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Introduction

loop and CKM suppressed 
SM amplitude

large no. of experimentally 
accessible observables valuable probe for indirect 

search of NP

sensitive to new 
particle in loop
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Introduction
Angular analysis in well known helicity frame [Kruger, Sehgal, Sinha, Sinha ‘99]

The differential distribution
d4�(B ! K⇤`+`�)

dq2 d cos ✓l d cos ✓k d�
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Motivation
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Motivation
                   short distance   +    long distance

Wilson coefficients:  
perturbatively calculable

Form-factors: 
non-perturbative estimates 

from LCSR, HQET, Lattice … 
tremendous effort since past

Non-factorizable 
contributions:

no quantitative computation

     Challenge:  either estimate accurately or eliminate
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Model Independent Framework
[RM, Sinha, Das ‘14] The amplitude
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Model Independent Framework
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Model Independent Framework
 The amplitude

Wilson coefficients lorentz & gauge invariance 
allow general parametrization 
with form-factors      ,  non-local operator  

for non factorization contributions

parametrize with ‘new’
form-factors

[RM, Sinha, Das ‘14]

[Khodjamirian et. al ’10]
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Model Independent Framework
 Absorbing factorizable & non-factorizable contributions into
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Model Independent Framework
 Absorbing factorizable & non-factorizable contributions into

 Most general parametric form of amplitude in SM

 Form-factors: and
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Right-Handed Current

6

 Chirality flipped operators

s̄i�µ⌫PRb

 In presence of right-handed gauge boson or other kind of new  
    particles like leptoquarks etc..
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RH Current
Amplitudes

Notation

Variables

eGk

Fk
=

eG?
F?

=
eG0

F0
= �

2mbmBC7

q2
,HQET limit [Grinstein, Prijol ‘04]

[Bobeth et. al ’10]

r0 = rk = r? ⌘ r

R0 = Rk 6= R? in presence of RH currents

AL,R
? =

�
( eC?

9 + C 0
9)⌥ (C10 + C 0

10)
�
F? � eG?

AL,R
k,0 =

�
( eCk,0

9 � C 0
9)⌥ (C10 � C 0

10)
�
Fk,0 � eGk,0

R? =
r?
C10

� ⇠0

1 + ⇠
, Rk =

rk
C10

+ ⇠0

1� ⇠
, R0 =

r0
C10

+ ⇠0

1� ⇠
.

ignoring non-factorisable 
corrections
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RH Current
At kinematic endpoint           exact HQET limit 

polarization independent

Observables

FL =
1

3
+ F (1)

L � + F (2)
L �2 + F (3)

L �3

F? = F (1)
? � + F (2)

? �2 + F (3)
? �3

AFB = A(1)
FB�

1
2 +A(2)

FB�
3
2 +A(3)

FB�
5
2

A5 = A(1)
5 �

1
2 +A(2)

5 �
3
2 +A(3)

5 �
5
2 ,

Taylor series expansion around � ⌘ q2max � q2

[Hiller, Zwicky ’14]

non-factorisable correction 
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**
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RH Current
 Limiting analytic expressions

No RH  
current line 

SM prediction

Large deviation 
between slopes

10

!1 =
3

2

F (1)
?

A(1) 2
FB

or
3

8

F (1)
?

A(1) 2
5

and !2 =
4
⇣
2A(2)

5 �A(2)
FB

⌘

3A(1)
FB

⇣
3F (1)

L + F (1)
?

⌘ or
4
⇣
2A(2)

5 �A(2)
FB

⌘

6A(1)
5

⇣
3F (1)

L + F (1)
?

⌘
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**

-6 -4 -2 0 2 4
-3

-2

-1

0

1

2

C′
10/C10

C
′ 9
/C

10

SM input

More than      deviation       

Results in C 0
10/C10 � C 0

9/C10

11

C 0
9/C10 = �0.92± 0.10

Rusa Mandal, IFIC



r/C10 = 0.84

**

-6 -4 -2 0 2 4
-3

-2

-1

0

1

2

C′
10/C10

C
′ 9
/C

10

SM input

More than      deviation       

Results in 

reduced significance of deviation 
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11

as hinted in global fits
[Altmannshofer, Straub ’14]
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Minimal significance  for RH current

=nuisance parameter
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Fit to form factor observables
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nicely explained by 3rd order polynomial

Rusa Mandal, IFIC



Convergence of coefficients
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Convergence of coefficients
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Shows a good convergence with variation in polynomial order 
& no. of bins used for the data fit
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Resonances

�0, 0, 0, 2π ,
3π
2
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makes observable          
        unphysical

Asymmetries decrease 
in high     region
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Lepton non-universality

17

 Discrepancies in neutral current B decays 

� ⌘ dBR(Bs ! �µµ)/dq2
��
q22[1:6] GeV2

=
�
2.58+0.33

�0.31 ± 0.08± 0.19
�
⇥ 10�8 GeV�2 (exp)

= (4.81± 0.56)⇥ 10�8 GeV�2 (SM)

= 1 in SM

[LHCb ’14,’17]

[LHCb ’15]
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Lepton non-universality
 Exciting discrepancies observed in charged current B decays 

b c

H
e↵ =

4GF
p
2
Vcb

�
1 + CNP

�
(c̄L�µbL)(⌧̄L�

µ⌫⌧L)

combined deviation
⇠ 4�

18

[HFAG]
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Lepton non-universality

19

 Constraints from other modes

BR(Bs ! ⌧⌧) < 6.8⇥ 10�3

well in agreement

Quite challenging to explain all anomalies together by evading 
all the bounds. 

[Grinsten et.al ’16]BR(B�
c ! ⌧�⌫̄) . 5%

[LHCb ’17]
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Lepton non-universality

⌧ = cos ✓ ⌧ 0 + sin ✓ µ0

 NP operators with 2nd & 3rd generation fields

 Directly contributes to 

 Diagonalisation of Hamiltonian for lepton part through small mixing 
    angle     : interaction basis             mass basis

Contribution to                    is generated

20

H
NP = A1 (Q̄2L�µL3L) (Q̄3L�

µL3L) +A2 (Q̄2L�µQ3L) (⌧̄R�
µ⌧R)
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 agreement within           level

Lepton non-universality
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B+ ! K+µ�⌧+Allowed by
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RK ' 0.86, RK⇤
cntr ' 0.88, R low

K⇤ ' 0.90,

R(D(⇤)) ' 1.25⇥R(D(⇤))SM,� ' 4.1⇥ 10�8GeV�2.
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Lepton non-universality
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-0.04

-0.02
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0.04

A1 [TeV-2]

si
n
θ

RK *cntr

RK

RD(*)

B+→K+μ-τ+
(allowed)

Bs→ττ
(disallowed)

Allowing 20% breaking
A2 = 4A1/5

from quantum corrections 
or unknown dynamics of the 
UV completion of the model

1�

22

�2
allowed region/d.o.f ' 2
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RK ' 0.80, RK⇤
cntr ' 0.83, R low

K⇤ ' 0.88,

R(D(⇤)) ' 1.24⇥R(D(⇤))SM,� ' 3.8⇥ 10�8GeV�2.



Lepton non-universality

Rusa Mandal, IFIC

RJ/ ⌘ BR(Bc ! J/ ⌧⌫)

BR(Bc ! J/ µ⌫)

 Another discrepancy at               charged current 

= (2.5± 0.97 )⇥RSM
J/ 

In the same direction as of  
     
     considered operators can also explain  

                triplet type operators are also explored 

[LHCb ’17]

[1712:01593]
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Popular approaches

Summary
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Our approach

 Combine all             transitionsb ! s

many decay modes i.e observables

more hadronic uncertainties 

conservative assumption of 
 non-factorisable contributions

Most general parametric form of 
SM amplitude

eliminate hadronic uncertainties

observables

no/minimal dependency on 
form-factors & independent of 
non-factorisable contributions

 Focusing on low      region  Conclusion derived at endpointq2
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Summary

 Strong evidence of RH currents derived at endpoint limit —

 systematics studied by varying polynomial order & bin no. 
 finite       width effect is considered 
 resonance effects increase the deviation 

 Formalism developed to include all possible effects within SM
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Summary

 In terms of effective operators we show a possible explanation 
     to all the anomalies together

 Fluctuation? Wait for more data to be accumulated! 

 Several hints of lepton non universality are observed  
     by various experimental groups

26

 Opens up way to construct UV complete theory
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 The model has only two new parameters 
 It predicts some interesting signatures in the context of B decays such  

     as Bs ! ⌧⌧, B ! K(⇤)µ⌧
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Complex part of amplitudes
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"�⌘ Im( eC�
9 )F� � Im(eG�)

 SM amplitude

 Complex part

 Iterative solutions

CINCINNATI



Complex part of amplitudes
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values with errors are consistent with zero

CINCINNATI



Resonances
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Parametrization in Wilson coefficient [Kruger, Sehgal ’96]

g(mc, q
2) = �8

9
ln
mc

mb
� 4

9
+

q2

3
P

Z m2
b

4m̂2
D

Rcc̄
had(x)

x(x� q2)
dx+ i

⇡

3
Rcc̄

had(q
2)

Rcc̄
had(q

2) = Rcc̄
cont(q

2) +
X

V=J/ , 0 ...

9q2

↵

Br(V ! l+l�)�V
total�

V
had

(q2 �m2
V )

2 +m2
V �

V 2
total

ei�V



Solutions
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Effective operators
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 Hamiltonian and relevant operators for 

6SUSY 2017, TIFR

b ! sµµ

He↵ =
�4GFp

2
Vtb V

⇤
ts

X

i

Ci(µ)Oi(µ) ,

New contribution to 
(axial)vector currents

C9 ! C9 + CNP
9

C10 ! C10 + CNP
10


