

ID de la contribución : 59

Tipo : Oral parallel contribution

Spin transport, spinterface and spin photovoltaics in molecular films

lunes, 17 de julio de 2017 15:15 (30)

Spin injection and transport into molecular semiconductors has attracted great interest recently, especially due to the small sources of spin decoherence in these materials [1]. However, there are still many open questions in this nascent field which range from the actual spin polarization at metal/molecular interfaces to the integration of molecular functionalities into spintronic devices.

In this talk I will review several experimental highlights from our group.

By using bathocuproine (BCP) and fluorinated copper phthalocyanine (FCuPc) we have unambiguously proved that spin transport occurs via molecular levels, finally dismissing any eventual role of metallic filaments or defects in the electronic transport [2,3]. Our experiments point to the critical role of the interfacial barriers for carrier injection into the molecular levels. Moreover, in the FCuPc case we have shown concomitant spin transport and photoresponse. Thanks to the emergence of two molecular-based properties, four distinguishable resistance states adjustable by light and/or magnetic field can be configured in a simple 2-bit memory cell [3]. Further recent results in this wide topic, merging spin transport with the photovoltaic effect of C₆₀ fullerenes will be shown [4].

I also will present spin valves based on rare-earth quinolines. Here we highlight the role of metal/molecular hybridization in the spin polarization and its possible control [5-7].

Primary author(s) : Prof. HUESO, Luis (CIC nanoGUNE)

Presenter(s) : Prof. HUESO, Luis (CIC nanoGUNE)

Clasificación de la sesión : Molecular Electronics

Clasificación de temáticas : Molecular Electronics