
Introduction to ROOT
Practical Session

Luca Fiorini, Jose E. García

IFIC Summer Student 2017
July 10th 2016

ROOT Tutorial – Jose E. García 2

Practical introduction to the ROOT
framework
–Starting ROOT
–Macros
–Functions
–Histograms
–Files
–TTrees
–TBrowser
–Pyroot

Macros and slides are in :
http://cern.ch/go/j8PV

Content

ROOT Tutorial – Jose E. García 3

• ROOT is a large Object-Oriented data handling and analysis
framework
• Efficient object store scaling from kB’s to PB’s C++

interpreter
• Extensive 2D+3D scientific data visualization

capabilities

• Extensive set of multi-dimensional histograming, data fitting,
modeling and analysis methods

• Complete set of GUI widgets
• Classes for threading, shared memory, networking, etc.

• Parallel version of analysis engine runs on clusters and multi-
core

• Fully cross platform: Unix/Linux, MacOS X and Windows

ROOT in a Nutshell

ROOT Tutorial – Jose E. García 4

•

•

The user interacts with ROOT via a graphical user
interface, the command line or scripts
The command and scripting language is C++

– Embedded C++ interpreter CINT (ROOT5)/ CLING
(ROOT6)

– Large scripts can be compiled and dynamically
loaded

… but for you?
ROOT is usually the interface (and sometimes the

barrier) between you and the data

ROOT in a Nutshell (2)

ROOT Tutorial – Jose E. García 5

• The project was started in Jan 1995. First release Nov 1995. The
project is developed as a collaboration between:
• Full time developers:
• 7 people full time at CERN (PH/SFT)
• 2 developers at Fermilab/USA

• Large number of part-time contributors (160 in CREDITS file)
• A long list of users giving feedback, comments, bug fixes and many

small contributions
• 5,500 users registered to RootTalk forum
• 10,000 posts per year

• An Open Source Project, source available under the LGPL license
• Used by all major HEP experiments in the world

• Used in many other scientific fields and in commercial
world.

ROOT an Open Source Project

ROOT Tutorial – Jose E. García 6

ROOT Graphics

“LEGO”
“SURF”

TF3

TH3

TGLParametric

ROOT Tutorial – Jose E. García 7

ROOT Graphics

ROOT Tutorial – Jose E. García 8

ROOT Graphical Interfaces

Data Storage: Local, Network

Data Analysis & Visualization

ROOT Tutorial – Jose E. García 9

ROOT Application Domains

ROOT Tutorial – Jose E. García 10

ROOT Download and Installation

• Binaries for common Linux PC flavors, Mac OS, Windows (ROOT5)
• Before Installing ROOT, add dependencies, discussed here:

• https://root.cern.ch/build-prerequisites
• Linux and MacOS: ROOT6 preferred Windows: ROOT5
• Installation guide at:

• https://root.cern.ch/installing-root-source

If nothing works: http://root.cern.ch/notebooks/rootbinder.html

http://root.cern.ch

ROOT Tutorial – Jose E. García 10

Interactive ROOT

• You	can	log	in	using	username	and	 password	provided	for	the	WIFI	as	:
WIFI	Username:	 ABCD
WIFI	Password:	 1234

Swan	username:	abcd
Swan	password:	abcd.1234

https://swan.ific.uv.es

https://swan.ific.uv.es/user/jgarcian/
notebooks/Example.ipynb

ROOT Tutorial – Jose E. García 12

Main ROOT page
– http://root.cern.ch

Class Reference Guide
– http://root.cern.ch/root/html

C++ tutorial
– http://www.cplusplus.com/doc/tutorial/
– http://www-root.fnal.gov/root/CPlusPlus/index.html

Hands-on tutorials:
• https://root.cern.ch/courses

ROOT Resources

ROOT Tutorial – Jose E. García 13

Starting ROOT

$ root –l
$ root -h

root[] 2+3
root[] log(5)
root[] TMath::Pi() // try to type also TMath::Pi

root[] int i = 42
root[] cout << i << endl;

Command history
–
–

Scan through with arrow keys
Search with CTRL-R (like in bash)

root[] .? //or
root[] .help

Online help
root[] new TF1(<TAB>
TF1 TF1()
TF1 TF1(const char* name, const char* formula, Double_t

xmin = 0, Double_t xmax = 1

ROOT Prompt

ROOT prompt

ROOT Tutorial – Jose E. García 14

• Typing multi-line commands
root [] for (i=10; i>0; i--) {cout << i <<
endl;}; cout << “BOOM!!” << endl;

or
root [] for (i=0; i<3; i++) {
end with '}', '@':abort > printf("%d\n", i);
end with '}', '@':abort > }

• Aborting wrong input
root [] printf("%d\n, i)
end with ';', '@':abort > @

ROOT Prompt (2)

Don't panic!
Don't press CTRL-C! Just type @ or .@

•

•
•

It is quite cumbersome to type the same lines again
and again
Create macros for commonly used code Macro
= file that is interpreted by CINT/CLING

• Execute with
root[0] .x myfirstmacro.C(10)
root[0] .L myfirstmacro.C
root[1] myfirstmacro(10)

int myfirstmacro(int value)
{
int ret = 42; ret
+= value; return
ret;

}

save as myfirstmacro.C

ROOT Tutorial – Jose E. García 15

ROOT Macros

ROOT Tutorial – Jose E. García 16

•
•

Combine lines of codes in macros Unnamed
macro

– No parameters

{
TRandom r;
for (Int_t i=0; i<10; i++) { cout

<< r.Rndm() << endl;
}
for (Int_t i=0; i<100000; i++) {

r.Rndm();
}

}

• Executing macros
root [] .x macro1.C
$ root –l macro1.C
$ root –l –b macro1.C (batch mode no graphics)
$ root –l –q macro1.C (quit after execution)

ROOT Macros (2)

Example : macro1.C

Data types in ROOT
Int_t (4 Bytes)
Long64_t (8 Bytes)
…
to achieve platform independency

ROOT Tutorial – Jose E. García 17

•
•
•

•

•
•

"Library": compiled code, shared library CINT/CLING can
call its functions!
Building a library from a macro: ACLiC (Automatic Compiler
of Libraries for CINT)
Execute it with a “+”

root [0] .x myfirstmacro.C(42)+
or

root [0] .L myfirstmacro.C+
root [1] myfirstmacro(42)

No Makefile needed
CINT knows all functions in the library
mymacro_C.so/.dll

Macros Compilation and Libraries

ROOT Tutorial – Jose E. García 18

Why compile?
– Faster execution, CINT/CLING has some

limitations…
Why interpret?
– Faster Edit → Run → Check result → Edit cycles ("rapid

prototyping"). Scripting is sometimes just easier
So when should I start compiling?
– For simple things: start with macros
– Rule of thumb

• Is it a lot of code or running slow? Compile it!
• Does it behave weird? Compile it!
• Is there an error that you do not find. Compile it!

Compiled vs Interpreted

A (mathematical) function TF1 is an object: has data members/methods

Constructor:
makes an instance of the

object

Methods:
ask for/modify properties of

the object

Nam e Formula Range
(m in /m ax)

From the T F 1 . h class

Objects

Data members:
properties of the object

generally inaccessible to us
can be modified with

setters/getters

The class TF1 allows to draw functions
root [] f = new TF1("func", "sin(x)", 0, 10)

"func" is a (unique) name

"sin(x)" is the formula

0, 10 is the x-range for the function

root [] f->Draw()

The style of the function can be changed
on the command line or with the context
menu (right click)
root [] f->SetLineColor(kRed)

The class TF2(3) is for 2(3)-dimensional functions
Canvas

ROOT Tutorial – Jose E. García 20

Functions

ROOT Tutorial – Jose E. García 21

•
•
•

•

•

A value type contains an instance of an object
A pointer points to the instance of an object
Create a pointer
root [] TF1* f1 = new TF1("func", "sin(x)", 0, 10)

Create a value type
root [] TF1 f2("func", "cos(x)", 0, 10)

One can point to the other
TF1 f1b(*f1)
TF1* f2b = &f2

// dereference and create a copy
// point to the same object

Pointers vs Value Types

How does ROOT call its classes and functions?

● Class names s tar t w i th capi ta l T, e.g. T F 1

● Class da ta me mb e r s s tar t w i th f, e.g. f X m i n

● Names of non-class da ta types end wi th _t: e.g. In t_ t

● Class methods s tar t w i th _t: e.g. G e t N a m e ()

● Global var iab le names s tar t w i th _t: e.g. g P a d

● Constant (or enumera to r) names star t w i th k : e.g. kTrue

● Words in names are capi tal ized: e.g. GetL ineCo lor ()

● Two subsequent capi ta l le t ters are avoided: e.g. G e t X a x i s ()

ROOT Tutorial – Jose E. García 22

Naming Conventions

ROOT Tutorial – Jose E. García 20

root [] TF1 *f1 = new TF1("f1","gaus(x)",0,10)
root [] TF1 *f2 = new TF1("f2","10.-x",0,10)
root [] f2->SetParameter(0,1)
root [] f2->Draw()
root [] f1->SetParameter(0,2)
root [] f1->SetParameter(1,4)
root [] f1->SetParameter(2,2.5)
root [] f1->Draw()
root [] TF1 *f3 = new
TF1("f3","f1+f2",0,10)
root [] f3->Draw()
root [] f3->SetParameter(0,3)
root [] f3->SetParameter(2,0.5)
root [] f3->Draw()
root [] f2->Draw(“same”)
root [] f1->SetParameter(0,3)
root [] f1->SetParameter(2,0.5)
root [] f1->Draw(“same”)

Functions

Now play a bit with the function class
and graphical options.
Can you change the background
shape from a linear function to an
exponential function?
How to save the graphical window (it
is called Canvas)?
code in function.C

Contain binned data – probably the most important class in
ROOT for the physicist
Create a TH1F (= one dimensional, float precision)

root[] h = new TH1F("hist", "my hist;Bins;Entries", 10, 0, 10)
"hist" is a (unique) name
"my hist;Bins;Entries" are the title and the x and y labels
10 is the number of bins
0, 10 are the limits on the x axis.
Thus the first bin is from 0 to 1,
the second from 1 to 2, etc.

Fill the histogram
root[] h->Fill(3.5)
root[] h->Fill(5.5)
Draw the histogram
root[] h->Draw()

A bin includes the lower limit, but
excludes the upper limit

ROOT Tutorial – Jose E. García 24

Histograms

root[] TH1F h("h","h",80,-40,40)
root[] TRandom r;
root[] for (i=0;i<15000;i++) { h.Fill(r.Gaus(0,7));}
root[] h.Draw()

Rebinning
root[] h.Rebin(2)

Change ranges/canvas
– with the mouse, very easy!
– with the context menu
– command line
root[] h.GetXaxis()->

SetRangeUser(2, 5)

Log-view
– right-click in the white area at the side of

the canvas and select SetLogx (SetLogy)
– command line
root[] gPad->SetLogy()

ROOT Tutorial – Jose E. García 25

Histograms (2)

Interactive
– Right click on the histogram and choose "fit panel"
– Select function and click fit
– Fit parameters

• are printed in command line
• in the canvas: options - fit parameters

Command line
root [] h.Fit("gaus")
– Other predefined functions

polN (N = 0..9), expo, landau
Try to fit the histogram with
different functions.

ROOT Tutorial – Jose E. García 26

Fitting Histograms

ROOT Tutorial – Jose E. García 27

Fitting Histograms (2)

ROOT Tutorial – Jose E. García 28

Now edit function.C

root [] TH1F h("h","h",100,0,0); //auto range
root [] for (i=0;i<10000;i++) { h.Fill(f3->GetRandom());}
//create random numbers according to function
root [] h.Draw()

Try to fit the the histogram:

root [] TF1* f4 = new TF1(“f4”,”.....”,0,10)

Tip: A Gaussian function can be written as:
[0]*TMath::Exp(-0.5* ((x-[1])/[2])*((x-[1])/[2]))

Fitting Histograms (3)

root [] h->Draw()
root [] h->Draw("LEGO")
root [] h2->Draw("COLZ")

NB: h and h2 are in file hist2.root

scatter plot

ROOT Tutorial – Jose E. García 29

colored plot

lego plot

get nicer colors in COLZ plots by
gStyle->SetPalette(1, 0)

2D Histograms

The class TFile allows to store any ROOT object on the disk
Create a histogram like before with

TH1F* h = new TH1F("h", "my hist;…", 10, 0, 10)
TH1F hist("hist", "test", 100, -3, 3);
hist.FillRandom("gaus", 1000);

// Open a file for writing
root [] file = TFile::Open("file.root", "RECREATE")
// Write an object into the file
root [] h->Write()
root [] hist->Write()
// Close the file
root [] file->Close()

"hist" will be the name in the file

NEW
READ
RECREATE
UPDATE
….

ROOT Tutorial – Jose E. García 30

Files

// Open the file for reading
root [] file = TFile::Open("file.root")
// Read the object from the file
root [] hist->Draw()
// (only works on the command line!). In a
macro read the object with
TH1F* h = 0;
file->GetObject("hist", h);
// What else is in the file?
root [] .ls
// Open a file when starting root
$ root file.root
// Access it with the _file0 or gFile pointer

Object ownership After
reading an object from
a file don't close it!
Otherwise your object
is not in memory
anymore

ROOT Tutorial – Jose E. García 31

Files (2)

• The TBrowser can be used
–
–
–

to open files
navigate in them
to look at TTrees

•

•
•
•
•

Starting a TBrowser
root [] new TBrowser
Open a file
Navigate through the file
Draw a histogram
Change the standard style
– Drop down menu in the top

right corner
•
•

Access a tree
Plot a member

ROOT Tutorial – Jose E. García 32

TBrowser

•
•
•
•

A graph is a data container filled with distinct points
TGraph: x/y graph without error bars
TGraphErrors: x/y graph with error bars TGraphAsymmErrors:
x/y graph with asymmetric error bars

graph = new TGraph;
graph->SetPoint(graph->GetN(), 1, 2.3);
graph->SetPoint(graph->GetN(), 2, 0.8);
graph->SetPoint(graph->GetN(), 3, -4);
graph->Draw("AP");
graph->SetMarkerStyle(21);
graph->GetYaxis()->SetRangeUser(-10, 10);
graph->GetXaxis()->SetTitle("Run number");
graph->GetYaxis()->SetTitle("z (cm)");
graph->SetTitle("Average vertex position");

ROOT Tutorial – Jose E. García 30

Graphs

gerrors2.C

ROOT Tutorial – Jose E. García 34

TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh)

TGraph(n,x,y)

TCutG(n,x,y)

TGraphErrors(n,x,y,ex,ey)

TMultiGraph

Graphs (2)

•

•

•

•

•

You can draw with the
command line
The Draw function adds the
object to the list of primitives
of the current pad
If no pad exists, a pad is
automatically created
A pad is embedded in a
canvas
You create one manually
with new TCanvas
–

–

A canvas has one pad by
default
You can add more

root [] TLine line(.1,.9,.6,.6)

root [] line.Draw()

root [] Ttext text(.5,.2,”Hello”)

root [] text.Draw()

Canvas

Hello

Pad

ROOT Tutorial – Jose E. García 35

Graphic Objects

TButton

TLine
TArrow

TEllipse

TCurvyLine

TPaveLabel

TPave

TDiamond

TPavesText

TPolyLineTLatex

TCrown

TMarker

TText

TCurlyArc

TBox

Can be accessed with the toolbar
View > Toolbar (in any canvas)

ROOT Tutorial – Jose E. García 36

More Graphic Objects

TGLParametric

TF3

ROOT Tutorial – Jose E. García 37

Graphic Examples

•

•

Trees have been designed to support very large collections of
objects. The overhead in memory is in general less than 4 bytes
per entry.

Trees allow direct and random access to any entry (sequential
access is the most efficient)

The class TTree is the main container for data storage
It can store any class and basic types (e.g. Float_t)
When reading a tree, certain branches can be switched off

• speed up of analysis when not all data is needed
File1 "Event" Branches

point x x x x x x x x x x
y y y y y y y y y y
z z z z z z z z z z

x
y
z

Events

ROOT Tutorial – Jose E. García 38

What is a ROOT Tree?

Trees are structured into branches and leaves. One can
read a subset of all branches

High level functions like TTree::Draw loop on all entries
with selection expressions
Trees can be browsed via TBrowser Trees can

be analyzed via TTreeViewer

point
x
y
z

x x x x x x x x x x

File1 "Event" Branches

y y y y y y y y y y
z z z z z z z z z z

Events

ROOT Tutorial – Jose E. García 39

Tree

• You want to store objects in a tree which is
written into a file

• Initialization

root[] TFile* f = TFile::Open("events.root","RECREATE");
root[] TTree* t = new TTree("Events","Event Tree");
root[] Int_t var1;
root[] Float_t var2;
root[] Float_t var3;
root[] t->Branch("var1", &var1, “var1/I”);

root[] t->Branch("var2", &var2, “var2/F”);

root[] t->Branch("var3", &var3, “var3/F”);

ROOT Tutorial – Jose E. García 40

Tree Writing

ROOT Tutorial – Jose E. García 41

,

root [] var1=5; var2=3.1; var3=10.;

// Now Fill the Tree. Fill copies content into Tree entry
root [] t->Fill();
// Again
root [] var1=1; var2=7; var3=4.5;
root [] t->Fill();

// Inspect the Tree

root [] t->Print();

// Show entry’s content
root [] t->Show(1);
// Write into File
root [] t->Write();
// Close File
root [] f->Close();

Code is in: simpletree.C

Tree Writing (2)

• Open the file, retrieve the tree and connect the branch
with a pointer to TMyEvent

• Read entries from the tree and use the content of the
class

TFile *f = TFile::Open("events.root");
TTree *tree = (TTree*)f->Get("Events");
Float_t var2;
tree->SetBranchAddress("var2", &var2);

Int_t nentries = tree->GetEntries();
for (Int_t i=0;i<nentries;i++) {
tree->GetEntry(i);
cout << var2 << endl;

}

A quick way to
browse through a
tree is to use a
TBrowser or
TTreeViewer

ROOT Tutorial – Jose E. García 42

Code is in: readtree.C

Tree Reading

ROOT Tutorial – Jose E. García 40

Accessing a more complex objects from non-
standard classes
– Members are accessible even without the proper

class library
– Might not work in all frameworks

Example: eventdata.root (containing kinematics from
ALICE)

$ root eventdata.root
root [] tree->Scan();

root [] tree->Scan("*");

root [] tree-
>Scan("fParticles.fPosX:fParticles.fPosY:fParticles.fPosZ");

root [] tree-
>Scan("fParticles.fPosX:fParticles.fPosY:fParticles.fPosZ",
"fParticles.fPosX<0")

More on Trees

ROOT Tutorial – Jose E. García 44

Accessing a more complex objects from non-standard classes
• Members are accessible even without the proper class library
• Might not work in all frameworks

Example: eventdata.root (containing kinematics from ALICE)
$ root eventdata.root
root [] tree->Draw("fParticles.fPosX")
root [] tree->Draw("fParticles.fPosY:fParticles.fPosX")
root [] tree->Draw("fParticles.fPoxY", "fParticles.fPoxX< 0")

• Perform more complex selections
• Plot 1D, 2D histograms with different

styles
• Perform fits of some of these

distributions

More on Trees (2)

ROOT Tutorial – Jose E. García 45

• Example of advanced statistical analysis:
– Read from a tree the event variables for:

• “signal” process, e.g. a simulation of a new
phenomena you are looking for.

• simulation of a “background process you want to
separate the signal from.

– Build a Neural Network with these variables, whose
separation of the signal to background is much better
than the each of the input variables.

– Launch the macro: mlpHiggs.C
– Check the contents of the macro and of the
mlpHiggs.root file:
TFile::Open("http://root.cern.ch/files/mlpHiggs.root")

Machine Learning

ROOT Tutorial – Jose E. García 46

Machine Learning (2)

ROOT Tutorial – Jose E. García 47

PyRoot

ROOT is developed in C++ and has a native C++ interpretar,
but it is interfaced also to other languages, such as python.

$ python
In [1]: import ROOT
In [2]: h = ROOT.TH1F("h", "h", 100, 0, 0)
In [3]: h.GetName()
Out[3]: 'h'
In [4]: r= ROOT.TRandom()
In [5]: for i in xrange(0,1000):
h.Fill(r.Gaus())
In [6]: h.Draw()

Now you can redo all the
tutorial in python if you wish!

Interactive ROOT in your Browser!
https://app.mybinder.org:80/3000949792/notebooks/index.ipynb

ROOT Tutorial – Jose E. García 48

RootBook

In this talk, I presented the most basic classes typically used
during physics analyses

ROOT contains
many more
libraries, and has
several more
applications

ROOT Tutorial – Jose E. García 49

Much More …

