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Neutrons

Particle Properties 2004

n

I(4P) = L1

4

Mass m = 1.0086649156 + 0.0000000006 u
m, — m, = 1.2933317 £ 0.0000005 MeV
= 0.0013884487 + 0.0000000006 u

Mean life 7 = 885.7 + 0.8 s

cr = 2.655 x 10® km
Magnetic moment p = —1.9130427 £ 0.0000005 zp
Electric dipole moment d < 0.63 x 102 ecm, CL = 90%
Mean-square charge radius rﬁ = —0.1161 + 0.0022

fm2 (S =1.3)
Electric polarizability a = (11.6 & 1.5) x 10~* fm?
Magnetic polarizability 3 = (3.7 & 2.0) x 10=4 fm3
Charge g = (-0.4+1.1)x 107 ¢
Mean n7-oscillation time > 8.6 x 107 s, CL = 90% (free n)
Mean nfi-oscillation time > 1.3x 108 s, CL = 90% ¢ (bound n)

* Proposed: E. Rutherford, 1920
* Discovery: J. Chadwick, 1932

* Neutron reactions: E. Fermi
and others, 1934-1935

« Compound nucleus model: N.
Bohr, G. Breit-E. Wigner,1936

* Neutrons in astrophysics: G.
Gamow, 1937

* Neutron induced fission: O.
Hahn, F. Strassmann, L. Meitner,
O. Frisch, 1939

* Chain reaction: E. Fermi, 1942



Neutron reactions

» Reaction channels:
» elastic scattering: (n,n)
- inelastic scattering: (n,n’ y)
- radiative capture: (n,y)
* multiplication: (n,xny)

» charged particle
production: (n,py), (n,ay), ...

« fission: (n,xnA1Z21A2Z2)

o'tot B Gel + 0'cap + ...

> No Coulomb barrier
> Reaction thresholds
> Energy dependence

»> No predictive models
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Common reactions used for neutron detection at low energies:

Elastic scattering:

* n+'H—-n+"H

* n+?H —n+2H (abund.=0.015%)

Charged particle:

« n+3He - 3H+TH + 0.764 MeV (abund.=0.00014%)
* n+ °Li — 4He +3H + 4.79 MeV (abund.=7.5%)

+ n+ 9B — 7Lj* + 4He—> 7Li + *He + 0.48 MeV y +2.3 MeV (abund.=19.9%,
b.r.=93%)

Radiative capture:

« n+ "95Gd — 156Gd* — y-ray + CE spectrum (abund.=14.8%)
« n+ "¥Gd — 158Gd* — y-ray + CE spectrum (abund.=15.7%)
Fission:

* n+ ?%U — fission fragments + ~160 MeV

* n+ ?%Pu — fission fragments + ~160 MeV

* n+ 238U — fission fragments + ~160 MeV
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Neutron detectors:

Counters (only
identification):

 Moderated

* Not moderated

Spectrometers (energy
determination):

* Recoil

« Charged particle
reaction

* Time of Flight

» Slowing down

Physical form:

» Gas: ionization and
proportional chambers

 Liquid: scintillators

» Solid: scintillators,
semiconductor

Active material:
« Self-detecting
* Loaded

* Lined




Miscellanea of detectors:

* Li glass scintillator: Li,O + SiO, +...
* Li crystal scintillator: Lil(Eu), LiF

* Li + ZnS(Ag) scintillator

* Li + thermo-luminiscent material

* Gd crystal scintillators: Gd,0,S(Pr),...

* BAs semiconductor
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Neutron scattering

s-wave (I=0) elastic scattering: Energy-momentum

conservation:

EN A2+1+2A-cos@C,\,15]
= (A+1)

Isotropic in CMS:

There is a minimum neutron energy
(maximum recoil energy) after the
collision dependent on A:

E|] (A -1
'_EO min_

1-o: H (1.0), D(0.89), C(0.28), Fe(0.069), Pb(0.019)



ELASTIC SCATTERING ANGULAR DISTRIBUTION
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Luminescence in organic
materials
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Light production curves:

p, o, 12C in NE213: Dekempeneer
et al. NIM A256 (1987) 489

d in NE230: Croft et al. NIM A316
(1992) 324
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Multi-detector: Neutron Wall (EUROBALL)

BC501 liquid scintillator
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Time of Flight Spectrometer

start stop

L2
En=%mnt_2 L

Start Time: time-pulsed origin, accompanying radiation, ...
(not the neutron)

Stop Time: neutron detector

2 2
Energy resolution: E =2 (&) + (E)

E L t

» Long flight path, short detectors, good time resolution
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ToF spectrometer: TONERRE (LPC-Caen)
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Neutron moderation:
; Wy W, W, W, W,
Eo(1-a)| N
After many collisions:
N l (13 C(z a
Nucleus 1 - E (1Vevos Eo Eq Eq Ey
25 meV)
1H 1 1 18 Slowing-down parameter:
2
’H 0.889 0.725 24 = In5 =1+ (A-1) In a5
E 2A A+1
4He 0.640 0.425 41
120 0.284 0.158 111 Number of collisions to
reach an energy:
56
Fe 0.069 0.035 500 - InE, E,
208pp 0.019 0.010 1823 3

. . / K
Slowing-down time: t= E -t,: K(§, Ge.a); to(Eo,",, 0e|a)
f



g Down Spectrometer: LSDS (LANL-Los Alamos)

Lead block +
sample+counters
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Bonner spheres: NEMUS (PTB-Braunschweig)

| bare * 0.5 3" 4

Polyethylene sphere +
3He proportional counter

NIMA476 (2002) 36




Monte Carlo simulations of neutron detectors
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Deconvolution (unfolding):

Given the response of an apparatus as a function of a parameter,
what is the distribution of parameter values which produces a

measured data distribution?

Inverse (linear) problem: d=R-'p; d; = ERU p;,Vi
Solution is NOT: p=R™"-d

Use statistical inference:
* not-unique solution ()
« “a priori” information
 several methods:

Linear regularization (LR): p=(R+AH)"-d

Maximum Entropy (ME): ;""" =p}" exp( : (d ZRka/Em)))

(m)
(m+1) ,]p d,

Expectation Maximization (EM): -
P (EM) P; ER EEleP/(c )




different combinations of spheres,
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The Long Counter

Aluminium Casing
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Moderated cylindrical array: NERO (NSCL-Michigan)

‘He Proportional BF. Proportional
Counters Counters

Polyethylene block (60x60x80cm?3) Silmplantaton

Detector

16 *He and 44 BF; proportional
counters

e =40%

Polyethylene BoronCarbide
Moderator Shielding




Berlin Neutron Ball
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Beam Direction
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Fig. 1. Schematic diagram of the ionization chamber housing. Dimensions are in centimeters.
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