

ATLAS EventIndex Trigger Counter

una herramienta de análisis del trigger que emplea MapReduce

Carlos García Montoro (IFIC – CSIC / UV)

on behalf of the IFIC EventIndex Team

About me @ IFIC

- (24) 16-03-2008 15-03-2010: I3P
- (3,5) 16-03-2010 30-06-2010: TS detector ATLAS.
- (2,5) 05-07-2010 15-09-2010: TS futuros colisionadores.
- (57) 16-09-2010 09-06-2015: TS CPAN.
- (6,5) 10-06-2015 31-12-2015: TS ATLAS Tier2.
- (36) 01-06-2016 31-05-2019: PTA 2014.

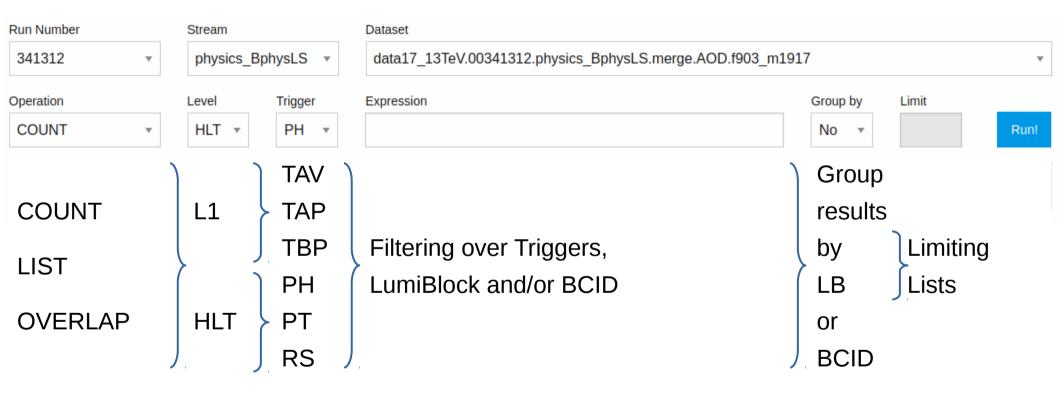
10 Years!!!

of service, work, experience and proved value, though instability continues...

What is the trigger?

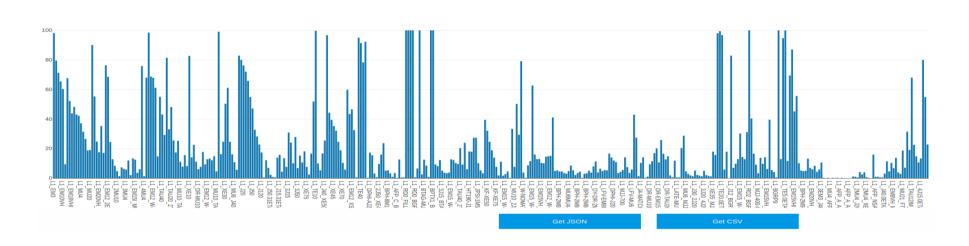
- A trigger component represents a relevant condition that an event either satisfies or not:
 - L1: Signals with some threshold at the detector, depending on the detector configuration (SMK).
 - HLT: Software conditions, i.e. logical composition of L1 triggers.
- There are several arrays of trigger components for each level:
 - L1: TAV ⊆ TAP ⊆ TBP. Less than 512 possible trigger components per SMK.
 - HLT: PH, PT, RS. Less than 4096 possible trigger components per SMK.
- The trigger decides whether an event is permanently stored on disk/tape or just discarded.

What is AEI Trigger Counter? What does it do?

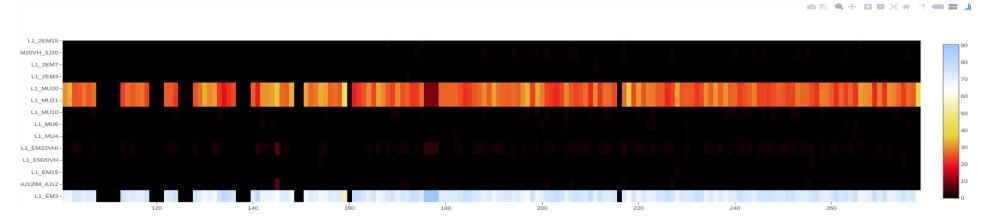

- AEI Trigger Counter is a web service to provide meaningful information about the L1 and HL Trigger of datasets in a "human time" scale.
- It can COUNT, LIST and OVERLAP a particular trigger of a given dataset
 - Can filter by logical expression based on triggers, LB and/or BCID.
 - Expression is converted into Reverse Polish Notation and it is evaluated.
 - Can group results per LB and BCID.
- A map-reduce task runs and its results are collected, cached, and offered in up to three different formats:
 - An interactive plot is drawn when not listing.
 - The user can always download a CSV file with the results.
 - The raw data in JSON format is always offered to further process it, as it is done by the plot.

AEI TC Web Service

https://ei-atlas-dc.cern.ch/tc/



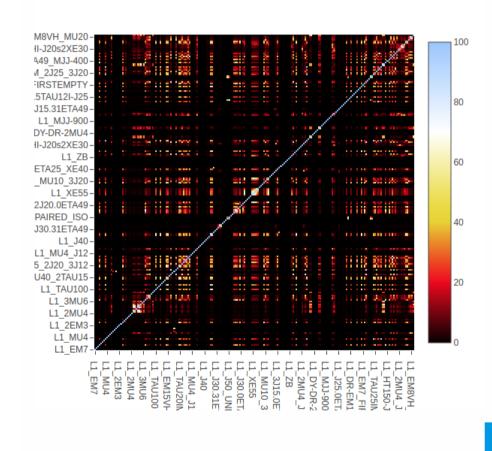
COUNTing Triggers


Results of 8e7f6deb-4180-4d17-884e-0ce058c574b6

COUNT TBP from data17_13TeV.00327103.physics_Main.merge.AOD.f832_m1812 where L1_EM3 or L1_MU21

Results of 84807e84-55db-469d-87af-5cc9595d9b59

COUNT TAV from data17_13TeV.00327103.physics_Main.merge.AOD.f832_m1812 where L1_EM3 or L1_MU21 group by LumiBlock



OVERLAPing Triggers

Results of 58668579-dc70-46bd-b685-1dfd87a1b800

OVERLAP TAV from data17_13TeV.00327103.physics_Main.merge.AOD.f832_m1812 where not(L1_EM3 or L1_MU21)

Get JSON

Get CSV

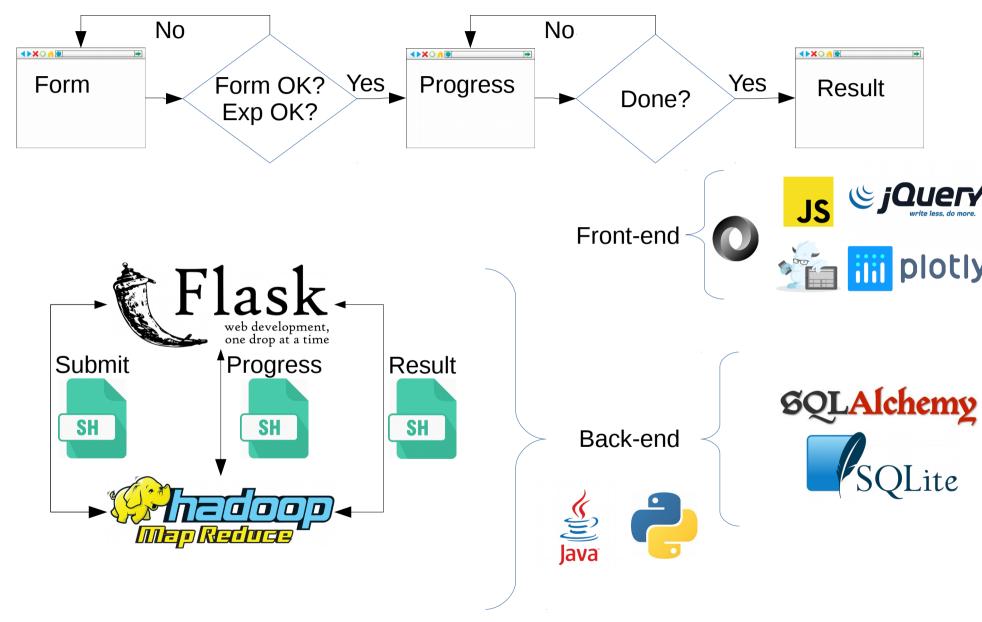
Behind the Scene

- The amount of data to store is huge and the way it is processed should not take long, but be responsive.
- We store trigger information in compressed Sequence Files using some tricks to further reduce their size.
 - Sequence Files: containers that contain data in key and value format.
 - The files contain minimal information of the trigger based on its properties, creating a file format which is very compact.
 - Their process can be highly parallelizable.
- A MapReduce task runs over a Sequence File.
 - Process information in parallel.
 - The process occurs where the information is stored:
 - · No transfers.

What does "big data" means for us?

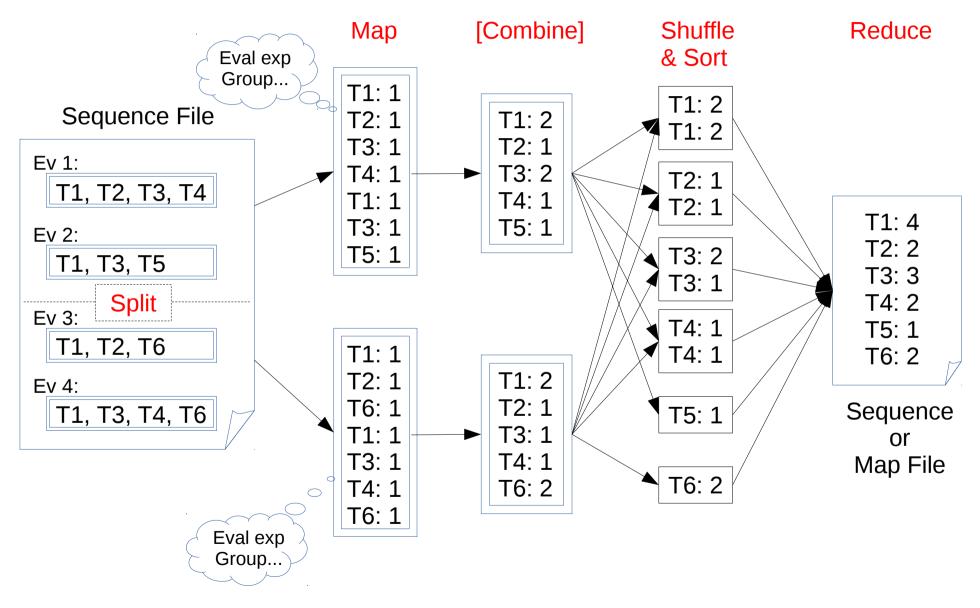
- Above 10 billion real events.
- Up to 175 million events into a single dataset.
- 1725 datasets that belong to 2017 real data

- HLT: 367 GB


- L1: 518 GB

- 375 Runs for several streams:
 - physics_Background
 - physics_BphysLS
 - physics_CosmicCalo
 - physics_Main
 - physics_MinBias
 - physics_ZeroBias

Workflow & Tools



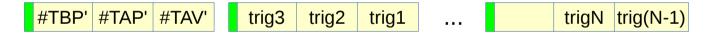
MapReduce

HDFS L1Trigger File Format

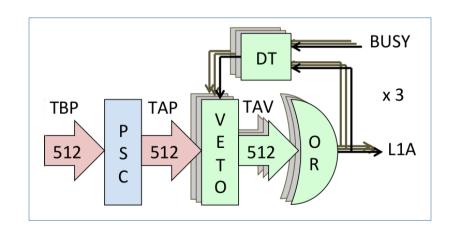
SEQ file with:

Key: <LongWritable>

EventNumber


Value: <BytesWritable>

LB BCID


L1Trigger

Less than 512 possible triggers, i.e. enumerating triggers, a trigger can be represented as 9 bits

- LB and BCID are uint32
- L1Trigger is a collection of packed 10 bits triggerNumbers into 32 bit words:

Since TAV ⊆ TAP ⊆ TBP :

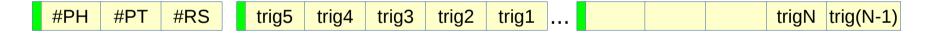
HDFS HLTrigger File Format

SEQ file with:

Key: <LongWritable>

Value: <BytesWritable>

EventNumber


LB BCID

HLTrigger

Less than 4096 possible triggers, i.e. enumerating triggers, a trigger can be represented as 12 bits

LB and BCID are uint32

HLTrigger is a collection of packed 12 bits triggerNumbers into 64 bit words:

There is no inclusion between HLT sets, therefore all triggers have to be stored

Backup Slides

Trigger Counter Web Interface

Run Number Stream	Dataset							
334955 ▼ physics	_Backgrour ▼ data17_13TeV.003349	data17_13TeV.00334955.physics_Background.merge.AOD.f863_m1865						
Operation Trigger	Expression	Group b	y Limit					
COUNT TAV T		Nothir	ng ▼					
Show/Hide Triggers			-					
0: L1_EM3	1: L1_EM7	2: L1_EM12	3: L1_EM8VH					
4: L1_EM10VH	5: L1_EM15VHI_2TAU12IM_4J12	6: L1_EM15	7: L1_EM15VH					
8: L1_EM18VHI	9: L1_EM20VH	10: L1_EM20VHI	11: L1_EM22VHI					
12: L1_EM3_EMPTY	13: L1_EM7_EMPTY	14: L1_MU4	15: L1_MU6					
16: L1_MU10	17: L1_MU21	18: L1_MU20	19: L1_MU4_EMPTY					
20: L1_MU4_FIRSTEMPTY	21: L1_MU11_EMPTY	22: L1_MU4_UNPAIRED_ISO	23: L1_2EM3					
24: L1_2EM7	25: L1_2EM10VH	26: L1_EM20VH_3J20	27: L1_2EM15					
28: L1_2EM15VH	29: L1_EM7_2EM3	30: L1_EM12_2EM3	31: L1_EM15VH_3EM7					
32: L1_2MU4	33: L1_2MU6	34: L1_2MU10	35: L1_2MU20_OVERLAY					
36: L1_MU10_2MU6	37: L1_MU11_2MU6	38: L1_3MU4	39: L1_MU6_2MU4					
40: L1_3MU6	41: L1_4J15.0ETA25	42: L1_EM15I_MU4	43: L1_2EM8VH_MU10					
44: L1_EM15VH_MU10	45: L1_TAU12	46: L1_4MU4	47: L1_TAU12IM					
48: L1_TE15.0ETA24	49: L1_TAU20	50: L1_EM12_W-MT25	51: L1_TAU20IM					
52: L1_TAU100	53: L1_TAU30	54: L1_TAU40	55: L1_TAU60					
56: L1_TAU8	57: L1_TAU8_EMPTY	58: L1_TAU20IM_2TAU12IM	59: L1_TAU20_2TAU12					
60: L1_EM15VHI_2TAU12IM	61: L1_EM15VHI_2TAU12IM_J25_3J12	62: L1_EM15VHI_TAU40_2TAU15	63: L1_MU10_TAU12IM					
64: L1_MU10_TAU12IM_J25_2J12	65: L1_EM7_MU10	66: L1_MU6_EMPTY	67: L1_MU10_TAU20IM					
68: L1_XE10	69:	70: L1_TAU20IM_2TAU12IM_J25_2J20_3J1	71: L1_J25_2J20_3J12_BOX-TAU20ITAU12I					
	L1_EM20VHI_TAU20IM_2TAU20_J25_3J20							
72: L1_DR-MU10TAU12I_TAU12I-J25	73: L1_MU10_TAU12I-J25	74: L1_TAU20IM_2J20_XE45	75: L1_J15.31ETA49_UNPAIRED_ISO					
76: L1_TAU60_DR-TAU20ITAU12I	77: L1_EM12_W-MT35_XS30_W-15DPHI-	78: L1_EM15VHI_2TAU12IM_XE35	79: L1_EM12_W-MT35_XS40_W-05DPHI-					
	JXE-0_W-15DPHI-EMXE		JXE-0_W-05DPHI-EMXE					
80: L1_EM12_W-MT35_W-90RO2-XEHT- 0_W-15DPHI-JXE-0_W-15DPHI-EMXE	81: L1_MU10_TAU12IM_XE35	82: L1_TE50	83: L1_TAU20IM_2TAU12IM_XE35					

Trigger Counter Web Interface: Progress of a Task

Processing request 65759aa1-c976-487b-a948-e4ef58b64b97

COUNT TAV from data17_13TeV.00334890.physics_Main.merge.AOD.f863_m1865

Task State: RUNNING
Task Final State: UNDEFINED

- User has output of the progress of its request, which refresh every 10 seconds.
- Map-reduce 'state' and 'finalStatus' are shown.
- If the task succeeds, the page redirects to the results.
- Trigger Counter caches the tasks, avoiding multiple runs of the same task.

Trigger Sizes and Compression

Typical trigger counts and final Lz4 size in bytes per event:

dsname		TAP/e	TAV/e	TBP'/e	TAP'/e	TAV'/e	totTrig	lz4
data17_13TeV.00331951.physics_Background.merge.AOD.f848_m1844	13.1	10.6	1.1	2.4	9.6	1.1	13.1	15.6
data17_13TeV.00333994.physics_BphysLS.merge.AOD.f859_m1860	62.3	45.3	6.4	17.1	38.8	6.4	62.3	53.6
data17_13TeV.00324839.physics_CosmicCalo.merge.AOD.f823_m1799	7.2	4.6	1	2.6	3.6	1	7.2	11.2
data17_13TeV.00335302.physics_EnhancedBias.merge.AOD.f869_m1870	49.5	34	3	15.5	31	3	49.5	46.4
data17_13TeV.00326923.physics_Late.merge.AOD.f832_m1812	11.4	7.8	3.8	3.7	4	3.8	11.5	12.4
data17_13TeV.00327761.physics_Main.merge.AOD.f832_m1812	84.6	57.8	8.8	26.8	49	8.8	84.6	67.6
data17_13TeV.00334191.physics_MinBias.merge.AOD.f859_m1860	9.4	5.4	1	4	4.4	1	9.4	12
data17_13TeV.00324857.physics_ZeroBias.merge.AOD.f823_m1799	21.9	20.4	1	1.4	19.4	1	21.8	23.2

Compression ratios:

- Deflate 3.0
- Bzip2 4.5
- Lz4 1.9
- Snappy 1.8

⇒ LZ4 has been chosen because:

- It offers a good compression ratio.
- It is fast on decompression.