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The Atomic Nucleus

The atomic nucleus is a complex fermionic system, based on two
different particles, interacting via an effective force strongly influenced
by in-medium effects.

Nuclei are small enough that the quantum nature of its constituents

determines its properties but large enough that macroscopic features
begin to evolve.

Nuclei have been the traditional objects for studying mesoscopic (many
body) phenomena, as well as Open Quantum Systems in the limits of
stability.



Nuclear Collectivity

Examples of Nuclear Shapes
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Efficient y-arrays
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Some Scientific Topics

Organization of Nuclear Matter and Emerging Phenomena. In-media
Fundamental Interactions, Origin and Evolution of Nuclear Matter

Attractive  relative  Repulsive

*Shell Structure Far From Stability: large nucleon asymmetry ., moton
lead to shell modifications driven by the spin-isospin nucleon- ( v <N <’ e
nucleon interaction and close to the drip-line by the weakening \\:_2 NS
of the spin-orbit interaction i< B i> B

_T#f_ *Three Body Forces: testing the role of three nucleon (3N) forces in
e 3N the microscopic description of the atomic nucleus. Indications of
_ee/ 2™®S  important role in the vicinity of proton as well as neutron drip-lines.

0(6) Su(3)

*Nuclear Shapes: coexistence of different nuclear shapes, o \
Large deformation, high-rank symmetries, phase transition, ) o J X(5)

dynamic and critical point symmetries.

u(5)
*Spin-isospin Response Of Nuclei: out-of-phase density oscillations
of the neutron and proton fluids provided information on macroscopic

nuclear properties associated with isovector fields.

«Nuclear Matter Appearance and Evolution: nuclear astrophysics,
explosive scenarios and the rp-process, the origin of the elements
heavier than Iron and the r-process

«and Clustering in Nuclei, New forms of nuclear pairing, In-Media isospin breaking
interactions, Study of Open Quantum Systems, etc ...




In-Beam Spectroscopy Key Aspects

*Direct detection of the “prompt” de-excitation y-rays emitted
by the nucleus of interest

*The nucleus to be studied “must” be in a excited state:
—The nucleus can be created in a excited state or
—The nucleus must be excited during the reaction process

*The detection system are installed around the reaction point

—Key factors are Efficiency, Peak-to-Total, i.e. signal-to-noise and
Selectivity.

—Reaction rates could by limited by the detector counting rates limit.

*In addition to the y-ray detector, frequently, complementary
detectors and devices are necessary to improve selectivity or
to perform a particular measurement.



In-beam Experiments and Nuclear Structure
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How to Produce Excited or
Excite a Nucleus?
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Types of Nuclear Reactions ©
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Low Energy reaction mechanisms used

inelastic scattering

(Coulex)

fusion-g

o QE to DIC
elastic Eﬁutherﬂ:lrd]\
scattenng

Uir)

Coulomb
part of
potential

nuc.
pot.

r

B=Zz¢?*/R

Smaller impact parameter “b”

for y-Spectroscopy (up to ~10 MeV.A)

-Coulomb excitation
and Inelastic scattering.

*Transfer and quasi-elastic
processes (p,n capture...).

Multi-nucleon transfer.
*Deep Inelastic Collisions.
Quasi-fusion reactions.

*Fusion with light particles
evaporation .

*Fusion with evaporation of
Massive Fragments (IMF)

Fusion-fission

Cross sections up to few barns
typically from tens of mb to ub



Example: FUSION-EVAPORATION REACTIONS
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Example: GRAZING REACTIONS
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Example: Spectroscopy with Fusion-Evaporation Reactions
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Example: Spectroscopy with neutron Inelastic Scattering
0Zr(n, n’ )0Zr*

Neutron energy:
2 to 12 MeV

States identified up to J~6
and ~6 MeV excitation energy

P.E. Garrett, et al., Phys.

Rev. C 68, 024312 (2003)
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Example: Spectroscopy with neutron Inelastic Scattering
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High energy reaction mechanisms used
for y-Spectroscopy (above ~40 MeV.A)

Generally used with exotic ion beams produced by fragmentation
or fission at relativistic energies

T-decay
of excited states

=) Relativistic (single step) Ol

Coulomb excitation o

m=) Inverse proton scattering @—b

™) Knockout reactions Recoil

m om eninm

=) Fragmentation reactions Knockout reaction

Cross sections :

- up to1 barn for Coulex (large Z nuclei)

& @
& —> " -

- tens of mbarn for proton scattering and Projectile °e
1 nucleon knockout, Light target
- down to few mb for 2 nucleons knockout. Fragmentation reaction

- smaller cross sections for fragmentation



Yields from Cross-Section Estimates

*The Cross-Section estimate o is given in barn @
i.e. 1022 m2 = 100fm f
Geometrical
*The yield of a reaction is proportional to the  cross-section
Cross-section, the number of atoms in the mR1+R2)
target and the atoms per second in the beam:
—Cross-section are given in barn’s (10-2cm?)
—Target thicknesses are usually given in mg/cm?

—The beam intensity is given in particles per second
(pps) or in particle nA (pnA).

cm?2
. . N . B
Mol weight (g) eam( S

)

cm? Target ( - ) Atoms
barn

yield = o (barn) - 10‘24<

The production cross-section does not imply that a
transition or particular phenomena will be observed with
such intensity, e.g. superdeformed bands 1/100 yield



Further Information on Reactions
Cross-Section Determination:

Inelastic, Transfer Reactions, Grazing etc...

 http://nrv.jinr.ru/nrv/

GOSIA (Coulomb excitation

 http://www.pas.rochester.edu/~cline/Gosia/

Fusion-Evaporation Reactions

« PACE in LISE++: http://lise.nscl.msu.edu/lise.html

« HIVAP: W. Reisdorf, Z. Phys. A 300, 227 (1981)

Relativistic Coulomb. EXxcitation

« DWEIKO: C.Bertulani et al. Comput. Phys.
Commun. 152 (2003) 317.

Fragmentation, Knock-out etc..

« LISE++: http://lise.nscl.msu.edu/lise.html



What Can We Measure?



Electromagnetic decay

* There are three types of electromagnetic “ w’
decay, y-ray emission, internal conversion P "
(IC) and pair production (E>1.02MeV).

- In electromagnetic decays AN=AZ=AA=0, ~ ",
with just a lowering of the excitation o om . 2m
energy of the nucleus.

* In y-ray emission, the emitted photons are
mono-energetic and have an energy TF iy Intemel convrsio
. Y — electron spectrum
corresponding to almost all of the energy zoiswe| ™. K
difference between the final and initial 2 —
state of the system. 203

A

Ly

Tl

Internal
conversion
_ electrons

4

N(Ey)

< <4+—«¢
[\S]
Electron counting rate
|
}
!
/r‘
—




y-ray Coincidence Analysis

B El E2

Ccts

*With two or more detectors
it is possible to create
two or higher dimension
histograms.

*The 1D projection with a
condition in one of the axis
provides the spectrum of y-
rays “in coincidence”.

*The “coincidence’
relationships allow to
create the energy level
scheme of the nucleus for
a particular reaction.

Transitions in Coincidence with E2

The Compton
background is

as well in
Background coincidence with

> the transition
energy



Example Coincidence Analysis in Fusion-Evaporation Reactions
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Electromagnetic Decay

 The initial and final states have a definite angular
momentum and parity. The photon carries away a ‘(11- _ If)‘ < (< (Ii +1f)7l
definite amount of angular momentum. Angular
momentum and parity must be conserved. A photon with ( units of
* Multipolarity is a measure of the angular momentum
carried away by the photon.
 Transitions are classified as electric or magnetic
based on whether the radiation is due to a shift in the =1= dipole
charge distribution or a shift in the current distribution. *=2= quadrupole
« Based upon the type of operator involved in the £=3= octupole
transition, there are restrictions on the parity change
In the transition.

angular momentum

is called a 2'-pole photon.

TABLE 9.1 +v-Ray Selection Rules and Multipolarities

Radiation Type Name .= AJ A
El Electric dipole 1 Yes
M1 Magnetic dipole 1 No
E2 Electric quadrupole 2 No
M2 Magnetic quadrupole 2 Yes
E3 Electric octupole 3 Yes
M3 Magnetic octupole 3 No
E4 Electric hexadecapole 4 No
M4 Magnetic hexadecapole 4 Yes




Exam ple Pyg my Resonances Dobaczewski, Hamamoto, Nazarewicz and Sheikh,

Acta.Phys.Pol. B25 (1994) 541

| ‘SoSmso [ '50Snes .
s Calculated one-nucleon densities
— 2 | ——  neutrons !
———-  protons |
& 0.00 : e N '
= e Static distributions of charges and
%= currents give static electric and magnetic
fields.
0.05 These fields can be analyzed in terms of
the multipole moments of
500 the charge distribution (dipole moment,

r (fm)
e.g. -charge oscillating along one axis: produces an electric dipole radiation field
-variation of the current (circular current loop): a magnetic dipole radiation field

Weisskopf estimates: The transition is due to a single proton that changes from
one shell-model state to another: EL/ML electric/Magnetic transition probability.

2L+1 2

8a(L+1) & (E) [3

cR*

MEL) =
0 L{eL+1)"f 4mehe

_ 8a(L+1) 1LY e’
G YA (” ’ L+1) [mpc](4irsohc)

2L+1 2

E 3 cR22
fic L+2

hic

L+3

quadrupole moment, and so on).
See Krane Section 3.5

MED =1.0x10"4"E>  AM1)=5.6x10"E’
ME2)=73x10"A*°E>  A(M2)=3.5x10" 4*"E’
ME3)=34A4E’ AMM3)=164""E’
ME4) =1.1x107 A*°E®  A(M4)=4.5x10"4’E’



Electromagnetic emission from
Oriented Nuclei: Angular distributions

_ Z,.,0) = 1/4n{l + 1/2 P,(cos0)}
substate alignment

after evaporation )
p T reaction plane \
O/J ‘<_,_ "_;~?_ >\ /

beam direction

E{EII
H M1l _
L0
|
Angular distributions and | Zas o t Zass o
correlations are only sensitive to F (v E IM2)
the multipolarity L % L N

Polarization measurements are |
more sensitive to Character . i




Measurement of the linear polarization

* y-rays emitted by oriented nuclei are partially polarized. The polarization vector is
different for E and M transitions (character)

*Compton scattering can be used to measure the degree of polarization through
the dependency with the polarization vector

do.. r’(E\[E E » , ¢ :angle between the
) “ 4| E 5 + % — 2sin” Bcos” @ scattering plane and the
initial polarization plane
polarisation plane scattered
photon
E

incoming
photon

: scattering plane

1
P,(0) =
(0) 0

» 4 clectron )
Experiments measure the asymmetry.

0 is the sensibility of the polarimeter

Stretched EA transitions will

Clover detector

horizontal have positive asymmetry
5 v Stretched MA transitions will
.8 have negative asymmetry

target

L.M. Garcia-Raffi et al., NIM A 391 (1997) 461



Forbidden E1 transitions in %4Ge
between states with T=0

Studying the violation of isospin
symmetry induced by the Coulomb £ .o et al. Phys. 5373
interaction is the observation of E1 | ett. B (2002) in press.

transitions in even—even N =7 5
nuclei. In the long-wavelength limit, 325 + 40Ca 125MeV - B
€]
N

the matrix elements of the nuclear
E1 operator vanish when both the
initial and final states have equal

isospin {T and Ti= 0

A

;: I .-cf:"ijr

;"'-\-; III_.U' jll.l_.-

’: | “=-"R;j' 2 | o/ +1
R



BEAM
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The 1665 keV transition mixed E1/M2 character ~93% quadrupole contents



Techniques for lifetime measurements

Direct GRID FEST— Electronlc

Methods RFD
DSAM RDDS RSAM
0 12

>

| |
10-18 K 10" 10 T (s)
NRF \
Indirect Coulex
Methods GRID: Gamma ray induced Doppler broadening

_ RFD: Recoil straggling method
Doppler Techniques / DSAM: Doppler shift attenuation method
Eem, =E,(1-Bcos®©)/(1-B%)*7] RDDS: Recoil distance Doppler shift method

RSAM: Recoil shadow anisotropy method
/\/\/\/\/\/\NVWV\’ FEST: Fast electronic scintillation method
NFR: Nuclear resonance fluorescence

Velocity ) Coulex: Coulomb excitation cross section



Doppler Shift Attenuation Method
t=0.1-15ps

j | T ]
0 ol E-EHi in m?.lﬂl.l..l {ﬂj .
= uiz0.05 o, d520, 14uj)z1.07psec §
- e Evyp =1MeV, &y,=0° ‘:
e \ BE = 2.5 keV i

0.

1L )
= O7E ’ﬂ'l‘] =
] = |{ \ Q =
Fad f -
= | - ]
Target Backing Z | ot 0.7 J .
10-2 = I i /-"?C_-__“'__ _1_'1.“—' E
ve v(t) from Monte Carlo - Ji' ",J," =
simulation with stopping power : % i j N
- I —_— -
-dE _ (4nz°e*NZ) I (2m0V2) '||'_'r3L—- P T ’
dx myV* 4 I = [ ] s
= ! =
L o — -
“]-i | 1 | [l
1000 W00 020 030 1040
It GAMMA-RAY ENERGY (keV)
T =T

Line shapes for °8Ni stopped in °7Au
o — o - with a beam velocity of v/c=0.05 and
E, P E, E, o E, measured at 0=0°




Recoil Distance Doppler Shift Method

T=1ps - 3ns
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How Can We Measure It?



Interaction of the y-rays with matter

~ 100 keV ~1 MeV ~ 10 MeV Y-ray energy
Photoelectric | Compton Scattering | Pair Production
511
ﬂ \ E
; . Ey
@ ! - | Ey- 1022

511

1+ Eyz (1-cos0)
m,C




Instrumentation for HR y-ray spectroscopy

High resolution y-ray spectroscopy = large volume semiconductor detectors
in particular detectors based on HP-Ge (impurities ~10-12)

Present Ge -
>2 kg/crystal - o
r
P-Type
HP & Ragiation 7,
TIIITY |
GEM HPGe Crystal g -
04 Microns 2
N-Tyjpa &
HPGe |  RAadisticn ?
) |~ 3
| E s
I
— — o ———— —-—'j
EAMMA-X Crystal

Very Thick Contact ~800 Mic r
= — = Vairy Thin Comiact 0.3 Micm

L~
o

%tens
~ keV
' E L LUl L 1% L

I IHIIII'| 1T

\

= PHOTOELEC TR

mg
L = COMPIDR
\L'-!--PE- FF = PR PRODUCTEON

(>2)

-;'.-C-IIP\:'.

RN l h.JIIII| Lot aaufl

faw
MgV

L1101
L

3000

i

ERER DY |

2000

Composite
detectors

Compton suppressed
Ge-detectors - arrays

JLE LN o

C -:-rn'|:-t|:r|
Edges

250
eV

Unsuppressed

Suppressed

oo a0

Bibliography: G.F.Knoll, Radiation Detection and Measurement (Wiley)



Germanium detector

Sensitivity factors: Energy Resolution, Peak to Total Ratio

conduction band e \ [ n-type Ge
electronsf)— ‘_/IL \\
*— p/ N

0.7 eV §3eV ‘7L \
| S |

signal signal
v+ HV

Number of e-h pairs for 1 MeV, N =10°/3 =3 x10°

Energy resolution W/N =0.0018 >1.8keV (E, = 1MeV)
(Fano Factor) y

valence band



Thermally activated charge carriers in the conduction band density at room
temperature ~ 2.5 103 cm™ for Ge (~ 1.5 10'° cm™ for Si)

To reduce the number of free charge carriers :
=> deplete material: np junction

=> increase depletion by applying a reverse bias
=> for Ge, cool detector with LN, - 77K

n- —r—y— +
XX 4 50 O P
t+_leoe . eeo e
o000 XX
00 n p
h p
signal -HV
2 = \\/2 2 2 2 — \
FWHM2 = W2, + W2, + W2 + W2 o
WD =2.35YV FSEY Statistical fluctuations of carriers s SRS | J\ W,
e =2.96eV @ 77 K Fano factor F ~ 0.1 =l "
(not all the deposited energy goes to create e-h pairs) g o 2 N
WX incomplete charge collection
WE electronic noise u 200 400 600 800 |olool 200 a4yool|6loo
Energy (keV)

W

doppler Doppler broadening



Doppler
Broadening

I —.—\rﬁﬂ

E, = E (1 + v/ccos0)

.
"'—-___L.ﬂlﬂ'l

300-
200 |

100Ww%ﬂwwwwﬁm%wmmemMWWWMﬂMMWWm%MMMMW¢WNMMNWMMMWM

mean velocity correction
<B>=2.8%

Counts

300 |
200 |
100

true velocity correction

1200 1400 1600 Energy [keV]

Dedicated ancillary detectors for the
determination of the recoil trajectory

300 ~

200

100

° {

AE, = E, v/csin A0

Development of
segmented Ge
detectors and
Pulse Shape
Analysis
techniques for
position

et determination

1199-91 MPIH




Composite detectors

=> Reduction of Ag, 30Si(158 MeV)+124Sn > 149Gd

v/ic=2.1%

—————— —
Phase 11

1600 -

 Eurogam ll
* Clovers:

- 4 crystals in 1 cryostat

FWHM =48 keV

1200 -

800 -

400

Number of counts

FWHM = 6.1 keV

 Euroball
e Clusters:

- 7 crystals in 1 cryostat y-ray energy (keV)




Electrical Segmentation of detectors

e Gammasphere segmented detector (2 Fold)

« Exogam at Ganil (Segmented Clover)
e Miniball at Isolde (Segmented




Signal-to-noise ratio and Compton
suppression

Background from Full-enargy
CO”imated event Complon Scattenng photo-peaks
| o —
’ _ J |
______ b T ¥ T b T T ¥ T v T
..
........ ‘ 8000}
1

60001

Photoelectric event

Counts

40001~

Ce

2000} !
Absorbed Compton event - o
. 0 200 400 600 800 1000 1200
........ Y Energy (keV)
® kg

P/T ~0.2-0.3 => 0.5-0.6

DR




HR y-Spectroscopy Instrumentation for Nuclear Structure

Late 90’s
Large y-Arrays

Tracking Arrays based on
Position Sensitive Ge Detectors

GA
V&

Compact y-Arrays optimized
Doppler correction, low My

Two Tracking Arrays projects:
GRETA (USA) & AGATA (EU)

e~40 —20 %
(M,=1 - M,=30)

e ~20 % m=1
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**Dfi** Tracking Array Benefits

AGATA

ADVANCED GAMMA
TRACKING ARRAY

Conditions: 71Compton Suppressed
*Low intensity for the nuclei of Q~40% -solid angle taken by
the AC shields

interest / require high sensitivity
*High background levels

.Large Doppler broadening
(specially in in-flight facilities)
*High counting rates (digital FEE) Q ~ 809 . -Position sensitive mode
*High y-ray multiplicities (Tracking) i using PSA

€ A . .
Correction of neutron damage ph ﬁ Large P/T using trac_klng
' B.Bruyneel EPJ A for y-ray reconstruction

49 (2013) 61

FWHM FWTM
1800 1.3MeV FWHM

large opening angle =

ph _
poor energy resolution

Tracking array
-Large solid angle

Doppler with
PSA +Tracking “ ®

s00 2:06 191

M0 244 183 /

)/ E.Farnea NIM A

Total Resolution: ‘ 621 (2010) 331

- Opening AO ’
::0 2.88 2.34 . Radial Rec0i| AB

« 20 1s dependency Intrinsic
of charge

trapping

2.51 1.83

»Determination of the

/ 1stinteraction position
*Minimum opening angle

/ for Doppler broadening

N

2.34 1.83

energy



Real potential _

Position Sensitive Detector for y-rays

Weighting

o Induced current by the moving

. charge in the sensing contact -
- weighting potential Ramo’s

Theorem. _ q‘7.§¢k(,,q)
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AGATA

ADVANCED GAMMA
TRACKING ARRAY

Highly segmented
HPGe detectors

Synchronized digital
electronics to digitize
(14 bit, 100 MS/s) and
process the 37 signals
generated by crystals

400

200

0

20

Readout Raw Data _
(10 kB/evt/crystal)

— HARDWARE -"=°Z

Global

Local

Event building
time-stamped data

level

Energies, times,
interaction points

(x,y,z,E,t),

I
Pulse Shape Analysis

of the recorded waves

-200
1]

[ o

-40
0

400

Gamma Tracking Array Concept

| — Loy L prrmeefpey | L
200 50 100 50 0 50 100 150

Reconstruction of
y-rays from the hits

Analysis &
correlation with
other detectors



Analogue vs Digital Electronics

Standard Arrays

Shaping o E
Detector V Amplifier » ADE s
(Germanium) | ¢ <
BN CFD == TDC —= |
MWD | —= i

O E
Detector | - i < LIL = >
(Germanium) | g TADE » DCFD I\ % I\ 'g J_IL
. I L 7l

Filters I\ I |

Segment | Detector | Array |




Energy with Digital signals: Moving
Window Deconvolution

‘removes shaping-effect of

a) charge . s ;
preamplifier lstnib: {gw A AT
=current signal recovered | %1——(_1__‘
calculates real collected propag. P It Jf__fJ: = _,.t
charge by integrating current |c)ceconmvor g o, = .
signal integration carried out | B I
within @ moving window to  |aichoree 4 - i
avoid summation of events R /\ e s
*noise-suppression by e)roise . @B H
averaging charge signal ronetton .
recursive algorithm TR T

G[n] = G[n — 1] + FADC[n] — k x FADC[n — 1] - FADC[n — L] + k x FADC[n — L — 1]
K = pre-amplifier response (e )

A.Georgiev & W.Gast IEEE Nucl. Sci. 40 (1993) 770



Energy with Digital signals: Moving

Window Deconvolutlon

‘removes shaping-effect of "l
preamplifier @
=>current signal recovered i
calculates real collected
charge by integrating current
signal integration carried out
within a moving window to
avoid summation of events
*noise-suppression by
averaging charge signal
erecursive algorithm

Preamplifier

Amplitude [current]

o

C ... charge
a,~ C/at
Po~ c

Averaging

Amplitude [charge]

o

G[n] = G[n — 1] + FADC[n] — k x FADC[n — 1] - FADC[n — L] + k x FADC[n — L — 1]
k = pre-amplifier response (e =)

A.Georgiev & W.Gast IEEE Nucl. Sci. 40 (1993) 770



Digital Pulse Processing for typical
functions

Leading Edge Discrimination:
*y[n]=x[n]-x[n-k](differentiation)

*y[n]= (X[n]+X[n-2]) +X[n-1]<<1(Gaussian filtering)
*Threshold comparison —LED time

Constant Fraction Discrimination:
*y[n]=x[n]-x[n-k](differentiation)

*y[n]= (X[n]+Xx[n-2]) +X[n-1]<<1(Gaussian filtering)
*y[n]=x[n-k]<<a-x[n](constant fraction)

«Zero crossing comparison —CFD time

J.T. Anderson IEEE Nucl. Sci. 25 (2007) 1751



Pulse Shape Analysis Concept

=

C3

- \easured pulses

791 keV deposited in segment B4

Z =46 mm

Very Important: Measured pulses need to be time aligned
R.Venturelli, D.Bazzacco



Pulse Shape Analysis Concept

CORE
/ - \easured pulses

= Calculated pulses

791 keV deposited in segment B4

Z=46 mm

R.Venturelli, D.Bazzacco



Pulse Shape Analysis Concept

CORE
- \easured pulses

= Calculated pulses

791 keV deposited in segment B4

Z=46 mm

R.Venturelli, D.Bazzacco



Pulse Shape Analysis Concept

C3 C4

= \easured pulses
- Calculated pulses

791 keV deposited in segment B4

Z=46 mm

R.Venturelli, D.Bazzacco



Pulse Shape Analysis Concept

B3| B4" B5
(10, ,46)

C3 C4 C5

= \easured pulses
= Calculated pulses

791 keV deposited in segment B4

Z=46 mm

R.Venturelli, D.Bazzacco



Pulse Shape Analysis Concept

B3 f B4 ‘ BS

C3 C4 C5

o

= \easured pulses
= Calculated pulses

791 keV deposited in segment B4

Z=46 mm

R.Venturelli, D.Bazzacco



Pulse Shape Analysis Concept

Grid Search
algorithm

B3 B4 ‘ R. Venturelli

(10, ,46)

C3 C4

= \easured pulses
= Calculated pulses

791 keV deposited in segment B4

Set of Energies + » Tracking z =46 mm
Interaction Positions R Venturelli. D.Bazzacco



Interaction - Reconstruction Mechanisms

~ 100 keV ~1 MeV ~ 10 MeV y-ray energy
Photoelectric Compton Scattering Pair Production
s 511
@‘N B
;’ é ' Ey- 1022
b 511
Isolated hits Angle/Energy Pattern of hits
E, |
Probability of | E, = 5 E= E,— 2 mc?
interaction depth | 1+ —5 (1 ~ COSO)
| m,C

Reconstruction efficiencies are limited by :
Position resolution; Short range scattering; Compton profile.



The tracking Algorithms in AGATA

Two main classes: =
-algorithms based on back-tracking | i
J. Van der Marel, B. Cederwall, NIMA 437 (1999) 538. g T T o itins
J. Van der Marel, B. Cederwall, NIMA 447 (2002) 391. A TN S I o i
L. Milechina, B. Cederwall, NIMA 508 (2003) 394. B S
-algorithms based on clusterisation and forward-tracking g ™=f
G.J. Schmid, et al., NIMA 430 (1999) 69. " s P
D. Bazzacco, MGT code developed within the TMR 2000 |
program ‘Gamma-ray tracking detectors’ oot SN N N N N
l. Piqueras, et al. NIMA 516 (2004) 122 £ oo | —
E — E[ 500:0:\’\7:5 1 1:5 ;2'—/l 2%5
S.p — 1 Et C 5] 1= 0 Energy (MeV)
Forward-trackmg Bl cosf)

_____ Back-tracking

source

Probability for Compton ™
or photoelectric and for the

path in Germanium 2
\ - Evn - Evn,pos
N Or cos(6) =1 - mc?(1/E. - 1/E;..)
L=]] P, exp
n=1 Likelihood A.Lopez-Mertens et al. NIMA 533 (2004) 454



Complementary Instrumentation!



Complementary Instrumentation

* Fundamental to increase the sensitivity of the y-
ray detector. Identifying the reaction channel or
reaction products:

— Particle detectors (Light charged particles or neutrons)
— Spectrometers (ldentification of the reaction products)
— Beam Trackers (for relativistic experiments)
— etc...

 Fundamental to perform some measurements

— Plunger devices for RDDS measurements
— Fast Scintillators for timing measurements

— etc...



