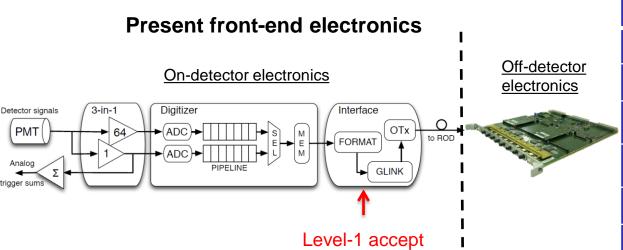


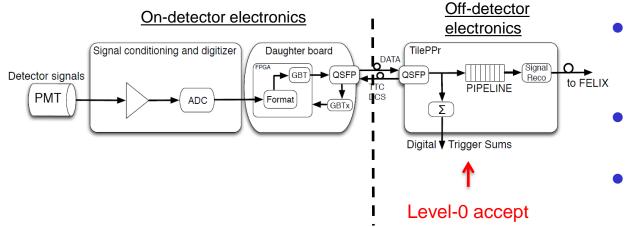
Readout Electronics for the ATLAS Tile Calorimeter at the HL-LHC

Jornadas Técnicas – Instituto de Física Corpuscular
Fernando Carrió Argos
Alberto Valero Biot
Francisco García Aparisi

Introduction

- Our TileCal electronics group:
 - Fernando Carrió Argos
 - Electronics Engineer with PhD
 - Personal Técnico de Apoyo (2015) (UV)
 - Alberto Valero Biot
 - Electronics Engineer with PhD
 - Titulado Superior Especializado (2011) (CSIC)
 - Francisco García Aparisi
 - PhD student in Electronics Engineering (2017) (UV)
- Main tasks in the Upgrade:
 - Complete design and production of the back-end electronics for the TileCal Upgrade → Tile PreProcessor
 - High speed board design up to 16 Gbps
 - Firmware for FPGAs: Data acquisition, detector control system, energy reconstruction, synchronization and high speed links
 - Contributions to the development of DAQ software
 - Coordination of the TileCal Upgrade project



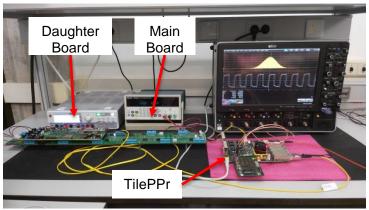

Tile Calorimeter Phase II

	Present	Phase II
Total BW	~205 Gbps	~40 Tbps
N. Fibers	256	4096
BW / module	800 Mbps	160 Gbps
Nb. boards	32 (ROD)	32 (TilePPr)
Nb. crates	4 (VME)	4 (ATCA)
Out BW / board _{DAQ}	2.56 Gbps (ROS)	40 Gbps (FELIX)
Out BW / board _{L1/L0}	Analog	500 Gbps

Equivalent electronics for Phase II Upgrade

- Front-end electronics transmits all the samples@LHC frequency
- Pipelines are moved to the back-end electronics (TilePPr)
- Clock is distributed from the back-end electronics

TilePreProcessor Demonstrator



Design of the TilePreProcessor Demonstrator

- Double mid-size AMC (µTCA / ATCA carrier)
- Xilinx Virtex 7, Kintex 7, 4 QSFPs
- 1/8th of the final PreProcessor
- 4 mini-drawers → one module
- 8 Tile PreProcessor were produced between 2015 and 2017
 - Installed in different setups: University of Heidelberg, University of Texas at Arlington, University of Stockholm, CERN and IFIC
- Qualification tests were done with a standalone testbench at IFIC
 - Clocking circuitry, Ethernet communication, TTC reception, power configuration
 - Optical jitter measurements with Keysight DCA-X86100D oscilloscope
 - Bit Error Rate Tests: BER better than 5-10⁻¹⁷ for a confidence level of 95%

TilePPr Demonstrator

Complete testbench

TilePPr prototype

- Hardware design between 2013-2014
- First prototypes delivered at the end of 2014
- Double AMC form factor (ATCA)
 - Dimensions: 148.5 mm x 180.6 mm

2 x CDR IC

DDR3 512MB

ADN2814

Clock/data from TTC

PCB stack-up: 16 layers

Dielectric Nelco N4000-13: low dielectric losses

Two high-performance FPGAs

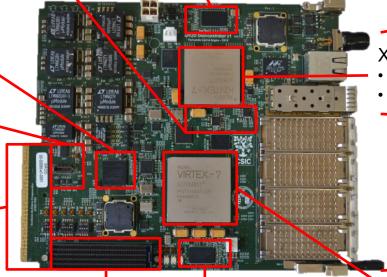
4 QSFP modules: 160 Gbps

Avago MiniPOD: 120 Gbps

Backplane: 40 Gbps

320 Gbps

Xilinx Spartan 6


Slow control capabilities

Module Management Controller (MMC)

 Power connection management

AMC connector

- 12 V power connection
- High-speed communication path

TTC input
Xilinx Kintex 7 FPGA

- XC7K420T
- 28 transceiver@10 Gbps

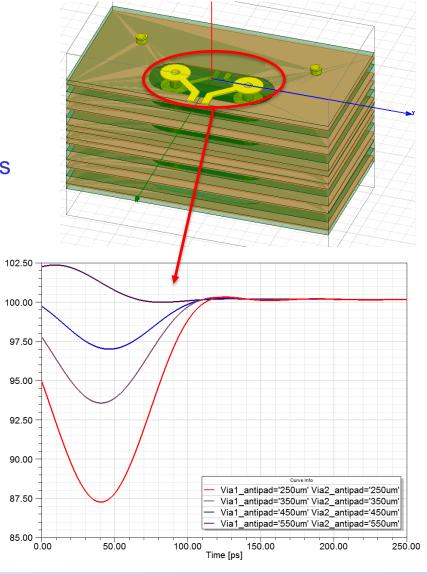
4 QSFP modules (16 links) Up to 160 Gbps

FMC connector

 Expansion functionalities DDR3 512MB

Xilinx Virtex 7 FPGA

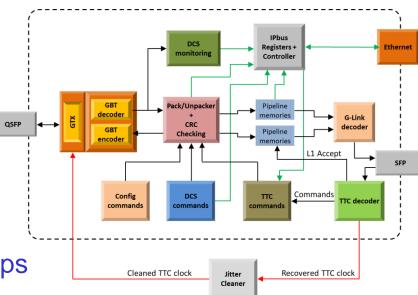
- XC7VX485T
- 48 transceiver@10 Gbps

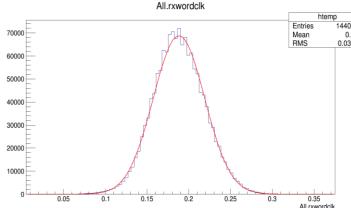


Layout design

 Signal and Power Integrity simulations with ANSYS tools: HFSS, Slwave

- Design of over 10 Gbps lines
 - Differential and characteristic impedances
 - Supression of impedance discontinuities
 - Via design, DC-coupling capacitors
 - Pre- and post-layout signal integrity studies to evaluate the total jitter
- Power Distribution Network design
 - Low noise design
 - Simulation of the decoupling stage for adequate capacitor selection
 - Simulation of voltage drops due to high currents (IR drops)





Firmware

- Development of the TilePPr firmware
 - Encoder / decoder modules, DCS, TTC decoder, G-Link emulator, IPBus, etc...
 - Three different readout paths: FELIX,
 G-Link (ROD), Ethernet port (IPBus)
- Implementation of 16 Latency Optimized
 GBT links operating at 9.6 Gbps / 4.8 Gbps
 - Fixed and deterministic latency → latency variations below 100 ps between resets
- Development of new phase measurement techniques based on subsampling and oversampling
 - Monitoring of the phase drifts due to temperature changes or latency variations
 - Accuracy ~30 ps_{rms}

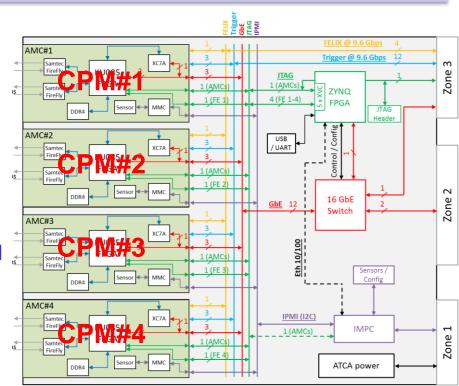
Histogram of the phase difference between the LHC clock and the received clock from the DBs (nanoseconds)

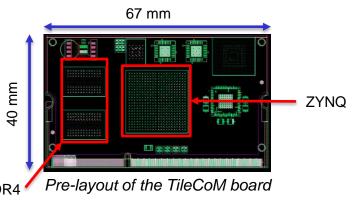
Testbeam campaigns

- Five campaigns of 2 weeks between 2015 and 2017
 - Two TilePPr Demonstrator boards
- Three detector modules instrumented with legacy and upgrade electronics
 - 1 Long and 1 Extended module with legacy electronics
 - ½ Long module with the upgraded 3-in1 option readout electronics (Demonstrator)
 - ½ Long Barrel module with FATALIC and QIE options
- Valencia group is highly involved in the operation and

data taking of the Demonstrator

- Demonstrator is fully integrated with the TDAQ software and legacy systems
- Two more testbeams during 2018
 - TilePPr operation from the ATCA shelf
 - Integration of the FELIX with the TDAQ
 - Tests with the final TilePPr board





Final PreProcessor Prototype

- Full-size ATCA blade (carrier + 4 AMCs)
 - Up to 1.6 Tbps of aggregated bandwidth
 - Scalability and latency
 - Connectivity through Zone 2 connector
- 16 GbE Ethernet switch module
 - Broadcom GbE port switch
 - Connectivity between AMCs, blades and SM
 - DDR3 SODIMM form factor
- Computer on Module (TileCoM)
 - Xilinx ZYNQ XCZU2CG
 - DDR4 memory, flash memory, clocking
 - Diagnostics, monitoring, remote programming
- IPMC mezzanine board Designed by CERN
 - Hot swap, sensor monitoring, power management
 - DIMM-DDR3 VLP form factor

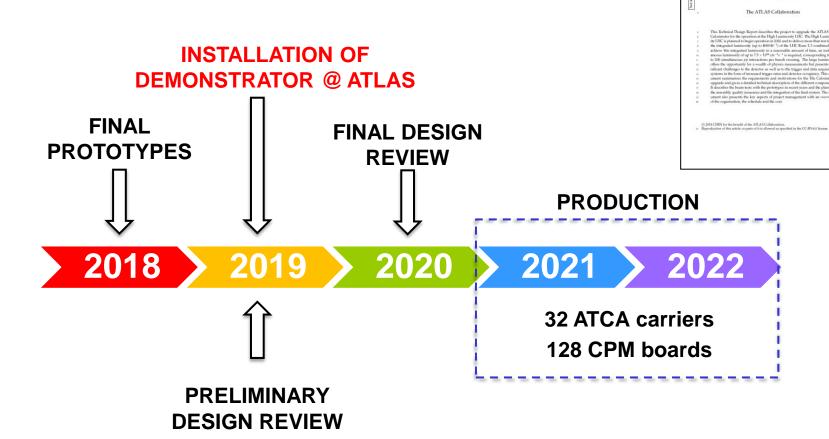


Compact Processing Module

- Each CPM will readout and operate 2 modules
- Single AMC form factor
- 8 Samtec Firefly high-density optical connectors (up to 32 links) – 400 Gbps
- Kintex UltraScale KU085 FPGA
 - Data reception, clock distribution + commands, reconstruction algorithms
- Artix XC7A35T FPGA → Prototype working
 - Clock configuration, remote reset, etc
 - Phase stability monitoring tools
- First prototypes expected for summer 2018

4 x Samtec FireFly modules connected to 2 MPO connectors

Artix FMC prototype


Milestones

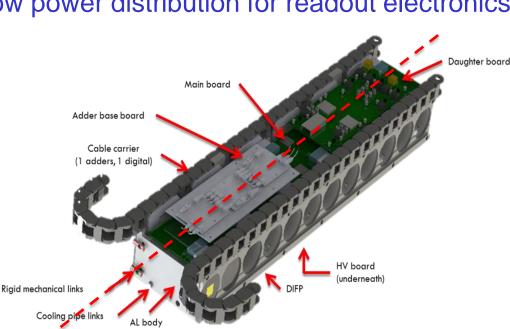
ATL-COM-TILECAL-2018-003

ATLAS Tile Calorimeter Phase-II Upgrade Technical Design Report

Technical Design Report approved in March!

Gracias por su atención

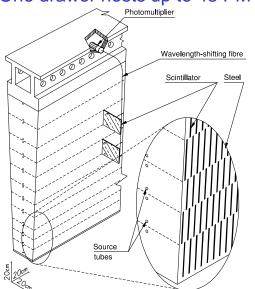
BACKUP

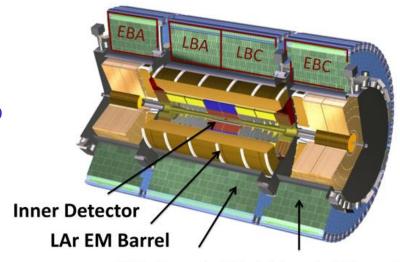

Upgraded front-end electronics

Wavelength-shifting fibre

- New mechanics and extraction tools
 - Allow access in reduced detector standard opening
- Each module hosts 4 mini-drawers:
 - 12 PMTs + 12 Front-End cards (3-in-1 cards)
 - 1 MainBoard + 1 DaughterBoard
 - 1 HV regulation board: <u>Internal or Remote option</u>

1 LVPS: low power distribution for readout electronics

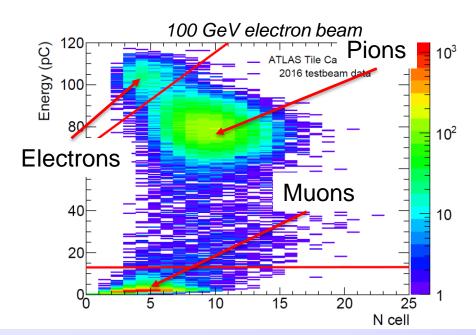


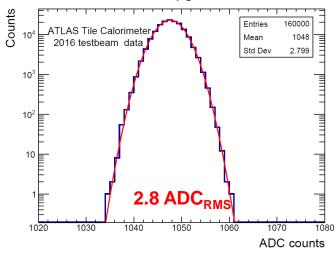


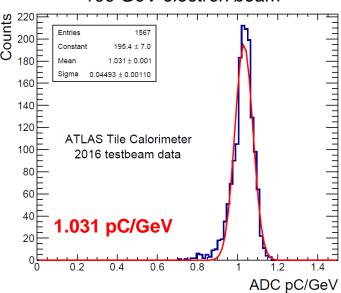
Tile Calorimeter

- Measures energies of hadrons, jets, τ -leptons and E_T^{miss}
- Segmented calorimeter of steel plates and plastic scintillator tiles which covers the most central region of the ATLAS experiment (up to $|\eta|=1.7$)
- 4 partitions: EBA, LBA, LBC, EBC
- Each partition has 64 modules
 - One drawer hosts up to 48 PMTs

Tile Barrel Tile Extended Barrel


- Scintillator tiles are read out using wavelength shifting fibers coupled to PhotoMultiplier Tubes (PMTs)
- Around 10,000 readout channels


Testbeam Results


- Characterization of the electronics performance
 - Robustness and stability of the system
 - Electronics noise in PMT signals
- Extense physics program
 - Study response to muons, electrons and hadrons with different energies
 - Beam positions at 20°, 90° and η positions

Pedestal run with the upgraded 3in1 card

100 GeV electron beam

PMT

block

block

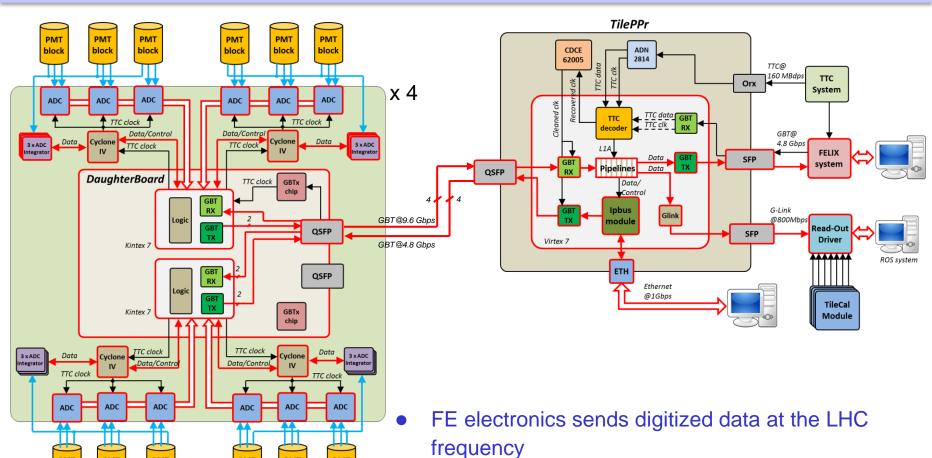
PMT

block

PMT

block

PMT


block

PMT

block

Clock and dataflow in the TB

- Samples and monitoring data are transmitted
- Two independent readout paths through the TilePPr
 - FELIX system prototype
 - Legacy Read-Out Drivers