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CONFINEMENT OF CHARGED
PARTICLES



Confinement of charged particles

* Required:
3-dimensional potential minimum.
Force acting towards a center.

\\/

« Convenience:
a) F ~ -r (Harmonic oscillator)
b) Rotational symmetry

- Consequences: B
Froma) F =-eV® x—r

— P=ax’+by’ +cz’

Laplace equation
Rotational symmetry around z-axis

* THERE IS NOT 3-DIMENSIONAL CONFINEMENT WITH ELECTROSTATIC
FIELDS
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Confinement of charged particles
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Doppler cooling
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Confinement of charged particles

Trapping Cooling

Increase of luminosity

ACCURACY Small amplitudes

Easy manlpula.tlon SENSITIVITY . ql_m-separatlon
g/m-separation Emittance improvement

Extended observation time\ EFFICIENCY Doppler width reduction
Accumulation & bunching Doppler effect elimination

Increase of luminosity
Effective use

Examples

« Experiments with rare species (radioactive isotopes, HCI, antiprotons, anti-H,....)
« Ultra-high accuracy (mass, g-factor, a, optical clocks, relativity)

« Single-particle detection and observation (quantum logic spectroscopy)
 Quantum simulations and quantum computing

 Fundamental interactions (EDM, PV, search for non V-A interaction,.....)

» Accelerator device (accumulator, charge breeder, isomer separation, buncher,....)
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Different geometries (heavy-ion masses)
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Different geometries (HCI, electrons)
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Different geometries (fluorescence collection)
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Penni
ent geometries (miniaturization)

R
J.M. Cornejo et al.,
- IJMS 410 (2016) 22-30
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MASS MEASUREMENTS



The nuclear binding energy (B)

The nuclear binding energy reflects all forces ¢
u n (' O
acting in a nucleus . s
/’ \\ o/ W/ \_—

B(N,Z)=1Zm +Nm, 'M(N )

7’

_ _—--_ Nuclear mass

B(N,Z)={Zm, + Nm, — m( X) /Zm, — EBe - C

L - Atomic mass - J

ME(N,Z)=m("X)-A'u |ikev—2"<10"

m

Mass excess (keV)
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Discrepancies between the models
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The 2012 Atomic Mass Evaluation
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Nucleon separation energies (S,, S, S,,, S,,)

Nuclear Structure & astrophysics "
S, =B(N,Z)-B(N-2,7) ("
S,,=B(N,Z)-B(N,Z-2)
S =B(N,Z)-B(N-1,7)
S,=B(N,Z)-B(N,Z-1)

Other quantities are also important for nuclear structure,
all of them obtained from nuclear binding energies
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Nucleon separation energies (S, S, S,,, S,,)

« One-proton separation energy for odd-A (even-

« Location of the proton-
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A remark
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A remark
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Astrophysics

* Nucleosynthesis e.g. on accreting neutron stars
« Explosive hydrogen burning (X-ray bursts)
« Steady-state burning

S process

B Mass known

[] Half-life known
[Inothing known

Evolution of the process depends on p-density and
temperature in stellar environment

Pb (82)ers,

p process |

Astrophysical observations:
elemental abundance, light curves

I process I

Required nuclear data:
 Masses (sep. energies, Q-valUe
* [ decay half-lives
* Reaction rates

protons i I

neutrons Picture from H. Schatz
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Nucleon separation energies (S,,, Sp, S, Szp)

Qi(p,)/)j= Sj - Si Icture & astrophysics

Sr74

V,Z) - B(N -2,7)

- ~N\J

L V-Bwz-
. L.2)-B(N-1,2)

K1r77s2 Jaz)_B(N9Z_1)
B’ 3/2
2Ky T Qi /
Waiting point Airoi = ( ;;2 ) exp(_ ;Cl;f)] )<Ov>i(p’y)j
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Nucleon separation energies (S,,, Sp, S, Szp)

Qi(p,y)j ey i &
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Q-values from B-decay

Fundamental symmetries &
Neutrino-related physics

O,.=ME(Z,N)-ME(Z -1,N +1)
O,. =ME(Z,N)- ME(Z-1,N +1)-2m,

O, =ME(Z,N)- ME(Z +1,N -1)
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Q-values from B-decay
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Q-values from EC-decay

Is the neutrino a Majorana or Dirac particle?

2v2EC (T,,>10%4y) Ov2EC (T,,>1030y)
L=C><mvz><‘M‘2><“Ple2><“11262>< d 7
1), (Q—BZh—Eyz)2+ZF2

0v2EC might be resonantly enhanced (T,,~10%y)

Z A
\ ( ’ ) e CPtUre of  €xcited electron shell
two orpitg electrong ] F’
BZh [
Q * |
o (Z2A)
E

Search for nuclides with D=(Q,-By,-E,) < 1 keV
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Q-values from EC-decay

Is the neutrino a Majorana or Dirac particle?
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Phys. Rev. Lett. 106 (2011) 052504
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Precision 2
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Q-values from B-decay

What is the mass of the electron (anti)neutrino?
dN

ol kx F(E,Z)x pxE, ., x(E,~E,) x [(E0 ~E,) —m! ]1/2
3
F(OF) = } N(E4)dE ~2 oF
-0FE EO

The best candidates will be decaying
nuclei with low end-point energies

Tritium: T,—(HeT) +¢ +7,

Q=186keV T,=123y

Counting rate

1 1 - =
187Re: '°' Re—> " OS+e +V,

Q=25keV T,=432x10"y

Q has to be unambiguously determined (with 8m/m of at least 10-1") from
the mass difference using a Penning trap
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Q-values from B-decay and EC-decay

What is the mass of the electron (anti)neutrino?

Intensity

B-decay of 1

(Counts)'2

01 N1
N2

Intensity

EC in 1°Ho

M1
M2

Kinetic energy of electron (keV)

e" energy (eV)

“Curso FNEXP” IFIC-CSIC « January 2018

B-decay of "®’Re -The MARE project
87Re > ¥70s + e+ v,
Eq = 2.4653(17) keV m. sisti et aL, NIMA (2004)

EC in 8Ho - The ECHo, HOLMES
and NUMECS projects

103Ho+ e > 103Dy + v,
EQ = 2.80(5) keV L. Gastaldo etal., JLTP (2014)
Am =2833(30,,)(15,,,) eV/c

S. Eliseev et al., PRL 115, (2015) 062501

Ultra-precise masses provide accurate Q-values

D. Rodriguez



Q-value of EC in '83Ho / keV

Penning-trap Q-value for neutrino physics at GSI

Am =2833(30_.,)(15_.) eV/e’
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Pictures from S. Eliseev et al., PRL 115, (2015) 062501
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Mass uncertainty required

Field Topic Mass
uncertainty
: Shell and sub-shells, deformations, 6 a
Nuclear structure physics halos, S,,, S,,, SHES 10°°-10
Nuclear models and mass | Nuclear models and mass formulas 10 - 108
formulas
: (r)-process, 4
Astrophysics (rp)-process, waiting point nuclides 10
Weak interactions studies CVC hyppthegls, 108
CKM matrix unitary
Fundamental constants Fine-structure constant 10
Metrology Silicon mass <107
. . OvBB, Ov2EC 108 -10-°
Neutrino physics Neutrino mass < 10"
CPT Test m, and m, < 10"
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Fundamentals

Magnetic + Electrostatic field
AiA g

i

Axial
motion

(/
o T
md-*

Reduced cyclotron ~  _ l[a) N \/(a)2 _ 2a)2)]
motion B R ¢ g

Magnetron 1
rr?otion w. = E[wc - \/(wc2 - 20)3)]
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Detection
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Detection
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Time-of-Flight lon Cyclotron Resonance (TOF-ICR)
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Time-of-Flight lon Cyclotron Resonance (TOF-ICR)

100 LA N R LR LR EEL R L NN NN BN BN BN RN N
98 B
96 - :
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& 92- :
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E 84 B
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Time of flight [ us]

M. Konig et al., Int. J. Mass Spectrom. 142 (1995) 95
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Phase-Imaging lon Cyclotron Resonance (PI-ICR)

ol

Drift lenses  Einzel lens Position-sensitive
detector

=77 Pl

DIP,

N\ o e 7\\ NN
\% I Q0ls V1T (@ \ | :}t | :cb\ 1 .:'
\ ¥ r \ 7 N p

* lon beam energy: ~ 1 eV » Sensitivity: ~ 10-20 ions
« Mass Resolving Power: 1x107 *  Minimum half-life: ~ 1 ms
* Measurement Uncertainty: 10--10-° S. Eliseev et al,, PRL 110, (2013) 082501
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Phase-Imaging lon Cyclotron Resonance (PI-ICR)

magnetron frequency

modified cyclotron frequency

step 1 “|'| <— transport of ions to the measurement trap steP1 T[] «— transport of ions to the measurement trap

step 2 [77] «—— dipole excitation at v. - step 2 7] «—— dipole excitation at v, R

: - step 3 n—pulse atv, —» [] .

step 3 extraction pulse — || N step 4 extraction pulse — ] R

P phase accumulation time ik :p;'lase accumulation tin;e:
¢ + 2mn ok
v = ov = 5
271 271 — k
Ve vy ¢ +2mn  wriiR+ 1 AR
A— = —— —— . 5 VC A — >< _—
Ve Av, Ad) AR i/ N R
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Mass measurements techniques: PI-ICR

number of
detected ions

60

45

30

15

0

S. Eliseev ef al., PRL 110, (2013) 082501
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Penning-trap techniques

N f\
\/ \__/

Qi(z) = —¢ AX[(}B)

Qi(z) = _qd

D. Rodriguez



Induced-image current detection

d

f— — -
~-o

FFT

spectrum
analyser

Alternative:
v/ use a DC SQUID at4 K

This technique was originally
developed mainly at:
-Univ. of Harvard (p,p)
-Univ. of Washington (low m/q)
(now at MPIK in Heidelberg)
-MIT (m/q up to ~50)

(now at Florida State Univ.)
-University of Mainz (now also at
MPIK)

Impedance Z(w)

- [induced Ocq.v_z.z
29
iocq.i.\/vz - Q
N z, VAv VTIC
7.2
2avC
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Precision sensing and metrology with a single ion

 Two techniques in the framework of quantum-optics experiments
- lons stored in the same trap

* Quantum-logic spectroscopy « Coupled quantized
(Same potential well) mechanical oscillators
P. 0. Schmidt et al., Science 309 (2005) 749-752 (Different potential well)

(Wineland‘s group)

probe transfer detection

Picture from P.O. Schmidt et al., Special Issue / PTB-
Mitteilungen 119 (2009), No. 2

 Extension to molecular ions

Ok " T " " N T : a
-40 -30 -20 -10 0 10 20 30 40
Axial position, x (um)

F. Wolf et al., Nature 530 (2016) 457
(Schmidt ‘s group) K.E. Brown et al., Nature 471 (2016) 196-199

(Wineland ‘s group)
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The principle of the stored ion calorimeter

B T (*%Ca*) =1 mK
©) T (Ca*) <<; <n>~0
@
E P— @
lon X+ | Conductor| “°Ca* ,
P3

Endcap Endcap Endcap Endcap 2P1/2

D. J. Heinzen & D. J. Wineland, Phys. Rev. A 42(5) (1990) 2977-2994 397 nm |
1. COOLING ’D5)5
m
Conductor ON Q4 —
2. PROBING THE ION X*
Conductor OFF

Doppler cooling

3. ION-ION INTERACTION
Conductor ON/ Lasers OFF
4. DETECTION
Conductor ON

Ground-state cooling




The QS technique

B,

BRCAN
B e S
lon X* || Conductor| “Ca*
Endcap Endcap Endcap

Endcap

D. J. Heinzen & D. J. Wineland, Phys. Rev. A 42(5) (1990) 2977-2994

—

B

_
O,

lon X*
Endcap Endcap

40Ca+

Endcap

Endcap

stored ion calorimeter

T (*%Ca*) =1 mK

T (“Ca*) <<; <n>~0

2
Ps)
2
P‘./2
—
397 nm L
22 m
Qa0 T

Doppler cooling

Ground-state cooling




The principle of the stored ion calorimeter

0O
L9 b e
lon X* || Conductor| “Ca*
Endcap Endcap Endcap

Endcap

D. J. Heinzen & D. J. Wineland, Phys. Rev. A 42(5) (1990) 2977-2994

—

B

_
O,

lon X*
Endcap Endcap

@

40Ca+

Endcap

Endcap

T (*%Ca*) =1 mK

lon X* can be any ion
regardless of its mass, charge
and polarity.

Very small oscillation
amplitudes can be detected -
highest sensitivity as sensor
& highest precision.



FOR SUPERHEAVY ELEMENTS AND/
OR NEUTRINO MASSES



Layout (TRAPSENSOR laboratory)
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Single ion

F. Dominguez, et al., Scientific Reports 7, 8336 (2017)

Thermal
equilibrium

v, ~100 kHz .
Z
o =2.6 um

Photons (a.u.)

1.0+

External
RF field

In a trap with characteristics
dimensions of about 1 cm.




Two-ion crystal

Endcap

No excitation

Axial excitation
Axial orientation

Axial excitation
Radial orientation

Use different ions (e.g. m/q =
187) and monitor the ion of
interest through the 4°Ca* ion.

M, M = um _y Axial frequency
u=4.675 l shift

Q: =w,, 1+1:\/1+12—1
u W

— Q =0.55xw

trap

G. Morigi and H. Walter, Eur. Phys.
J. D 13(2) 261-269 (2001)

M. Drewsen et al, Phys. Rev. Lett.
93 243201 (2004)



o-ion crystal

>a

79.7 kHz

b - e e e o -

43.6 kHz

F. Dominguez, M.J. Gutiérrez et al., Journal of Modern Optics (2017)




The QS Project

S

[T

MCP1 |||

Target chamber

]ﬁ]]ﬂi:;;m

e gun/ g
ce

lon sour

Universal ion

source

Transfer

lon
preparation,
separation and
cooling

Novel cooling
mechanisms
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The Penning-traps beamline
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The Penning-traps beamline
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