Search for Higgs boson production in association with a top-antitop quark pair in CMS
INTRODUCTION

HIGGS PRODUCTION @ LHC

- Highest Higgs production rate due to gluon fusion
- Coupling to top quarks is involved in this process through top loops
 ⇒ Indistinguishable from new physics contributions

- Process predicted by SM with \(\sigma_{ttH} \propto g_{tH}^2 \)
- Experimentally very challenging
 - small cross section (0.5 pb)
 - complex estimation of backgrounds
INTRODUCTION

- Very rich experimental signatures
 - Top quarks can either decay hadronically or leptonically
- $b\bar{b}$ decay mode dominant for Higgs boson
- Leptonic decays through W, Z and τ have a non-negligible contribution
- Golden channel $H \rightarrow \gamma\gamma$ provides very low rate
THE MULTILEPTONIC CHANNEL

- $H \rightarrow bb \Rightarrow$ highest branching ratio but overwhelming background
- $H \rightarrow \gamma\gamma \Rightarrow$ clear resonant signature, but low branching ratio
- Multileptonic channel is the middle point in the background size / branching ratio trade-off

- Irreducible backgrounds: $t\bar{t}W$ and $t\bar{t}Z$ $\sigma \sim \mathcal{O} (1 \text{ pb})$
- Reducible backgrounds: $t\bar{t}$ ($\sigma \sim 800 \text{ pb}$) (fake or non-prompt leptons)
Event Selection

- Two same-sign leptons (e or μ)
- At least 4 jets
- Two “loose” or one “tight” b-tagged jets
- MET LD > 0.2 (ee)

- At least three leptons (e or μ)
- At least two jets
- Two “loose” or one “tight” b-tagged jets
- MET LD > 0.2 if less than 5 jets
BACKGROUND REDUCTION

NON-PROMPT LEPTONS

- Non-prompt leptons those not coming from W or Z decay
 - misidentified jets or photons
 - μ produced in b decays
- Have built lepton identification criteria optimized to reject non-prompt leptons
- BDT is used to discriminate between:
 - prompt leptons, coming from leptonic W, Z and τ decays
 - leptons coming from other sources: misidentified jets, b quark decays

- Trained in $t\bar{t}H$ and $t\bar{t}$ samples
- Using observables related to the lepton reconstruction and variables related to particles reconstructed around the lepton

![Lepton BDT Score Distribution](image)
BACKGROUND SEPARATION

REDUCIBLE BACKGROUNDS

- BDTs in order to discriminate between $t\bar{t}H$, $t\bar{t}$ and $t\bar{t}V$
- Trained using kinematic variables of the objects, matrix element weights, BDTs targeting top and Higgs decays
BACKGROUND SEPARATION

HADRONIC TOP AND HIGGS TAGGERS - 2LSS

- Discriminant targeting hadronic top decays
- Constructed over all jet permutations in the event, trained against $t\bar{t}$

- Discriminant targeting $H \rightarrow WW \rightarrow l\nu + \text{jets}$ decay
- Constructed over all jet permutations in the event, trained against ttV
The matrix element weight is used as an input in the 3l channel.

Computationally expensive method.

Very well performant against $t\bar{t}W$.

$$w_{i,a}(\Phi') = \frac{1}{\sigma_a} \int d\Phi \cdot \sigma^4 \left(p_1^\mu + p_2^\mu - \sum_{k \geq 2} p_k^\mu \right) \cdot \frac{f(x_1, \mu_F) f(x_2, \mu_F)}{x_1 x_2^s} \cdot \left| M_a(p_k^\mu) \right|^2 \cdot W(\Phi' | \Phi_a)$$
BACKGROUND ESTIMATION

- Background due to nonprompt and charge misidentified leptons estimated using data-driven methods
- Nonprompt is estimated from control regions with loose lepton identification criteria
- Charge misidentification is estimated from control regions with two opposite-sign dilepton
- Contribution from $t \bar{t}W$ and $t \bar{t}Z$ estimated using MonteCarlo simulation
- Estimation validated in dedicated control regions
CATEGORIZATION AND SIGNAL EXTRACTION

CHANNELS

- Events are further categorized
 - dilepton, three lepton and four lepton channel
 - charge, lepton flavor (2l) and presence of tighter b-jets
Further categorization is performed in bins of a likelihood score.
The likelihood discriminant is a mapping of the 2D plane spanned by the two BDTs.
Results

- Measurement of the $t\bar{t}H$ production cross-section of a 50% uncertainty
- Observed (expected) significance w.r.t. $\mu(t\bar{t}H) = 0$ hypothesis: 3.3 (2.4) σ
HALLENGES FOR THE FUTURE

- Analysis very optimized for the current detector conditions
 - Using elaborate data-analysis techniques (BDT + likelihood discriminator)
 - ...trained with non-trivial variables (matrix elements, BDTs)
 - Using data-driven techniques for many of the main backgrounds
- ...leading us to a result of 3-σ-sensitivity analysis

- However this might not be enough to drive us to a 5-σ observation with higher luminosity
- Simpler cut-and-count analysis might be more suitable to use for recast or reinterpretations
Thanks for your attention!
Questions?