Likelihoods
1) Brief Introduction
2) Do’s & Don’t’s

Louis Lyons
Imperial College & Oxford
CMS

Valencia
June 2018
Topics

What it is
How it works: Resonance
Uncertainty estimates
Detailed example: Lifetime
Several Parameters
Extended maximum \mathcal{L}

Do’s and Don’t’s with \mathcal{L}
Simple example: Angular distribution

\[y = N (1 + \beta \cos^2\theta) \]
\[y_i = N (1 + \beta \cos^2\theta_i) \]

= probability density of observing \(\theta_i \), given \(\beta \)

\[L(\beta) = \prod y_i \]

= probability density of observing the data set \(y_i \), given \(\beta \)

Best estimate of \(\beta \) is that which maximises \(L \)

Values of \(\beta \) for which \(L \) is very small are ruled out

Precision of estimate for \(\beta \) comes from width of \(L \) distribution

CRUCIAL to normalise \(y \)

\[N = \frac{1}{2(1 + \beta/3)} \]

(Information about parameter \(\beta \) comes from shape of exptl distribution of \(\cos\theta \))
How it works: Resonance

\[y \sim \frac{\Gamma/2}{(m-M_0)^2 + (\Gamma/2)^2} \]

Vary \(M_0 \)

Vary \(\Gamma \)
Conventional to consider

\[\ell = \ln(L) = \sum \ln(y_i) \]

For large \(N \), \(L \to \text{Gaussian} \)

"Proof"

Taylor expand \(\ell \) about its maximum

\[\ell = \ell_{\text{max}} + \frac{1}{2!} \ell'' \left[\delta \left(\frac{\delta}{\sigma} \right) \right]^2 + \ldots \]

\[= \ell_{\text{max}} - \frac{1}{2\sigma} \delta^2 + \ldots \]

\[\therefore L \sim \exp \left(-\frac{\delta^2}{2\sigma} \right) \]
Maximum likelihood uncertainty

Range of likely values of param μ from width of L or l dists. If $L(\mu)$ is Gaussian, following definitions of σ are equivalent:

1) RMS of $L(\mu)$

2) $1/\sqrt{-d^2\ln L / d\mu^2}$ (Mnemonic)

3) $\ln(L(\mu_0 \pm \sigma)) = \ln(L(\mu_0)) - 1/2$

If $L(\mu)$ is non-Gaussian, these are no longer the same

"Procedure 3) above still gives interval that contains the true value of parameter μ with 68% probability”

Uncertainties from 3) usually asymmetric, and asym uncertainties are messy. So choose param sensibly

e.g $1/p$ rather than p; τ or λ
Realistic analyses are more complicated than this.

Lifetime Determination

\[\frac{dN}{dt} = \frac{1}{\tau} e^{-t/\tau} \]

NORMALISATION

Observe \(t_1, t_2, \ldots, t_N \)

Use but to construct

\[\lambda = \prod \left(\frac{dN}{dt} \right)_i = \prod \frac{1}{\tau} e^{-t_i/\tau} \]

\[\lambda = \sum \left(-\frac{t_i}{\tau} - \ln \tau \right) \]

\[\frac{d \lambda}{dt} = \sum \left(-\frac{t_i}{\tau} - \frac{1}{\tau} \right) = 0 \Rightarrow \lambda = \frac{\sum t_i}{\tau} = \bar{t}_i \]

"Obvious"

\[\frac{d^2 \lambda}{dt^2} = -\sum \frac{2t_i}{\tau} + \sum \frac{1}{\tau^2} = -2\frac{N}{\tau^2} + \frac{N}{\tau^2} = -\frac{N}{\tau^2} \]

\[\Rightarrow \sigma_\tau = \sqrt{-\frac{d^2 \lambda}{dt^2}} = \bar{t}/\sqrt{N} \]

N.B. 1) Usual \(1/\sqrt{N} \) behaviour

2) \(\sigma_\tau \propto \tau^{-1/2} \)

Beware for averaging results
Several Parameters

\[\frac{\partial \ell}{\partial \beta} = 0 \]
\[\sigma_\beta^2 = \frac{1}{(-\frac{\partial^2 \ell}{\partial \beta^2})} \]

Many dimensions: \[\ell(\beta_1, \beta_2, \beta_3, \ldots) \]
\[\beta_1, \beta_2, \beta_3, \ldots \text{ from } \frac{\partial \ell}{\partial \beta_i} = 0 \]

For errors, define \(H_{ij} = -\frac{\partial^2 \ell}{\partial \beta_i \partial \beta_j} = \text{Inverse Error Matrix} \)

\[E_{ij} = (H^{-1})_{ij} \]

\[\ell_{\text{prof}} = \ell(\beta, \nu_{\text{best}}(\beta)), \] where
\(\beta = \text{param of interest} \)
\(\nu = \text{nuisance param(s)} \)

Uncertainty on \(\beta \) from decrease in \(\ln(\ell_{\text{prof}}) \) by 0.5

N.B. Profile \(\ell \) contains less information than \(\ell \).
Can be important
Extended Maximum Likelihood

Maximum Likelihood uses shape \rightarrow parameters
Extended Maximum Likelihood uses shape and normalisation
i.e. EML uses prob of observing:
 a) sample of N events; and
 b) given data distribution in x,……
 \rightarrow shape parameters and normalisation.

Example: Angular distribution

Observe N events total e.g. 100
 F forward 96
 B backward 4

Rate estimates ML EML
 Total --- 100±10
 Forward 96±2 96±10
 Backward 4±2 4±2
ML and EML

ML uses fixed (data) normalisation
EML has normalisation as parameter

Example 1: Cosmic ray experiment
See 96 protons and 4 heavy nuclei
ML estimate 96 ± 2% protons 4 ±2% heavy nuclei
EML estimate 96 ± 10 protons 4 ± 2 heavy nuclei

Example 2: Decay of resonance
Use ML for Branching Ratios
Use EML for Partial Decay Rates
a) Max like

Prob for fixed \(N = \text{Binomial} \)

\[
\text{Prob of } k \text{ successes} = f(k) = \frac{N!}{k!(N-k)!} \left(1-F\right)^{N-k} F^k
\]

Maximise \(\ln P \) wrt \(f \) \(\Rightarrow f = F/N \)

Error in \(f \) : \(\sigma^2 = \frac{\partial^2 \ln P}{\partial f^2} \)

\[
\sigma^2 = \frac{N}{\hat{f}(1-\hat{f})} \quad \Rightarrow \hat{f} = \frac{N}{\hat{f}(1-\hat{f})}
\]

\(\Rightarrow \) Estimate of \(\hat{F} = NF = F \pm \sqrt{FB/N} \)

\(\hat{B} = N(1-\hat{f}) = B \pm \sqrt{FB/N} \)

b) EML

\(\hat{P} = P \times \frac{e^{-\hat{F}}}{N!} \)

Poisson for overall rate

Maximise \(\ln \hat{P} \) \(\Rightarrow \hat{F} = N\hat{f} = F \pm \sqrt{FB/N} \)

\(\hat{f} = F/N \pm \sqrt{F(1-\hat{f})} \)

For \(\hat{F} + \hat{B} \), either propagate errors for \(\hat{F} = \hat{f} \hat{F} \)

or rewrite eqn \# as product of 2 indep Poissons

\[
\begin{align*}
\hat{F} &= F \pm \sqrt{F} \\
\hat{B} &= B \pm \sqrt{B}
\end{align*}
\]
DO’S AND DONT’S WITH \mathcal{L}

- COMBINING PROFILE \mathcal{L}_s
- NORMALISATION FOR LIKELIHOOD
- JUST QUOTE UPPER LIMIT
- $\Delta (\ln \mathcal{L}) = 0.5$ RULE
- \mathcal{L}_{max} AND GOODNESS OF FIT
- \mathcal{L} AND BAYESIAN SMEARING OF \mathcal{L}
- USE CORRECT \mathcal{L} (PUNZI EFFECT)
Problems with combining PROFILE \mathcal{L}
NORMALISATION FOR LIKELIHOOD

\[\int P(x \mid \mu) \, dx \quad \text{MUST be independent of } \mu \]

data \quad \text{param}

e.g. Lifetime fit to \(t_1, t_2, \ldots, t_n \) \quad \left[\tau = \frac{\sum t_i}{N} \right]

INCORRECT \quad P(t \mid \tau) = e^{-t/\tau}

Missing \(1/\tau \)

\(\tau = \infty \quad \tau \text{ too big} \quad \text{Reasonable } \tau \)
QUOTING UPPER LIMIT

“We observed no significant signal, and our 90% conf upper limit is ….”

Need to specify method e.g.

\[\mathcal{L} \]

Chi-squared (data or theory error)

Frequentist (Central or upper limit)

Feldman–Cousins

Bayes with prior = const, \(\frac{1}{\mu}, \frac{1}{\sqrt{\mu}}, \mu \) etc

“Show your \(\mathcal{L} \)”

1) Not always practical

2) Not sufficient for frequentist methods
90% C.L. Upper Limits

For Upper Limits

For 2-sided intervals
\[\Delta \ln \mathcal{L} = -1/2 \text{ rule} \]

If \(\mathcal{L}(\mu) \) is Gaussian, following definitions of \(\sigma \) are equivalent:

1) RMS of \(\mathcal{L}(\mu) \)

2) \(1/\sqrt{(-d^2 \mathcal{L}/d\mu^2)} \)

3) \(\ln(\mathcal{L}(\mu_0 \pm \sigma) = \ln(\mathcal{L}(\mu_0)) - 1/2 \)

If \(\mathcal{L}(\mu) \) is non-Gaussian, these are no longer the same

"Procedure 3) above still gives interval that contains the true value of parameter \(\mu \) with 68% probability"

Heinrich: CDF note 6438 (see CDF Statistics Committee Web-page)

Barlow: Phystat05
COVERAGE

How often does quoted range for parameter include param’s true value?

N.B. Coverage is a property of METHOD, not of a particular exptl result

Coverage can vary with μ

Study coverage of different methods of Poisson parameter μ, from observation of number of events n

Hope for:

![Diagram showing coverage $C(\mu)$ vs. μ]
If true for all μ : “correct coverage”

$P < \alpha$ for some μ “undercoverage”
(this is serious!)

$P > \alpha$ for some μ “overcoverage”

Conservative

Loss of rejection
power
Coverage: \mathcal{L} approach (Not Neyman construction)

$$P(n, \mu) = e^{-\mu}\mu^n/n!$$ (Joel Heinrich CDF note 6438)

$$-2 \ln \lambda < 1 \quad \lambda = \frac{P(n, \mu)}{P(n, \mu_{\text{best}})} \quad \text{UNDERCOVERS}$$
Neyman central intervals, NEVER undercover

(Conservative at both ends)
Feldman-Cousins Unified intervals

Neyman construction so NEVER undercovers
Probability ordering

Coverage (C) vs μ: Probability Ordering Intervals \((C \to 0.6827 \text{ as } \mu \to \infty) \)
\[\chi^2 = \frac{(n-\mu)^2}{\mu} \quad \Delta \chi^2 = 0.1 \quad \rightarrow \quad 24.8\% \text{ coverage?} \]

NOT Neyman : Coverage = 0% → 100%
Unbinned \mathcal{L}_{max} and Goodness of Fit?

Find params by maximising \mathcal{L}
So larger \mathcal{L} better than smaller \mathcal{L}
So \mathcal{L}_{max} gives Goodness of Fit??

Monte Carlo distribution of unbinned \mathcal{L}_{max}
Not necessarily: \(\mathcal{L}(\text{data, params}) \)

Contrast \(\text{pdf(data, params)} \)

e.g. \(p(\lambda) = \lambda \exp(-\lambda t) \)

Max at \(t = 0 \)

Max at \(\lambda = 1/t \)
Example 1

Fit exponential to times $t_1, t_2, t_3 \ldots \ldots \ldots$ [Joel Heinrich, CDF 5639]

$L = \prod \lambda \exp(-\lambda t_i)$

$\ln L_{\text{max}} = -N(1 + \ln t_{av})$

i.e. Depends only on AVERAGE t, but is

INDEPENDENT OF DISTRIBUTION OF t (except for………)

(Average t is a sufficient statistic)

Variation of L_{max} in Monte Carlo is due to variations in samples’ average t, but

NOT TO BETTER OR WORSE FIT

Same average t \hspace{1cm} same L_{max}
Example 2

\[\frac{dN}{d \cos \theta} = \frac{1 + \alpha \cos^2 \theta}{1 + \alpha / 3} \]

\[\mathcal{L} = \prod_i \frac{1 + \alpha \cos^2 \theta_i}{1 + \alpha / 3} \]

pdf (and likelihood) depends only on \(\cos^2 \theta_i \)

Insensitive to sign of \(\cos \theta_i \)

So data can be in very bad agreement with expected distribution

e.g. all data with \(\cos \theta < 0 \)

and \(\mathcal{L}_{\text{max}} \) does not know about it.

Example of general principle
Example 3

Fit to Gaussian with variable μ, fixed σ

\[
\text{pdf} = \frac{1}{\sigma \sqrt{2\pi}} \exp\left\{ -\frac{1}{2} \left(\frac{x - \mu}{\sigma} \right)^2 \right\}
\]

\[
\ln L_{\text{max}} = N(-0.5 \ln 2\pi - \ln \sigma) - 0.5 \sum (x_i - x_{av})^2 / \sigma^2
\]

\[
\text{constant} \quad \sim \text{variance}(x)
\]

i.e. L_{max} depends only on variance(x),

which is not relevant for fitting μ \quad ($\mu_{\text{est}} = x_{av}$)

Smaller than expected variance(x) results in larger L_{max}

Worse fit, larger L_{max} \quad Better fit, lower L_{max}
\mathcal{L}_{max} and Goodness of Fit?

Conclusion:

\mathcal{L} has sensible properties with respect to parameters

NOT with respect to data

\mathcal{L}_{max} within Monte Carlo peak is NECESSARY

not SUFFICIENT

(‘Necessary’ doesn’t mean that you have to do it!)
Binned data and Goodness of Fit using \mathcal{L}-ratio

$\mathcal{L} = \prod_i p_{ni}(\mu_i)$

$\mathcal{L}_{\text{best}} = \prod_i p_{ni}(\mu_{i,\text{best}})$

$= \prod_i p_{ni}(n_i)$

$\ln[\mathcal{L}\text{-ratio}] = \ln[\mathcal{L}/\mathcal{L}_{\text{best}}]$

$\xrightarrow{\text{large } \mu_i} -0.5 \chi^2$
i.e. Goodness of Fit

$\mathcal{L}_{\text{best}}$ is independent of parameters of fit,
and so same parameter values from \mathcal{L} or \mathcal{L}-ratio

Baker and Cousins, NIM A221 (1984) 437
Example 1: Poisson

pdf = Probability density function for observing n, given μ

\[P(n; \mu) = e^{-\mu} \frac{\mu^n}{n!} \]

From this, construct \(\mathcal{L} \) as

\[\mathcal{L}(\mu; n) = e^{-\mu} \frac{\mu^n}{n!} \]

i.e. use same function of \(\mu \) and \(n \), but for pdf, \(\mu \) is fixed, but for \(\mathcal{L} \), \(n \) is fixed

N.B. \(P(n; \mu) \) exists only at integer non-negative \(n \)
\(\mathcal{L}(\mu; n) \) exists only as continuous function of non-negative \(\mu \)
Example 2

Lifetime distribution

pdf \[p(t; \lambda) = \lambda e^{-\lambda t} \]

So \[L(\lambda; t) = \lambda e^{-\lambda t} \] (single observed \(t \))

Here both \(t \) and \(\lambda \) are continuous

pdf maximises at \(t = 0 \)

\(L \) maximises at \(\lambda = t \)

N.B. Functional form of \(p(t) \) and \(L(\lambda) \) are different
Example 3: Gaussian

$$\text{pdf}(x; \mu) = \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\} / (\sigma \sqrt{2\pi})$$

$$\mathcal{L}(\mu; x) = \exp\{-\frac{(x-\mu)^2}{2\sigma^2}\} / (\sigma \sqrt{2\pi})$$

N.B. In this case, same functional form for pdf and \mathcal{L}

So if you consider just Gaussians, can be confused between pdf and \mathcal{L}

So examples 1 and 2 are useful
Transformation properties of pdf and \mathcal{L}

Lifetime example: \(\frac{dn}{dt} = \lambda \, e^{-\lambda t} \)

Change observable from \(t \) to \(y = \sqrt{t} \)

\[
\frac{dn}{dy} = \frac{dn}{dt} \frac{dt}{dy} = 2y\lambda \, e^{-\lambda y^2}
\]

So (a) pdf changes, BUT

(b) \[
\int_{t_0}^{\infty} \frac{dn}{dt} \, dt = \int_{\sqrt{t_0}}^{\infty} \frac{dn}{dy} \, dy
\]

i.e. corresponding integrals of pdf are \textbf{IN Variant}
Now for Likelihood

When parameter changes from λ to $\tau = 1/\lambda$

(a’) L does not change

$dn/dt = (1/\tau) \exp\{-t/\tau\}$

and so $L(\tau; t) = L(\lambda = 1/\tau; t)$

because identical numbers occur in evaluations of the two L’s

BUT

(b’) $\int_{0}^{\lambda_0} L(\lambda; t) \, d\lambda \neq \int_{\tau_0}^{\infty} L(\tau; t) \, d\tau$

So it is NOT meaningful to integrate L

(However,.........)
<table>
<thead>
<tr>
<th></th>
<th>pdf(t;λ)</th>
<th>L(λ;t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value of function</td>
<td>Changes when observable is transformed</td>
<td>INVARIANT wrt transformation of parameter</td>
</tr>
<tr>
<td>Integral of function</td>
<td>INVARIANT wrt transformation of observable</td>
<td>Changes when param is transformed</td>
</tr>
<tr>
<td>Conclusion</td>
<td>Max prob density not very sensible</td>
<td>Integrating L not very sensible</td>
</tr>
</tbody>
</table>
CONCLUSION:

\[\int_{p_l}^{p_u} L \, dp = \alpha \quad \text{NOT recognised statistical procedure} \]

[Metric dependent:

\[\tau \text{ range agrees with } \tau_{\text{pred}} \]
\[\lambda \text{ range inconsistent with } 1/\tau_{\text{pred}} \]

BUT

1) Could regard as “black box”

2) Make respectable by \(L \) \(\rightarrow \) Bayes’ posterior

\[\text{Posterior}(\lambda) \sim L(\lambda) \ast \text{Prior}(\lambda) \quad \text{[and Prior}(\lambda)\text{ can be constant]} \]
6) BAYESIAN SHEARING OF \mathbf{X}

"USE $\mathbf{X}^*_{\text{DEG}}$ FOR $\mathbf{S} + \sigma_p$.

SHEAR IT TO INCORPORATE SYSTEMATIC UNCERTAINTIES.

SCENARIO:

$\mathbf{N} = \text{POISSON}(\mu = S \mathbf{E} + b)$

PARAM OF INTEREST \mathbf{S} \mathbf{E} \mathbf{B} BACKGROUND

$\text{SIGNAL/ACCEPTANCE/}d\mathbf{X}$

UNCERTAINTIES

$\text{MEASURED IN \text{\textquoteleft\textquoteleft SUBSIDIARY\textquoteright\textquoteright} EXPERIMENT}$

$P(s, e|\mathbf{N}) = \frac{P(n|s, e) \pi(s, e)}{\int_{s} \cdots \cdots \cdots dsde}$

$P(s|\mathbf{N}) = \int_{e} P(s, e|\mathbf{N}) de$

$$= \int_{e} \frac{\int_{s} \cdots \cdots \cdots dsde}{\int_{s} \cdots \cdots \cdots dsde} \pi(s) \pi(e) de$$

e.g. $\pi(s) = \text{truncated EXP.}$. $\pi(e) \sim e^{-\frac{e}{\sigma}}$.

i.e. SHEAR \mathbf{X} (not \mathbf{X}^*) by \textit{prior} for e. E.g., \mathbf{X}.
Getting \mathcal{L} wrong: Punzi effect

Giovanni Punzi @ PHYSTAT2003
“Comments on \mathcal{L} fits with variable resolution”

Separate two close signals, when resolution σ varies event by event, and is different for 2 signals

e.g. 1) Signal 1 $1 + \cos^2 \theta$
 Signal 2 Isotropic
 and different parts of detector give different σ

2) M (or τ)
 Different numbers of tracks \rightarrow different σ_M (or σ_τ)
Events characterised by x_i and σ_i

A events centred on $x = 0$

B events centred on $x = 1$

$L(f)_{\text{wrong}} = \prod [f * G(x_i,0,\sigma_i) + (1-f) * G(x_i,1,\sigma_i)]$

$L(f)_{\text{right}} = \prod [f * p(x_i,\sigma_i;A) + (1-f) * p(x_i,\sigma_i;B)]$

$p(S,T) = p(S|T) * p(T)$

$p(x_i,\sigma_i|A) = p(x_i|\sigma_i,A) * p(\sigma_i|A)$

$= G(x_i,0,\sigma_i) * p(\sigma_i|A)$

So

$L(f)_{\text{right}} = \prod [f * G(x_i,0,\sigma_i) * p(\sigma_i|A) + (1-f) * G(x_i,1,\sigma_i) * p(\sigma_i|B)]$

If $p(\sigma|A) = p(\sigma|B)$, $L_{\text{right}} = L_{\text{wrong}}$

but NOT otherwise
Punzi’s Monte Carlo for

\[A : G(x,0,\sigma_A) \]
\[B : G(x,1,\sigma_B) \]

\[f_A = 1/3 \]

<table>
<thead>
<tr>
<th>(\sigma_A)</th>
<th>(\sigma_B)</th>
<th>(f_A)</th>
<th>(\sigma_f)</th>
<th>(f_A)</th>
<th>(\sigma_f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.336(3)</td>
<td>0.08</td>
<td></td>
<td>Same</td>
</tr>
<tr>
<td>1.0</td>
<td>1.1</td>
<td>0.374(4)</td>
<td>0.08</td>
<td>0.333(0)</td>
<td>0</td>
</tr>
<tr>
<td>1.0</td>
<td>2.0</td>
<td>0.645(6)</td>
<td>0.12</td>
<td>0.333(0)</td>
<td>0</td>
</tr>
<tr>
<td>1 \rightarrow 2</td>
<td>1.5 \rightarrow 3</td>
<td>0.514(7)</td>
<td>0.14</td>
<td>0.335(2)</td>
<td>0.03</td>
</tr>
<tr>
<td>1.0</td>
<td>1 \rightarrow 2</td>
<td>0.482(9)</td>
<td>0.09</td>
<td>0.333(0)</td>
<td>0</td>
</tr>
</tbody>
</table>

1) \(L_{\text{wrong}} \) OK for \(p(\sigma_A) = p(\sigma_B) \), but otherwise BIASSED

2) \(L_{\text{right}} \) unbiased, but \(L_{\text{wrong}} \) biased (enormously)!

3) \(L_{\text{right}} \) gives smaller \(\sigma_f \) than \(L_{\text{wrong}} \)
Explanation of Punzi bias

\[\sigma_A = 1 \quad \sigma_B = 2 \]

A events with \(\sigma = 1 \)

B events with \(\sigma = 2 \)

Actual Distribution

Fitting function

[N_A/N_B variable, but same for A and B events]

Fit gives upward bias for N_A/N_B because (i) that is much better for A events; and (ii) it does not hurt too much for B events
Another scenario for Punzi problem: PID

 Originally:

Positions of peaks = constant

\(\sigma_i\) variable, \((\sigma_i)_A \neq (\sigma_i)_B\)

\(\sigma_i \sim\) constant, \(p_K \neq p_\pi\)

COMMON FEATURE: Separation/Error \(\neq\) Constant

Where else??

MORAL: Beware of event-by-event variables whose pdf’s do not appear in \(\mathcal{L}\)
Avoiding Punzi Bias

BASIC RULE:
Write pdf for ALL observables, in terms of parameters

- Include $p(\sigma|A)$ and $p(\sigma|B)$ in fit
 (But then, for example, particle identification may be determined more
 by momentum distribution than by PID)

 OR

- Fit each range of σ separately, and add $(N_A)_i \rightarrow (N_A)_{total}$, and similarly for B

Incorrect method using L_{wrong} uses weighted average
of $(f_A)_j$, assumed to be independent of j

Talk by Catastini at PHYSTAT05
Conclusions

How it works, and how to estimate uncertainties

$\Delta(\ln L) = 0.5$ rule and coverage

Several Parameters

Likelihood does not guarantee coverage

Unbinned L_{max} and Goodness of Fit

Use correct L (Punzi effect)