[TIT 'I 'Ll 1'.-".
: FE-F U [

Introduction to ROOT
Practical Session

Data Analysis Framework

Luca Fiorini

IFIC Summer Student 2016
July 11th 2016

Content

* Practical introduction to the ROOT
framework
— Starting ROOT — ROOT prompt
— Macros— Functions
— Histograms - Files
— TTrees — TBrowser
— Pyroot
* Nomenclature
— Blue: you type it
— Red: you get it

Macros and slides are in
http://lwww.ific.uv.es/~fiorini/ROOTTutorial

ROOT Tutorial — Luca Fiorini 2

ROOT in a Nutshell

* ROOT is a large Object-Oriented data handling and
analysis framework

— Efficient object store scaling from kB’s to PB’s
* C++ interpreter

 Extensive 2D+3D scientific data visualization
capabilities

* Extensive set of multi-dimensional histograming, data
fitting, modeling and analysis methods

 Complete set of GUI widgets
* Classes for threading, shared memory, networking, etc.

* Parallel version of analysis engine runs on clusters
and multi-core

* Fully cross platform: Unix/Linux, MacOS X and
Windows

ROOT Tutorial — Luca Fiorini 3

ROOT in a Nutshell (2)

* The user interacts with ROOT via a graphical
user interface, the command line or scripts

* The command and scripting language is C++

— Embedded C++ interpreter CINT (ROOT5)/ CLING
(ROOT6)

— Large scripts can be compiled and dynamically
loaded

And for you?
ROOT is usually the interface (and sometimes the barrier)
between you and the data

ROOT Tutorial — Luca Fiorini 4

ROOT: An Open Source Project

The project was started in Jan 1995
* First release Nov 1995

The project is developed as a collaboration between:
— Full time developers:

« 7 people full time at CERN (PH/SFT)
* 2 developers at Fermilab/USA

— Large number of part-time contributors (160 in CREDITS file)

— Along list of users giving feedback, comments, bug fixes and many small
contributions

* 5,500 users registered to RootTalk forum
* 10,000 posts per year

An Open Source Project, source available under the
LGPL license

Used by all major HEP experiments in the world

Used in many other scientific fields and in
commercial world

ROOT Tutorial — Luca Fiorini

ROOT: Graphics

— I < - | __|Entries 57
Eile Edit View Opfions Inspect Classes Help 14 L : B
sl | A Histogram | C Mean 27.85
stats; TPaveStats E 12 ;
Line —— — 1100 h1 + -
Ll 2 = B 02431 -
[— F ean ; _
: 10005 | cus 0.5817 100
i E 221 ndf 220.7/17 + =
LI 900 | Constant 3.573e+007+ 15916350 -
Text o Mean 27.63+0.55 B—
B - [Defautt =] 800 Sigma 5.811+ 0.265 L
6. helvetica bold - = -
12 Middle, Left - 700 6 C
Stat Options = r
¥ Name I Entries l I~
" overflow T Mean BODZ 4 C
" Underflow I RMS = L
" skewness I Intearal 500 B
[T Kurtosis I Ermors B 2—
Fit Options 400E I
W values I Emors } B
™ Probaility I Chi . L
annl . 0
| Momentum 730-830 MeVic |
{ 06 08 1
== T I]
Saof ¢t bH, H —>1v |
30_ i . USRI SRVSPNRNIO R
20
7 ; -..+ *
Bl NG S . — U g
Maximal mixing
2 i T
| | gl b
gbh—tH,H —tb
e I el cbyaaa ki

5600

150 200 250 300 350 400 450 500
m, (GeV)

ROOT Tutorial — Luca Fiorini

ROOT: Graphics

TGLParametric

ROOT Tutorial — Luca Fiorini

ROOT: Graphical Interfaces

Help File Miew Options Help

File Edit “iew Options Inspect Classes

style | Binnin o hér =1 &=l [z, = ol
I ol dedx'logp Entries 50000 3 ttorials 7] E o EI_ILI il OF“””l j
Mame Mean x 0.1238 All Folders \Cnmems of "/homesonuchinfroottutorials”
hérTHZF Mean y 7.751
) . (Croot - ;l
Line ———————— Emg ; 0'15}3; [CAPROOF essions oy
- |v I1 — j' - [mameionuchiniroot g
1— - hisimple rh hiakels1.C
- [CIREADME
C 1~ - Claten hlabels2.C
(D asimage
Tifle ————————— ~Dath g"’: gﬂ: %-H-:
dedxlogp (Cbase —
[build hprod C haery C hserv2
Flot -Ectirp
C 20 & 3D -Eeint
[Cointex
Type: | 5urfl = Dctarern D
Coords: | Cartesian | = ~{(clity
hairngle oy himple.rl
Cant # 40 = ~-[Jconfig r—
on ZI (Eoont hsimple.C
I” Ermors M Front [deache =l =
W Paletie [¥ Back 334 Dbieots, 1 selested [hada c JJ
Bar
W:[1.00 3 O:f 0.00 3
Z’ Z’ & ROOT Session Viewer
Frame Fill
D |v - |. File Session Query Oplions
Iarker

— BE - [x1 &le] 8 ¢
L |

Status | Results | Edit Query
Fri Sep 23 10:14:26 2005 Local]
o Prost cluster ;
T Skt | b
i 3 Query 1
{5 oo cecon i FE] ' iope [s -
Object Browser | Tres Selections | GLCanvas | L InputList e
Color Wheel Basic Col
olor Whee! | Basic Colors | ColorWheel Basic Colors | G ceomety = [0 | [0utputList -
o —_ = 7 (£ Orgin maker =
FremEE - D temn e @ oueyz _ s | ua
Red [153 el T 4| Red: [153 j::ss RenderElement > e
rsen: [257 rFEEEEE Green: [z57 ot ™ Rorseir ¥ Rrrchildren [l |~ Ef— -
o o | MCEEEC o [i~ Teoia 2 K Bertran Aot =
5 EEEEEE S| 255 & [CaHPiD Mafo | 4500 3 o d | o
@ Cewnt -
it 0| ® B arcoe! e ““:E'I.,
s T EEEEEN e & FErC e Max Orits: 05 3 " "
S WO e = r:g;rg:;mwm i Anges| 4502 PROOF cluster: "kh0130.cem.ch” - 16 worker nodes
- = v CJESD sk 8177 osta[0100 4] _
wm [255 Custom Colors Lom: [z = o 201les, 20000 events, starting event 0
. Do || (el _c0zfl o3
7 7 CaEsDk 9112 e 73%
Hew: khzure-9 WS B 7 CJEsDTack 782 W Renfertracks [T S
v CaEsDTIack 4670 I Render markers
il Addto Custom Colors. [@REsoTI 8410 T Estimated time left: 3.4 sec (14680 events of 0 processed)
FCEsDTock 455 oL = =
L L paen e | T oo
FCEsDock 28 Processing Rate : 1579.0 eventsisec
e o
(3 Cancel | Preview oK Cancel | Preview —] — | ' Query Result Ready for session-0-1xb0130-11| PRODF Cluster Proof cluster ready | M ooot2a /J

ROOT Tutorial — Luca Fiorini

ROOT Application Domains

S g, .
y ¢’ \ 8
»
e
' pAPaY
/

ACD & Tag ! Event b
Aeconstruction Bullders Selection ™ :

Esp - AOD RootTuple PostScript

N— 7

Data Storage: Local, Network

ROOT Tutorial — Luca Fiorini 9

ROOT Download &

Download Documentation News Support About Development Contribute

[

Getting Started Reference Guide Forum Gallery

CMS and LHCb (LHC run 1)

ROOT is ...

A modular scientific software framework. It provides all the
functionalities needed to deal with big data processing, statistical
analysis, visualisation and storage. It is mainly written in C++ but
integrated with other languages such as Python and R.

Try it in your browser! (Beta) Previous Pause Next

— Binaries for common Linux PC flavors, Mac OS, Windows (ROOTY5)
* Source files
Before Installing ROOT, add dependencies, discussed here:
https://root.cern.ch/build-prerequisites

— Linux and MacOS: ROOT6 preferred |f nothing works:

— Windows: ROOT5 http://root.cern.ch/notebo
oks/rootbinder.htmi

Installation guide at:
https://root.cern.ch/installing-root-source

ROOT Tutorial — Luca Fiorini

http://root.cern.ch/

ROOT Resources

* Main ROOT page
— http://root.cern.ch

* Class Reference Guide
— http://root.cern.ch/root/html

* C++ tutorial
— http:/lwww.cplusplus.com/doc/tutorial/
— http://www-root.fnal.gov/root/CPlusPlus/index.html

* Hands-on tutorials:
https:/Iroot.cern.ch/courses

ROOT Tutorial — Luca Fiorini 11

ROOT Prompt

* Starting ROOT

$ root $ root -l (without splash screen)
$ root -h
* The ROOT prompt
root [] 2+3 root[]inti=42
root [] log(5) root [] cout << i << endl;

root [] TMath::Pi() // try to type also TMath::Pi
Command history
— Scan through with arrow keys T
— Search with CTRL-R (like in bash)
Built-in commands:
root[] .? /lor .help
Online help
root [] new TF1(<TAB>
TF1 TF1()

TF1 TF1(const char* name, const char* formula, Double_t xmin = 0,
Double_t xmax = 1)

ROOT Tutorial — Luca Fiorini 12

ROOT Prompt (2)

* Typing multi-line commands

root [] for (i=10; i>0; i--) {cout << i <<
endl;}; cout << “BOOM!!” << endl;

or

root [] for (i=0; i<3; i++) {

end with '}, ‘@":abort > printf("%d\n",
i);

end with '}, ‘@':abort > }

* Aborting wrong input

] -] Don't panic!
root [] printf("%d\n, i) Don't press CTRL-C!
end with *;', '@":abort > @ Just type @ or .@

ROOT Tutorial — Luca Fiorini 13

ROOT Macros

It is quite cumbersome to type the same lines again
and again

Create macros for commonly used code
Macro = file that is interpreted by CINT/CLING

int myfirstmacro(int value)

{
int ret = 42; i
ret += value; save as myfirstmacro.C
return ret;

}

Execute with root [0] .x myfirstmacro.C(10)

Or root [0] .L myfirstmacro.C

root [1] myfirstmacro(10)

ROOT Tutorial — Luca Fiorini 14

Macros

* Combine lines of codes in macros

* Unnamed macro
— No parameters
For example: macro1.C

{
TRandom r;
for (Int_t i=0; i<10; i++) {
cout << r.Rndm() << endl;

Data types in ROOT
Int_t (4 Bytes)
Long64 _t (8 Bytes)
}

for (Int_t i=0; i<100000; i++) { to achieve platform-independency
r.Rndm();
}

}
* Executing macros
root [] .x macro1.C
$ root -l macro1.C
$ root —I —b macro1.C (batch mode = no graphics)
$ root - —q macro1.C (quit after execution)

ROOT Tutorial — Luca Fiorini 15

Compile Macros — Libraries

* "Library": compiled code, shared library
* CINT/CLING can call its functions!

* Building a library from a macro: ACLiC
(Automatic Compiler of Libraries for CINT)

* Execute it with a “+”
root [0] .x myfirstmacro.C(42)+

* Or
root [0] .L myfirstmacro.C+
root [1] myfirstmacro(42)

* No Makefile needed

* CINT knows all functions in the library
mymacro_C.so/.dll

ROOT Tutorial — Luca Fiorini 16

Compiled vs. Interpreted

* Why compile?

— Faster execution, CINT/CLING has some
limitations...

* Why interpret?

— Faster Edit - Run — Check result — Edit cycles
("rapid prototyping"). Scripting is sometimes just
easier

* So when should | start compiling?

— For simple things: start with macros
— Rule of thumb

* Is it a lot of code or running slow? - Compile it!
* Does it behave weird? > Compile it!
* Is there an error that you do not find - Compile it!

ROOT Tutorial — Luca Fiorini 17

Functions

* The class TF1 allows to draw functions
root [] f = new TF1("func”, "sin(x)", 0, 10)
— "func" is a (unique) name O— i
— "sin(x)" is the formula
— 0, 10 is the x-range for the function
root [] f->Draw()

* The style of the function can be
changed on the command line or
with the context menu (2 right clil__

root [] f->SetLineColor(kRed) l

* The class TF2(3) is for 2(3)-dimensional functions

sin;x]

1.0

0.5

0.0

-1.0
v bvve b be v b been s b b b b v ns
0 1 2 3 4 5 6 7 8 9 10

Canvas

ROOT Tutorial — Luca Fiorini 18

Pointers vs. Value Types

* A value type contains an instance of an object
* A pointer points to the instance of an object
* Create a pointer
root [] TF1* f1 = new TF1("func”, "sin(x)", 0, 10)
* Create a value type
root [] TF1 f2("func", "cos(x)", 0, 10)

* One can point to the other

TF1 f1b(*f1) Il dereference and create a copy
TF1* 2b = &f2 Il point to the same object

ROOT Tutorial — Luca Fiorini 19

Functions

root[] TF1 *f1 = new TF1("f1","gaus(x)",0,10)
root[] TF1 *f2 = new TF1("f2","10.-x",0,10) 1°
root [] f2->SetParameter(0,1)

root [] f2->Draw()

root [] f1->SetParameter(0,2) 6 .
root [] f1->SetParameter(1,4) f -
root [] f1->SetParameter(2,2.5) 4 -
root [] f1->Draw() 23_ B
root [] TF1 *f3 = new TF1("f3","f1+f2",0,10) - .
root [] f3->Draw() of .
root [] f3->SetParameter(0,3) * Now play a bit with the function class
root [] f3->SetParameter(2,0.5) and graphical options.

root [] f3->Draw() .

Can you change the background
shape from a linear function to an
exponential function?

How to save the graphical window (it
is called Canvas)?

* code in function.C

root [] f2->Draw(“same”)

root [] f1->SetParameter(0,3)
root [] f1->SetParameter(2,0.5)
root [] f1->Draw(“same”)

ROOT Tutorial — Luca Fiorini 20

Histograms

Contain binned data — probably the most important
class in ROOT for the physicist

Create a TH1F (= one dimensional, float precision)

root [] h = new TH1F("hist", "my hist;Bins;Entries”, 10, 0, 10)

— "hist" is a (unique) name

— "my hist;Bins;Entries" are the title and the x and y labels

— 10 is the number of bins CIN— ol

ile Edit View Opti

— 0, 10 are the limits on the x axis. [mms e

Thus the first bin is from0to 1, | §«w _— 1
the second from 1 to 2, etc. "
Fill the histogram :

root [] h->Fill(3.5) N .
root [] h->Fill(5.5) 1 A bin includes the lower limit,

but excludes the upper limit

D'ofllI‘lllllIlllll“”“””‘llllIllllllllllllllllll

2 3 4 5 6 7 8 9 10
s

0.6 —

Draw the histogram
root [] h->Draw()

ROOT Tutorial — Luca Fiorini 21

[t =

n Eile Edit ¥iew OQOptions Tools Help
dndeta_check_vertex
Entries 15392
as500 Mean 0.1269

root [] TH1F h("h","h",80,-40,40) w50 Mm

root [] TRandom r; 3005 -
root [] for (i=0;i<15000;i++) { h.Fill(r.Gaus(0,7));} | =
root [] h.Draw() 2005

150;

SethMinimum

* Rebinning "
root [] h.Rebin(2) U

DrawClass
Pl

* Change ranges/canvas
— with the mouse, very easy! CON— -2

— with the context menu _— it e st

— command line P
root [] h.GetXaxis()-> oo |
SetRangeUser(2, 5)

H SetCrosshair
 Loa-view
SetFixedAspectRatio
SetGridx

— right-click in the white area at the

Setlogx

side of the canvas and select
SetLogx (SetLogy)

— command line

root [] gPad->SetLogy()

ROOT Tutorial — Luca Fiorini 22

> Fit Panel |

= = = Data Set: | TH1F:dndeta_check_vertex =]
Flttlng H Istog rams —Fit Fu-nctiun
Type: [Preder-1D =] |gaus =]
= Operation
* Interactive AT

|gaus

— Right click on the histogram
and choose "fit panel” gaus
— Select function and click fit Genera! | winimization|

— Fit Settings

Set Parameters...

— Fit parameters e o
 are printed in command line Linear fi
* in the canvas: options - fit o Robust [0 g chi-square
parameters " -
[~ Best errors [Improve fit results

[Allweights =1 ™ &dd to list

{ Com ma n d I i ne [T Empty kins, weights=1 [~ Use Gradient

Crrawy Options

root [] h.Fit("gaus") r sMe

[T Mo drawing

- Other predefined funCtionS I™ Do not store/draw Evancedn |
poIN (N = 0..9), expo, landau K 4000 2

* Try to fit the histogram with i
different funCtionS. | TH1Figndeta, | LIB Minuit | MIGR&D | Itr:0 | Prri; DEF 7

ROOT Tutorial — Luca Fiorini 23

Fitting Histograms

> [} b Fit Panel

File Edit View File Edit View Opfions Tools Help pataset |THIF:n2 -

FT LI T T T T LI L Kz J" ndf 89.35 JI’ 90 Fit Function
a00F ' ' ' ! Prob 0.4996 Type: [Preger-10 7] |gaus -
- Constant 300.6 + 3.7 Operation
- Mean 4.002 £ 0.005 @ Nop € Add C NormAdd ¢ Gonv
250 Sigma 0.4936 + 0.0036
N n gaus
C n Selected:
200 L] gaus Set Parameters
150; 1 General | Minimization
:] Fit Settings
r n Method
100— —] Chi-square hd
E E I Linear it - 095
50— - Fit Options
: T ™ Integral " Use range
0— i MRS N " Besterrors I Improve fit results
2-5 3 3-5 4 4-5 5 5-5 6 " All weights = 1 " Add to list

" Empty bins, weights=1 " Use Gradient

Draw Options

[T SAME
i h.Fill(ando 1 " Mo drawing

" Do not store/draw Advanced

-

X| 280 ==

1++]
pi++) { hZ2.FiLL(fL

Update Fit Reset Close

THIF:h2

LIE Minuit MIGRAD Itr: 0 Pm: DEF

ROOT Tutorial — Luca Fiorini

Fitting Histograms (2)

* Now edit function.C —
root [] TH1F A

h("h","h",100,0,0); //auto range .
root [] for (i=0;i<10000;i++) ok
{ h.Fill(f3->GetRandom());} o0

bt
Y
(5]
— 'm
gﬂ-‘" .
io
e N
o
|+'m-|
;
o8>
o m
|wmofg~4m

I|III|III|III|III|III|III|III'N|

root [] //create random "
numbers according to a N Y S Y

function distribution
root [] h.Draw()
* Try to fit the the histogram:
root [] TF1* f4 = new TF1(“f4”,”.....”,0,10)

* Tip: A Gaussian function can be written as:
[0]*TMath::Exp(-0.5* ((x-[1])/[2])*((x-[1])/[2]))

ROOT Tutorial — Luca Fiorini 25

Eile Edit Miew

2 D H IStOg I'amS : scatter plot
root [] h->Draw() "k
root [] h->Draw("LEGO") e PP
rOOt [] h2->DraW("COLZ") 5:;_.' 200 a0 eo s 1000
@Enwwmglm_ _I_ijl true multiplicity
: i colored plugt .i

i
|||‘|:|\';|'

- 1.5
i
- 0.5

% get nicer colors in COLZ plots by
gStyle->SetPalette(1, 0)

NB: h and h2 are in file hist2.root

ROOT Tutorial — Luca Fiorini 26

Files

* The class TFile allows to store any ROOT object on the
disk
* Create a histogram like before with
TH1F* h = new TH1F("h", "my hist;...", 10, 0, 10)
THA1F hist("hist, "test", 100, -3, 3);
hist.FillRandom("gaus™, T006):— "hist" will be the name in the file
etc.
* Open afile for writing

root [] file = TFile::Open("file.root", "RECREATE")
* Write an object into the file l
root [] h->Write()
root [] hist->Write() :EXVD
- Close the file RECREATE
root [] flle'>C|Ose() UPDATE

ROOT Tutorial — Luca Fiorini 27

Files (2)

* Open the file for reading

root [] file = TFile::Open("file.root") 1 Object ownership

* Read the object from the file After reading an
root [] hist->Draw() object from a file
(only works on the command line!) don't close it!

* In a macro read the object with ST FEL

object is not in
memory anymore

TH1F* h = 0;
file->GetObject("hist", h);

* What else is in the file?
root[].ls

* Open a file when starting root

$ root file.root
— Access it with the _file0 or gFile pointer

ROOT Tutorial — Luca Fiorini 28

1=
rowse r Eile Miew Options el

[Snistz root =l s |m| Qo] v OF’“U“I—L,

|.'5.II Folders |C0ntents of YROOT Files/histZ root”

(root Bz lyn
[CIPROOF Sessions

[/afsicern chiuseniigrossenssum

 The TBrowser can be used > B
— to open files
— navigate in them
— to look at TTrees

« Starting a TBrowser b= y
root [] new TBrowser

* O pe n a fl Ie D] Ouns _IEHIEI—F]I
° Navigate th roug h the file |3 Particles =l _I_ _|_|g| & ommnl—_," =
|.-5.II Folders |C0ntems of YROOT Files/Kinematics root/EventliTreeksFaricles
1 [root Zh Enerav(3 i Eta) I GetFirstDaughter()
* D raw a h IStog ra m EF‘HUUF Giessions - Y GetFiZtMother() 3 GetlastDaughter) S GetNDaughtgers()
fafsicern.chiuserifigrosseatsum % GetSecondMatheryy % I5Prirmaey) % P
* Change the standard style oo | o B
H :L: Iiien::iocs rog & finet) * I % TAID
- DI’Op down menu In the tOp = aﬁ:-ﬁaa:mﬁ ' f:ézt::e ,ﬁ:[?biec;t . g:zetao
] i] CMlass anghiter
r|g ht corner m.- | 3 oothertz) s fPdgCade fPolar Phi
A t ; ;fPola.rTheta %f?x §ny
(Y ccess a ree fFz fatatusCode it
F o S Ftvz
I rveight
* Plot a member .| —
| 34 Opjects. [1Ps 4

ROOT Tutorial — Luca Fiorini 29

Graphs

A graph is a data container filled with distinct points

* TGraph: x/y graph without error bars

* TGraphErrors: x/y graph with error bars
 TGraphAsymmErrors: x/y graph with asymmetric error bars

4ua h Exam Ie Average vertex position
graph = new TGraph; =10
graph->SetPoint(graph->GetN(), 1, 2.3);
graph->SetPoint(graph->GetN(), 2, 0.8);
graph->SetPoint(graph->GetN(), 3, -4);
graph->Draw("AP");
graph->SetMarkerStyle(21);
graph->GetYaxis()->SetRangeUser(-10, 10);
graph->GetXaxis()->SetTitle("Run number");
graph->GetYaxis()->SetTitle("z (cm)");
graph->SetTitle("Average vertex position");

Zz(cm

& b A o N B & @
T T TTT TT T T TT |\||||| TT T[T 7T T T 11T

1
—
(=)

T

1.0 1.5 2.0 2.5 3.0
Run number

ROOT Tutorial — Luca Fiorini 30

Graphs (2)

TGraphErrors(n,x,y,ex,ey)

TGraph(n,x,y) 12— | | ge_rrors_Z.C |

Y title
T

TCutG(n,x,y) B R

TMultiGraph

1.2
X title

TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh)

ROOT Tutorial — Luca Fiorini 31

Graphics Objects

* You can draw with the
command line

* The Draw function adds the

object to the list of root [] TText text(.5,.2,”Hello”)
primitives of the current pad

* If no pad exists, a pad is
automatically created Canvas

* Apadis embedded ina
canvas

|
|
|
|
* You create one manually |
with new TCanvas :
|
|
|
|
|
|

root [] TLine line(.1,.9,.6,.6)

root [] line.Draw()

root [] text.Draw()

— A canvas has one pad by
default

— You can add more

B e o e o e e e — —

ROOT Tutorial — Luca Fiorini 32

More Graphics Objects

TLine TArrow TEllipse
TBox TButton\ Q %‘l
lest T TCurvyLine
TText v
TMarker
TPavesText Hello CERN
TPavesText
TCrown ‘ in) "m TPavelLabel
a pa .
TCurlyArc “'n S,
2 ‘*4» :. - 1*‘
a2+[3 %" TPolyLine

TLatex

Can be accessed with the toolbar
View = Toolbar (in any canvas)] el I e e K | e em] o} [R A R A e

ROOT Tutorial — Luca Fiorini 33

Graphics Examples

Concentration of elements derived from mixture Ca53+Sr78 | 2 Nult) ot
xR, (t=0) 2=%®
o 1
m -
S
o . 0
S CDF Run |l Prefiminary 'j L =1.0fb" W+
E —+— Diat=@550k" NEY Prelirmins r | .
[WeHoawF! i : = L —
-1 [mi=tag L 5 gnal win .
10 B oo > 60[- TGLParametric
[Cibeson®- 3 o . Data
[e TpieSir o _
Baschgraund ﬁ I~ Tﬂfa]r bkgd.
W 10 m, T 40 -===M,= 120 GaV
o |
c S -1
S 20[260 pb L
_ R T - o
30 150 200 250 300 38 0 100 200 300 400 500
- FLAS
Dijet Mas_ . __ .._ | Di |et mass .(.EFH)._. — imf".’, —
\ matk mix ng

LEP 2000
25 3 >

dE/dx (mlps)
] gb—)tH H —>tb

L
T F 3 %0 100 150 200 250 300 350 400 450 500

m, (GeV)

8 8

[o]=]
w [TT[TTTT
—
-
wun
[+

ROOT Tutorial — Luca Fiorini 34

What is a ROOT Tree?

* Trees have been designed to support very large
collections of objects. The overhead in memory is in
general less than 4 bytes per entry.

* Trees allow direct and random access to any entry
(sequential access is the most efficient)

The class TTree is the main container for data storage

It can store any class and basic types (e.g. Float_t)

When reading a tree, certain branches can be switched off
- speed up of analysis when not all data is needed

1 "Event" Branches File
=

point

X

y
z

HI
Events

ROOT Tutorial — Luca Fiorini

Trees

Trees are structured into branches and leaves. One can read
a subset of all branches

High level functions like TTree::Draw loop on
all entries with selection expressions

Trees can be browsed via TBrowser

Trees can be analyzed via TTreeViewer
1 "Event" Branches File

point

X

y
z

[]
ol

Events

ROOT Tutorial — Luca Fiorini

TTree - Writing

* You want to store objects in a tree which is

written into a file
Initialization

root [|

"REC

root [|
root [|
root []
root [|
root [|
root [|
root [|

ROOT Tutorial — Luca Fiorini

R

TFile* f = TFile::Open("events.root",

EATE");

TTree* t = new TTree("Events","Event Tree");
Int_t vari;

Float_t var2;

Float_t var3;
t->Branch("var1", &var1, “var1/1”);

t->Branch("var2", &var2, “var2/F”);

t->Branch("var3"”, &var3, “var3/F”);

37

TTree - Writing

root []
root |

Fl" the TTree root 2

| var1=1; var2=7; var3=4.5;

TTree::Fill copies content of root [] t->Fill();

member as new entry into the tree
Inspect the tree

var1=5; var2=3.1; var3=10.;

] t->Fill();

Flush the tree to the file oo, 1\ >crowy)

close the file

root [] t->Write();
root [] f->Close();

Code is in:
simpletree.C

ROOT Tutorial — Luca Fiorini

38

TTree - Reading

* Open the file, retrieve the tree and connect
the branch with a pointer to TMyEvent

TFile *f = TFile::Open("events.root");
TTree *tree = (TTree*)f->Get("Events");
Float_t var2;
tree->SetBranchAddress("var2", &var2);

* Read entries from the tree and use the
content of the class

Int_t nentries = tree->GetEntries(); Code is in: readtree.C

for (Int_t i=0;i<nentries;i++) { A quick way to
tree->GetEntry(i); brom{se through a
cout << var2 << endl; tree is to use a

} TBrowser or

TTreeViewer
ROOT Tutorial — Luca Fiorini 39

Trees (2)

* Accessing a more complex objects from non-
standard classes

— Members are accessible even without the proper class
library

— Might not work in all frameworks

 Example: eventdata.root (containing kinematics from
ALICE)

$ root eventdata.root
root [] tree->Scan();
root [] tree->Scan("*");
root [] tree->Scan("fParticles.fPosX:fParticles.fPosY:fParticles.fPosZ");

root [] tree->Scan("fParticles.fPosX:fParticles.fPosY:fParticles.fPosZ",
“fParticles.fPosX<0' ")

ROOT Tutorial — Luca Fiorini 40

Trees (2)

* Accessing a more complex objects from non-standard
classes

— Members are accessible even without the proper class library
— Might not work in all frameworks

* Example: eventdata.root (containing kinematics from
ALICE)

$ root eventdata.root
root [] tree->Draw("fParticles.fPosX")

root [] tree->Draw("fParticles.fPosY:fParticles.fPosX")
root [] tree->Draw("fParticles.fPoxY", "fParticles.fPoxX< 0")

* Perform more complex
selections ¥
* Plot 1D, 2D histograms with ==~
different styles A
* Perform fits of some of these e
* d i Strl b u ti ons % EEHE:EEQS

- iy fPart ags]128)

LBy @sa

-3 fEventSiz

ROOT Tutorial — Luca Fiorini 41

Machine Learning

 Example of advanced statistical analysis:
— Read from a tree the event variables for:

* “signal” process, e.g. a simulation of a new
phenomena you are looking for.

* simulation of a “background process you want to
separate the signal from.

— Build a Neural Network with these variables, whose
separation of the signal to background is much better
than the each of the input variables.

— Launch the macro: mipHiggs.C

— Check the contents of the macro and of the
mipHiggs.root file:
TFile::Open("http://root.cern.ch/files/mlpHiggs.root")

ROOT Tutorial — Luca Fiorini 42

Machine Learning

Fr T ' " |— @msumf
— @ptsumf
0%k @acolin acok ’ ‘
é“ | A AN

\\l@\/

NNA

XX
SvA

10

@ms

220;_I I I?I T e o @ Background 450§_I - Iq e e o %B“k?“‘"ﬂmw}
200 E_ <@ Signal _ 400 i— 4 Signal (Higgs) i
1405 3 300 E
120 = 250F- =
100E E 200E E
"3 3 E 150F 3
22; :; 1005 E
20F = S0E E

0: I T B ot | s = I N

0402 0 02 04 06 08 1 1.2 1.4 0402 0 02 04 06 08 1 1.2 1.4

ROOT Tutorial — Luca Fiorini 43

PyRoot

ROOT is developed in C++ and has a native C++ interpretar,
but it is interfaced also to other languages, such as python.

Open (i)python:

In [1]: import ROOT "B pgthOﬂ

In [2]: h = ROOT.TH1F("h", "h", 100, 0, 0)

In [3]: h.GetName() = TS
out[3]: 'h' File Edit Yiew Options Tools Help
In [4]: = ROOT.TRandom() ssf T
In [5]: for i in xrange(0,1000): h.Fill(r.Gaug ElN
In [6]: h.Draw() s

20F

Now you can redo all the 5t
tutorial in python if you wish! -

ROOT Tutorial — Luca Fiorini 44

RootBook

Interactive ROOT in your Browser!
https://app.mybinder.org:80/3000949792/notebooks/index.ipynb

ROOT_Example (unsaved changes) Terminal
File Edit Wiew Insert Cell Kernel Help ROOT C++ O
+ < @ B 4+ % M B cCode A CellToolbar

How to write a C++ ROOTBook

In order to use a C++ ROOThook, just start the ROOT kernel. That's it. We will see also how the user can mark cells containing C++ statements with the
%%epp magic.

In [1]: cout =< "From this point on...\n"
<< "... it's only C++ ..." =< endl;

From this point on...

. it's only C++ ...

We now create a EOOT histogram and fill it with random numbers distributed according to a Gaussian.

In [2]: THIF h('gauss", "Example histogram",64,-4,4);
h.FillRandom("gaus");

Now, we create a canvas, the entity which holds graphics primitives.

In [3]: TCanvas c("myCanvasName", "The Canvas Title",1600,1200);
h.Draw()

For the histogram to be displayed in the notebook, we need to draw the canvas.

In [4]: c.Draw()

ROOT Tutorial — Luca Fiorini

ROOT is MUCH more

In this talk, | presented the most basic classes typically used
during physics analyses

Root CORE Classes | ROOT COntaInS
B ase - ‘ . many more
Cont|Meta| ZIP | Unix|winnT||Net Cint libraries, and has
Physics Geom Matrix Hist Tree _Rint_| several more
E @' \ Alien Castor appl Icatlons
) Graf q—‘ HistPainter RXML Chirp
Dcache RFIO
@I Minuit Fumili
RGL X3D
VirtualMC Postscript html
i TreePlayer MysaL | PgsaL
G3_vme | [G4_vme] G'Iad T Oracle | SapDB
‘\MLP | | Proof | Table Hbook
Thread Aslmage
Ged > Gui «—| TreeViewer | Ruby PyROOT

Arrows show lib dependencies ’WI | GX11 I |GX11TTFI ’G—Qtl W
CINT can be used independentl < - i
Green libs loaded by Plu::nMana:er ROOT lerarl eS DependenCIes

ROOT Tutorial — Luca Fiorini

46

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

