text{ eV}^2)}$</td>
</tr>
</tbody>
</table>
ANALYSIS RESULTS: θ_{13} and δ_{CP} MEASUREMENTS

- Good agreement with reactor experiments
 - T2K best fit (NH): $\sin^2 \theta_{13} = 0.0277^{+0.0054}_{-0.0047}$
 - PDG 2016: $\sin^2 \theta_{13} = 0.0210 \pm 0.0011$

- 2σ exclusion for CP-conservation independent of OA

- Large CPV favoured

2-sigma exclusion with reactors
ANALYSIS RESULTS: DISCUSSION

<table>
<thead>
<tr>
<th>Sample</th>
<th>Predicted rates</th>
<th>Observed rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>δ=0</td>
<td>δ=π/2</td>
</tr>
<tr>
<td>v-mode CCQE 1-ring μ-like</td>
<td>268.2</td>
<td>268.5</td>
</tr>
<tr>
<td>v-mode CCQE 1-ring e-like</td>
<td>61.6</td>
<td>50.1</td>
</tr>
<tr>
<td>v-mode CC1π 1-ring e-like</td>
<td>6.0</td>
<td>4.9</td>
</tr>
<tr>
<td>ĭ-mode CCQE 1-ring μ-like</td>
<td>95.3</td>
<td>95.5</td>
</tr>
<tr>
<td>ĭ-mode CCQE 1-ring e-like</td>
<td>13.4</td>
<td>14.9</td>
</tr>
</tbody>
</table>

- Preference for $\delta_{cp} = -\pi/2$ → maximize ν_e appearance probability, minimize $\bar{\nu}_e$ appearance
- Larger effect in e-like+1π (2.5% probability of observing 15 events when 6.9 are expected)
- For $\bar{\nu}_e$ appearance background level is ~ 6.3 events → No strong statistical conclusion
- In ν-mode deficit of μ-like events → compatible with our systematic uncertainties model
ANALYSIS RESULTS: DISCUSSION
T2K FUTURE PROSPECTS

- 7.8×10^{21} POT approved (expected by ~2021)
- Gain “effective” statistics: new CC-nonQE, multi-ring samples: already ~30% with new SK reconstruction
- Decrease systematic uncertainties: new ND280 samples + analysis improvements
- T2K phase-II proposal to start in ~2021 and run till 2026 (Hyper-Kamiokande time?):
 - Collect ~20×10^{21} POT
 - Beam power: $450 \text{ kW} \rightarrow 750 \text{ kW} \rightarrow 1.3 \text{ MW}$
 - Near detector upgrade

![Current data taking](chart.png)

![T2K-II Protons-On-Target Request](chart2.png)
SUPER-KAMIOKANDE REFURBISHMENT

• For the first time in a decade, the Super-K tank is open.
• There are ongoing repairs and maintenance to the tank.
• This will be followed by two phases of gadolinium-doping for the water target.
 • First 0.02% Gd, offering 50% neutron capture rate.
 • Later 0.2% Gd, offering 90% neutron capture rate.

157Gd has a very high neutron capture cross-section.

• Allows charge discrimination:
 • Greater CP-violation sensitivity.
 • And improvements to many other SK targets.

T2K to continue data-taking in spring 2019

IFIC members made valuable contributions in SK work
SUPER-KAMIOKANDE REFURBISHMENT

Just looks great!
T2K FUTURE PROSPECTS: SENSITIVITY

- Exclude CP conservation at more than 3σ level for $\delta_{CP} = -\pi/2$ and NH
- Significant improvement in the precision for atmospheric parameters
T2K FUTURE PROSPECTS: NEAR DETECTOR UPGRADE

- Reduction of systematic uncertainties is crucial
 - 18% (2011) → 9% (2014) → 6% (2016) → 4% (2021)?
- ND280 measurements are important

Upgrade of T2K near detector: target date ~2021
- New design (work on-going):
 - improve acceptance + reduce threshold for low momentum particles (e.g. protons)

+ TOF detectors

*Spain: IFAE
SUMMARY

- **T2K is working steadily on its quest on filling neutrino puzzle**
- With $\approx 31.6 \times 10^{20}$ POT (\approx 40\% of expected POT): \~50/50 neutrino/antineutrino modes
 - Measurement of $\sin^2 \theta_{13}$ in agreement with reactor data
 - **T2K data agrees with max θ_{23} mixing and some preference for NO**
 - **Exclusion of CP-conservation at 2σ level**
- Short term plans:
 - Work with NOvA to understand/confirm/improve the differences
 - Continuous data-taking with beam power increase to 750 kW
 - New analysis samples to increase statistics and improve systematics
- **T2K Phase-II proposed**, extended run for \~2020-2026. Smooth transition to Hyper-Kamiokande time
 - With 20×10^{21} POT reach 3σ exclusion of CP conservation for certain δ_{CP} and MH
 - Near detector upgrade to further reduce systematic uncertainties
- **Stay tuned for the new results on neutrino physics from T2K!**
Thank You
RECENT ANALYSIS IMPROVEMENTS

• Neutrino interactions modelling is rapidly developing → changes may affect the results
 • Huge efforts in recent years to improve NEUT (Acta Phys. Polon. B42477 (2009)) neutrino generator used in T2K
 • Improved model for CCQE with inclusion of long-range correlations in nucleus (Random Phase Approximation, RPA calculation)
 • 2017 analysis: new parametrisation of uncertainties for multi-nucleon and RPA
 • On-going checks of results robustness: preliminary systematics parameters used!
 • Small effect on δ_{CP} but larger for “atmospheric” parameters

• Super-Kamiokande event reconstruction
 • New algorithm (fitQun) applied for all analysis samples
 • (Re-)optimised the fiducial volume cuts
 • \sim30% increase in “effective” statistics
NEUTRINO OSCILLATIONS IN T2K

\(\delta_{\text{CP}} \) and mass hierarchy (MH) both cause differences in \(\nu \) and anti-\(\nu \) oscillations

At T2K baseline (L~295km, E~0.6GeV):

- CPV: \(\approx \pm 30\% \) effect
- Mass hierarchy: \(\approx \pm 10\% \) effect
ANALYSIS RESULTS: ATMOSPHERIC PARAMETERS \(\theta_{23} \) AND \(\Delta m_{32}^2 \)

- 2016 analysis (joint fit of 5 samples with reactor constraint for \(\theta_{13} \)):
 - Compatible and consistent results with other experiments
 - Consistent results for \(P(\nu_\mu \rightarrow \nu_\mu) \) and \(P(\nu_\mu \rightarrow \nu_\mu) \): CPT conserved
T2K NEUTRINO FLUX PREDICTION

- Simulation: FLUKA, GCALOR and GEANT3
- Tuned to external data: NA61/SHINE (CERN)
 - Measurement of pion/kaon production of 31 GeV/c proton beam with carbon target
 - Thin target (4%λ) and T2K replica target
 - Reduction of uncertainties: ~30% to ~10%
- Intrinsic ν_e background at ~0.5% level

Replica target results are being incorporated into analysis.
T2K NEUTRINO INTERACTIONS MODEL

- NEUT neutrino generator
- Model tuned to external data: MiniBooNE, MINERνA, bubble chambers
- CCQE: Relativistic Fermi Gas (weighted from Spectral Function) + relativistic Random Phase Approximation for nuclear system
- Pre-(ND280)fit uncertainty for Super-K: ~7.5%
ON-AXIS NEAR DETECTOR INGRID

- T2K utilises off-axis neutrino beam:
 - Important to monitor beam intensity and direction
- Iron/scintillator detector to measure beam profile and rate
- Day-by-day monitoring
- Direction stable within 1 mrad (~2% shift in peak energy)
ND280 ANALYSIS: ν-MODE

- ND280 samples in FGD1 and FGD2: ν_μ interactions in ν mode running
 - CC-0π: muon and no pions in the final state
 - CC-1π: muon and π^+ in the final state
 - CC-Other: all other CC interactions (DIS dominated)
ND280 ANALYSIS: ANTI-ν-MODE

- ND280 samples in FGD1 and FGD2
- CC-Itracks and CC-Ntrack samples
- μ^+ samples and μ^- to constrain “wrong-sign” background
Two hypotheses:

Standard PMNS $\bar{\nu}_e$ appearance ($\beta=1$) and no $\bar{\nu}_e$ appearance ($\beta=0$)

<table>
<thead>
<tr>
<th>β</th>
<th>Hypothesis</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta=0$</td>
<td>No $\bar{\nu}_e$ Appearance</td>
<td>P=0.233</td>
</tr>
<tr>
<td>$\beta=1$</td>
<td>PMNS $\bar{\nu}_e$ Appearance</td>
<td>P=0.0867</td>
</tr>
</tbody>
</table>

No evidence yet!

Event distribution is also consistent with background
ND280 INPUTS TO OSCILLATION ANALYSIS (2016)

- Each model parameter (flux + neutrino interactions) has its uncertainty
- Fit to ND280 data constrains flux and cross-section model, uncertainties propagated to SK as covariance
 - Significant reduction of systematic uncertainties

<table>
<thead>
<tr>
<th>Total NSK Fraction Uncertainty, %</th>
<th>$_{\mu}$</th>
<th>ν_e</th>
<th>anti-ν_{μ}</th>
<th>anti-ν_e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux</td>
<td>W/O ND280</td>
<td>7.6</td>
<td>8.9</td>
<td>7.1</td>
</tr>
<tr>
<td>Cross section</td>
<td>W/O ND280</td>
<td>7.7</td>
<td>7.2</td>
<td>9.3</td>
</tr>
<tr>
<td>Flux and cross section</td>
<td>W/ ND280</td>
<td>2.9</td>
<td>4.2</td>
<td>3.4</td>
</tr>
<tr>
<td>Final/sec. hadronic interactions</td>
<td></td>
<td>1.5</td>
<td>2.5</td>
<td>2.1</td>
</tr>
<tr>
<td>Far detector</td>
<td></td>
<td>3.9</td>
<td>2.4</td>
<td>3.3</td>
</tr>
<tr>
<td>Total</td>
<td>W/O ND280</td>
<td>12.0</td>
<td>11.9</td>
<td>12.5</td>
</tr>
<tr>
<td>Total</td>
<td>W/ ND280</td>
<td>5.0</td>
<td>5.4</td>
<td>5.2</td>
</tr>
</tbody>
</table>

* T2K Preliminary
2016 ANALYSIS RESULTS: θ_{23} AND Δm^2_{32}

- Joint analysis with reactor constraint: $\sin^2 2\theta_{13} = 0.085 \pm 0.05$
- T2K data consistent with maximal mixing
- Compatible with other experiments (intervals for fixed mass hierarchy)

<table>
<thead>
<tr>
<th>PARAMETER/MASS HIERARCHY</th>
<th>NORMAL MASS HIERARCHY</th>
<th>INVERTED MASS HIERARCHY</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sin^2 2\theta_{32}$</td>
<td>$0.532^{+0.046}_{-0.068}$</td>
<td>$0.534^{+0.043}_{-0.07}$</td>
</tr>
<tr>
<td>$</td>
<td>\Delta m^2_{32}</td>
<td>$</td>
</tr>
</tbody>
</table>
CPT INVARIANCE TEST: ν_μ AND anti-ν_μ DISAPPEARANCE

• Strategy
 • Assign independent oscillation parameters for antineutrinos
 • Neutrino samples constrain “wrong-sign” background
 • Test CPT: $\theta_{23} \neq \bar{\theta}_{23}$ and $\Delta m^2_{32} \neq \Delta m^2_{32}$

• Consistent results for $P(\nu_\mu \rightarrow \nu_\mu)$ and $P(\bar{\nu}_\mu \rightarrow \bar{\nu}_\mu)$: CPT conserved
2016 COMPARISON WITH NOVA BEST-FIT

ν_μ μ-like

$\bar{\nu}_e$ e-like

ν_e e-like

$\bar{\nu}_\mu$ μ-like

ν-mode

anti-ν-mode
NEW SAMPLE: CC1 π

- ν_e e-like single ring events
- Require additional ring from Michel electron
- Energy with 2-body kinematics with Δ baryon
- Applied only for ν-mode running
 - Gain \sim10% more statistics (MC)
 - 15 events observed
- Total 5 samples available for T2K analysis
EVENT RATES

- Largely in line with the prediction for $\delta_{\text{CP}} = -\pi/2$

<table>
<thead>
<tr>
<th>Sample</th>
<th>Predicted Rates</th>
<th>Observed Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\delta_{\text{CP}}=-\pi/2$</td>
<td>$\delta_{\text{CP}}=0$</td>
</tr>
<tr>
<td>CCQE 1-Ring e-like FHC</td>
<td>73.5</td>
<td>61.5</td>
</tr>
<tr>
<td>CC1π 1-Ring e-like FHC</td>
<td>6.92</td>
<td>6.01</td>
</tr>
<tr>
<td>CCQE 1-Ring e-like RHC</td>
<td>7.93</td>
<td>9.04</td>
</tr>
<tr>
<td>CCQE 1-Ring μ-like FHC</td>
<td>267.8</td>
<td>267.4</td>
</tr>
<tr>
<td>CCQE 1-Ring μ-like RHC</td>
<td>63.1</td>
<td>62.9</td>
</tr>
</tbody>
</table>

- Generally within statistical and systematic uncertainties
 - p-value: ~ 0.42
 - More observed e-like CC1π events than maximum expectation 6.92
TOTAL SYSTEMATICS UNCERTAINTIES

- Total systematics uncertainties (%) used in 2017 analysis

<table>
<thead>
<tr>
<th>Error Source</th>
<th>1Rmu</th>
<th>1Re</th>
<th>1Re 1 d. e.</th>
<th>FHC/RHC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FHC</td>
<td>RHC</td>
<td>FHC</td>
<td>RHC</td>
</tr>
<tr>
<td>SK Detector</td>
<td>1.9</td>
<td>1.6</td>
<td>3.0</td>
<td>4.2</td>
</tr>
<tr>
<td>SK FSI+SI+PN</td>
<td>2.2</td>
<td>2.0</td>
<td>2.9</td>
<td>2.5</td>
</tr>
<tr>
<td>SK Detector+FSI+SI+PN</td>
<td>2.9</td>
<td>2.5</td>
<td>4.2</td>
<td>4.8</td>
</tr>
<tr>
<td>ND280 const. flux & xsec</td>
<td>3.3</td>
<td>2.7</td>
<td>3.2</td>
<td>2.9</td>
</tr>
<tr>
<td>$\sigma(\nu_e)/\sigma(\nu_{\mu})$, $\sigma(\bar{\nu}e)/\sigma(\bar{\nu}{\mu})$</td>
<td>0.0</td>
<td>0.0</td>
<td>2.6</td>
<td>1.5</td>
</tr>
<tr>
<td>NC1γ</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td>2.6</td>
</tr>
<tr>
<td>NC Other</td>
<td>0.3</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
</tr>
<tr>
<td>Syst. Total</td>
<td>4.4</td>
<td>3.8</td>
<td>6.3</td>
<td>6.4</td>
</tr>
</tbody>
</table>
HEAVY NEUTRAL LEPTONS

How to explain neutrino masses (and consequently oscillations)?

A natural extension is one with 3 new right-handed neutrinos (sterile):

\[
\begin{pmatrix}
\bar{\nu}_L & \nu_R^c \\
0 & m_D & m_R
\end{pmatrix}
\begin{pmatrix}
\nu^c_L \\
\nu_R
\end{pmatrix}
\]

\[M = \begin{pmatrix}
\frac{m_D}{m_R} & m_R
\end{pmatrix}
\]

Light neutrinos

\[m_\nu \sim \frac{m_D^2}{m_R} \lesssim 0.1 \text{ eV}\]

Heavy neutrinos

\[M_N \sim m_R\]

Three new heavy neutrinos at an unknown scale (eV → GUT)!

How to detect heavy neutrinos?

- \(N_1\) couple to \(W\) and \(Z\) with a strength

\[U_{\alpha 1}^2 \equiv |\Theta_{\alpha 1}|^2 \sim \mathcal{O} \left(\frac{m_\nu}{M_N} \right)\]

- Can be produced e.g. in colliders or in meson decays (arXiv:1502.00477).
- For \(0.1 < M_N < 100 \text{ GeV/c}^2\), we have

\[U_{\alpha 1}^2 \sim 10^{-10} - 10^{-8}\]

90% limits from current experiments on the mixing of heavy neutrinos to electron and muon.
HEAVY NEUTRAL LEPTONS

Detection in T2K:
Heavy neutrinos are produced alongside standard neutrino beam. They propagate and can decay in T2K near detector ND280 → detection of 2 particles with opposite charges.

\[K^+ \rightarrow \ell^+N \]
\[N \rightarrow \ell^\pm \pi^\mp, \ell^\pm \ell^\mp \nu \]

Analysis and results:
- Remaining background after selection: less than 2 evts (from active ν int.)
- Bayesian approach, marginalization with a Markov Chain Monte Carlo.

90% C.L.

T2K put the most stringent limits in the high mass region.
T2K: SPANISH GROUPS IMPACT

• Spanish groups provide important and in many ways crucial contributions to the T2K experiment

• Near Detector:
 • Magnet operations (IFAE), TPCs (IFAE and IFIC), near detector calibration, reconstruction and analysis
 • Conveners of the groups responsible of the data-taking coordination, neutrino interactions modelling, tracking, analysis framework development, “exotics” physics searches

• UAM actively participates in the Super-Kamiokande calibrations + work on Gd addition

• Further work beyond current activities:
 • T2K+SK+reactors global fit (IFIC+UAM with T2K-UK/Japan groups)
 • T2K ND280 analysis software for DUNE(-SP) analyses