
Introduction to ROOT
Practical Session

Luca Fiorini

IFIC Summer Student 2016

July 11th 2016

ROOT Tutorial – Luca Fiorini 2

Content

• Practical introduction to the ROOT
framework
– Starting ROOT – ROOT prompt
– Macros– Functions
– Histograms – Files
– TTrees – TBrowser
– Pyroot

• Nomenclature
– Blue: you type it
– Red: you get it

Macros and slides are in
http://www.ific.uv.es/~fiorini/ROOTTutorial

ROOT Tutorial – Luca Fiorini 3

ROOT in a Nutshell

• ROOT is a large Object-Oriented data handling and
analysis framework
– Efficient object store scaling from kB’s to PB’s

• C++ interpreter
• Extensive 2D+3D scientific data visualization

capabilities
• Extensive set of multi-dimensional histograming, data

fitting, modeling and analysis methods
• Complete set of GUI widgets
• Classes for threading, shared memory, networking, etc.
• Parallel version of analysis engine runs on clusters

and multi-core
• Fully cross platform: Unix/Linux, MacOS X and

Windows

ROOT Tutorial – Luca Fiorini 4

ROOT in a Nutshell (2)

• The user interacts with ROOT via a graphical
user interface, the command line or scripts

• The command and scripting language is C++
– Embedded C++ interpreter CINT (ROOT5)/ CLING

(ROOT6)

– Large scripts can be compiled and dynamically
loaded

And for you?
ROOT is usually the interface (and sometimes the barrier)
between you and the data

ROOT Tutorial – Luca Fiorini 5

ROOT: An Open Source Project

• The project was started in Jan 1995
• First release Nov 1995
• The project is developed as a collaboration between:

– Full time developers:
• 7 people full time at CERN (PH/SFT)
• 2 developers at Fermilab/USA

– Large number of part-time contributors (160 in CREDITS file)
– A long list of users giving feedback, comments, bug fixes and many small

contributions
• 5,500 users registered to RootTalk forum
• 10,000 posts per year

• An Open Source Project, source available under the
LGPL license

• Used by all major HEP experiments in the world
• Used in many other scientific fields and in

commercial world

ROOT Tutorial – Luca Fiorini 6

ROOT: Graphics

ROOT Tutorial – Luca Fiorini 7

ROOT: Graphics

“SURF”
“LEGO”

TF3

TH3

TGLParametric

ROOT Tutorial – Luca Fiorini 8

ROOT: Graphical Interfaces

ROOT Tutorial – Luca Fiorini 9

ROOT Application Domains

Data Storage: Local, Network

Data Analysis & Visualization

G
eneral Fram

ew
ork

ROOT Tutorial – Luca Fiorini 10

ROOT Download &
Installation

• http://root.cern.ch
– Binaries for common Linux PC flavors, Mac OS, Windows (ROOT5)

• Source files
Before Installing ROOT, add dependencies, discussed here:
https://root.cern.ch/build-prerequisites

– Linux and MacOS: ROOT6 preferred

– Windows: ROOT5
Installation guide at:
https://root.cern.ch/installing-root-source

If nothing works:
http://root.cern.ch/notebo
oks/rootbinder.html

http://root.cern.ch/

ROOT Tutorial – Luca Fiorini 11

ROOT Resources

• Main ROOT page
– http://root.cern.ch

• Class Reference Guide
– http://root.cern.ch/root/html

• C++ tutorial
– http://www.cplusplus.com/doc/tutorial/
– http://www-root.fnal.gov/root/CPlusPlus/index.html

• Hands-on tutorials:
 https://root.cern.ch/courses

ROOT Tutorial – Luca Fiorini 12

ROOT Prompt
• Starting ROOT

$ root $ root -l (without splash screen)
 $ root -h

• The ROOT prompt
root [] 2+3 root [] int i = 42
root [] log(5) root [] cout << i << endl;

 root [] TMath::Pi() // try to type also TMath::Pi
• Command history

– Scan through with arrow keys 
– Search with CTRL-R (like in bash)

• Built-in commands:
 root [] .? //or .help
• Online help

root [] new TF1(<TAB>
TF1 TF1()
TF1 TF1(const char* name, const char* formula, Double_t xmin = 0,

Double_t xmax = 1)
…

ROOT Tutorial – Luca Fiorini 13

ROOT Prompt (2)

• Typing multi-line commands
root [] for (i=10; i>0; i--) {cout << i <<

endl;}; cout << “BOOM!!” << endl;
or
root [] for (i=0; i<3; i++) {
end with '}', '@':abort > printf("%d\n",

i);
end with '}', '@':abort > }

• Aborting wrong input
root [] printf("%d\n, i)
end with ';', '@':abort > @

Don't panic!

Don't press CTRL-C!

Just type @ or .@

ROOT Tutorial – Luca Fiorini 14

ROOT Macros

• It is quite cumbersome to type the same lines again
and again

• Create macros for commonly used code

• Macro = file that is interpreted by CINT/CLING

• Execute with root [0] .x myfirstmacro.C(10)

• Or root [0] .L myfirstmacro.C
 root [1] myfirstmacro(10)

int myfirstmacro(int value)
{
 int ret = 42;
 ret += value;
 return ret;
}

save as myfirstmacro.C

ROOT Tutorial – Luca Fiorini 15

Macros
• Combine lines of codes in macros
• Unnamed macro

– No parameters
For example: macro1.C
 {
 TRandom r;
 for (Int_t i=0; i<10; i++) {
 cout << r.Rndm() << endl;
 }
 for (Int_t i=0; i<100000; i++) {
 r.Rndm();
 }
}
• Executing macros

root [] .x macro1.C
$ root –l macro1.C
$ root –l –b macro1.C (batch mode  no graphics)
$ root –l –q macro1.C (quit after execution)

Data types in ROOT
Int_t (4 Bytes)
Long64_t (8 Bytes)
…
to achieve platform-independency

ROOT Tutorial – Luca Fiorini 16

Compile Macros – Libraries

• "Library": compiled code, shared library

• CINT/CLING can call its functions!

• Building a library from a macro: ACLiC
(Automatic Compiler of Libraries for CINT)

• Execute it with a “+”

 root [0] .x myfirstmacro.C(42)+

• Or
 root [0] .L myfirstmacro.C+
 root [1] myfirstmacro(42)

• No Makefile needed

• CINT knows all functions in the library
mymacro_C.so/.dll

ROOT Tutorial – Luca Fiorini 17

Compiled vs. Interpreted

• Why compile?
– Faster execution, CINT/CLING has some

limitations…

• Why interpret?
– Faster Edit → Run → Check result → Edit cycles

("rapid prototyping"). Scripting is sometimes just
easier

• So when should I start compiling?
– For simple things: start with macros
– Rule of thumb

• Is it a lot of code or running slow?  Compile it!
• Does it behave weird?  Compile it!
• Is there an error that you do not find  Compile it!

ROOT Tutorial – Luca Fiorini 18

Functions

• The class TF1 allows to draw functions
root [] f = new TF1("func", "sin(x)", 0, 10)

– "func" is a (unique) name

– "sin(x)" is the formula

– 0, 10 is the x-range for the function

root [] f->Draw()

• The style of the function can be
changed on the command line or
with the context menu ( right click)
root [] f->SetLineColor(kRed)

• The class TF2(3) is for 2(3)-dimensional functions
Canvas

ROOT Tutorial – Luca Fiorini 19

Pointers vs. Value Types

• A value type contains an instance of an object

• A pointer points to the instance of an object

• Create a pointer
root [] TF1* f1 = new TF1("func", "sin(x)", 0, 10)

• Create a value type
root [] TF1 f2("func", "cos(x)", 0, 10)

• One can point to the other
TF1 f1b(*f1) // dereference and create a copy

TF1* f2b = &f2 // point to the same object

ROOT Tutorial – Luca Fiorini 20

Functions
 root [] TF1 *f1 = new TF1("f1","gaus(x)",0,10)
 root [] TF1 *f2 = new TF1("f2","10.-x",0,10)
root [] f2->SetParameter(0,1)
root [] f2->Draw()
root [] f1->SetParameter(0,2)
root [] f1->SetParameter(1,4)
root [] f1->SetParameter(2,2.5)
root [] f1->Draw()
root [] TF1 *f3 = new TF1("f3","f1+f2",0,10)
root [] f3->Draw()
root [] f3->SetParameter(0,3)
root [] f3->SetParameter(2,0.5)
root [] f3->Draw()
root [] f2->Draw(“same”)
root [] f1->SetParameter(0,3)
root [] f1->SetParameter(2,0.5)
root [] f1->Draw(“same”)

 Now play a bit with the function class
and graphical options.

 Can you change the background
shape from a linear function to an
exponential function?

 How to save the graphical window (it
is called Canvas)?

 code in function.C

ROOT Tutorial – Luca Fiorini 21

Histograms

• Contain binned data – probably the most important
class in ROOT for the physicist

• Create a TH1F (= one dimensional, float precision)
root [] h = new TH1F("hist", "my hist;Bins;Entries", 10, 0, 10)
– "hist" is a (unique) name
– "my hist;Bins;Entries" are the title and the x and y labels
– 10 is the number of bins
– 0, 10 are the limits on the x axis.

Thus the first bin is from 0 to 1,
the second from 1 to 2, etc.

• Fill the histogram
root [] h->Fill(3.5)
root [] h->Fill(5.5)

• Draw the histogram
root [] h->Draw()

A bin includes the lower limit,
but excludes the upper limit

ROOT Tutorial – Luca Fiorini 22

Histograms (2)
root [] TH1F h("h","h",80,-40,40)
root [] TRandom r;
root [] for (i=0;i<15000;i++) { h.Fill(r.Gaus(0,7));}
root [] h.Draw()

• Rebinning
root [] h.Rebin(2)

• Change ranges/canvas
– with the mouse, very easy!
– with the context menu
– command line
root [] h.GetXaxis()->

SetRangeUser(2, 5)

• Log-view
– right-click in the white area at the

side of the canvas and select
SetLogx (SetLogy)

– command line
root [] gPad->SetLogy()

ROOT Tutorial – Luca Fiorini 23

Fitting Histograms
• Interactive
– Right click on the histogram

and choose "fit panel"
– Select function and click fit
– Fit parameters

• are printed in command line
• in the canvas: options - fit

parameters

• Command line
root [] h.Fit("gaus")
– Other predefined functions

polN (N = 0..9), expo, landau
• Try to fit the histogram with

different functions.

ROOT Tutorial – Luca Fiorini 24

Fitting Histograms

ROOT Tutorial – Luca Fiorini 25

Fitting Histograms (2)
• Now edit function.C
root [] TH1F
h("h","h",100,0,0); //auto range
root [] for (i=0;i<10000;i++)
{ h.Fill(f3->GetRandom());}
root [] //create random
numbers according to a
function distribution
root [] h.Draw()

• Try to fit the the histogram:
root [] TF1* f4 = new TF1(“f4”,”.....”,0,10)
• Tip: A Gaussian function can be written as:

[0]*TMath::Exp(-0.5* ((x-[1])/[2])*((x-[1])/[2]))

ROOT Tutorial – Luca Fiorini 26

2D Histograms

root [] h->Draw()

root [] h->Draw("LEGO")

root [] h2->Draw("COLZ")

NB: h and h2 are in file hist2.root

scatter plot

colored plot
lego plot

get nicer colors in COLZ plots by
gStyle->SetPalette(1, 0)

ROOT Tutorial – Luca Fiorini 27

Files
• The class TFile allows to store any ROOT object on the

disk
• Create a histogram like before with

TH1F* h = new TH1F("h", "my hist;…", 10, 0, 10)
 TH1F hist("hist", "test", 100, -3, 3);
 hist.FillRandom("gaus", 1000);
etc.
• Open a file for writing

root [] file = TFile::Open("file.root", "RECREATE")
• Write an object into the file

root [] h->Write()
 root [] hist->Write()
• Close the file

root [] file->Close()

"hist" will be the name in the file

NEW
READ
RECREATE
UPDATE
….

ROOT Tutorial – Luca Fiorini 28

Files (2)

• Open the file for reading
root [] file = TFile::Open("file.root")

• Read the object from the file
root [] hist->Draw()
(only works on the command line!)

• In a macro read the object with
TH1F* h = 0;
file->GetObject("hist", h);

• What else is in the file?
root [] .ls

• Open a file when starting root
$ root file.root
– Access it with the _file0 or gFile pointer

Object ownership
After reading an
object from a file
don't close it!
Otherwise your
object is not in
memory anymore



ROOT Tutorial – Luca Fiorini 29

TBrowser

• The TBrowser can be used
– to open files
– navigate in them
– to look at TTrees

• Starting a TBrowser
root [] new TBrowser

• Open a file
• Navigate through the file
• Draw a histogram
• Change the standard style

– Drop down menu in the top
right corner

• Access a tree
• Plot a member

ROOT Tutorial – Luca Fiorini 30

Graphs

• A graph is a data container filled with distinct points

• TGraph: x/y graph without error bars

• TGraphErrors: x/y graph with error bars

• TGraphAsymmErrors: x/y graph with asymmetric error bars

Graph Example
graph = new TGraph;
graph->SetPoint(graph->GetN(), 1, 2.3);
graph->SetPoint(graph->GetN(), 2, 0.8);
graph->SetPoint(graph->GetN(), 3, -4);
graph->Draw("AP");
graph->SetMarkerStyle(21);
graph->GetYaxis()->SetRangeUser(-10, 10);
graph->GetXaxis()->SetTitle("Run number");
graph->GetYaxis()->SetTitle("z (cm)");
graph->SetTitle("Average vertex position");

ROOT Tutorial – Luca Fiorini 31

Graphs (2)

gerrors2.C

TGraphAsymmErrors(n,x,y,exl,exh,eyl,eyh)

TGraph(n,x,y)

TCutG(n,x,y)

TGraphErrors(n,x,y,ex,ey)

TMultiGraph

ROOT Tutorial – Luca Fiorini 32

• You can draw with the
command line

• The Draw function adds the
object to the list of
primitives of the current pad

• If no pad exists, a pad is
automatically created

• A pad is embedded in a
canvas

• You create one manually
with new TCanvas
– A canvas has one pad by

default
– You can add more

Hello

root [] TLine line(.1,.9,.6,.6)

root [] line.Draw()

root [] TText text(.5,.2,”Hello”)

root [] text.Draw()

Graphics Objects

Canvas

Pad

ROOT Tutorial – Luca Fiorini 33

TButton

TLine TArrow TEllipse

TCurvyLine

TPaveLabel

TPave

TDiamond

TPavesText

TPolyLine
TLatex

TCrown

TMarker

TText

TCurlyArc

TBox

More Graphics Objects

Can be accessed with the toolbar
View  Toolbar (in any canvas)

ROOT Tutorial – Luca Fiorini 34

Graphics Examples

TGLParametric

TF3

ROOT Tutorial – Luca Fiorini 35

What is a ROOT Tree?
• Trees have been designed to support very large

collections of objects. The overhead in memory is in
general less than 4 bytes per entry.

• Trees allow direct and random access to any entry
(sequential access is the most efficient)

The class TTree is the main container for data storage
It can store any class and basic types (e.g. Float_t)

When reading a tree, certain branches can be switched off
 speed up of analysis when not all data is needed

point

x
y
z

x x x x x x x x x x

y y y y y y y y y y

z z z z z z z z z z

Branches File1 "Event"

Events

ROOT Tutorial – Luca Fiorini 36

Trees

Trees are structured into branches and leaves. One can read
a subset of all branches

High level functions like TTree::Draw loop on
all entries with selection expressions

Trees can be browsed via TBrowser

Trees can be analyzed via TTreeViewer

point

x
y
z

x x x x x x x x x x

y y y y y y y y y y

z z z z z z z z z z

Branches File1 "Event"

Events

ROOT Tutorial – Luca Fiorini 37

TTree - Writing

• You want to store objects in a tree which is
written into a file

• Initialization

myEvent->SetMember(…);
tree->Fill();

root [] TFile* f = TFile::Open("events.root",
"RECREATE");
root [] TTree* t = new TTree("Events","Event Tree");
root [] Int_t var1;

root [] Float_t var2;

root [] Float_t var3;
root [] t->Branch("var1", &var1, “var1/I”);

root [] t->Branch("var2", &var2, “var2/F”);

root [] t->Branch("var3", &var3, “var3/F”);

ROOT Tutorial – Luca Fiorini 38

TTree - Writing

Fill the TTree
TTree::Fill copies content of
member as new entry into the tree

Inspect the tree

Flush the tree to the file,
close the file

root [] var1=5; var2=3.1; var3=10.;

root [] t->Fill();

root [] var1=1; var2=7; var3=4.5;

root [] t->Fill();

root [] t->Print();
root [] t->Show(1);

root [] t->Write();
root [] f->Close();

Code is in:
simpletree.C

ROOT Tutorial – Luca Fiorini 39

TTree - Reading

• Open the file, retrieve the tree and connect
the branch with a pointer to TMyEvent

• Read entries from the tree and use the
content of the class

TFile *f = TFile::Open("events.root");
TTree *tree = (TTree*)f->Get("Events");
Float_t var2;
tree->SetBranchAddress("var2", &var2);

Int_t nentries = tree->GetEntries();
for (Int_t i=0;i<nentries;i++) {
 tree->GetEntry(i);
 cout << var2 << endl;
}

A quick way to
browse through a
tree is to use a
TBrowser or
TTreeViewer

Code is in: readtree.C

ROOT Tutorial – Luca Fiorini 40

Trees (2)
• Accessing a more complex objects from non-

standard classes
– Members are accessible even without the proper class

library
– Might not work in all frameworks

• Example: eventdata.root (containing kinematics from
ALICE)
$ root eventdata.root

root [] tree->Scan();

root [] tree->Scan("*");

root [] tree->Scan("fParticles.fPosX:fParticles.fPosY:fParticles.fPosZ");

root [] tree->Scan("fParticles.fPosX:fParticles.fPosY:fParticles.fPosZ",
"fParticles.fPosX<0")

ROOT Tutorial – Luca Fiorini 41

Trees (2)
• Accessing a more complex objects from non-standard

classes
– Members are accessible even without the proper class library
– Might not work in all frameworks

• Example: eventdata.root (containing kinematics from
ALICE)
$ root eventdata.root
root [] tree->Draw("fParticles.fPosX")

 root [] tree->Draw("fParticles.fPosY:fParticles.fPosX")
 root [] tree->Draw("fParticles.fPoxY", "fParticles.fPoxX< 0")

• Perform more complex
selections
• Plot 1D, 2D histograms with
different styles
• Perform fits of some of these
• distributions

ROOT Tutorial – Luca Fiorini 42

Machine Learning
• Example of advanced statistical analysis:

– Read from a tree the event variables for:
• “signal” process, e.g. a simulation of a new

phenomena you are looking for.
• simulation of a “background process you want to

separate the signal from.

– Build a Neural Network with these variables, whose
separation of the signal to background is much better
than the each of the input variables.

– Launch the macro: mlpHiggs.C

– Check the contents of the macro and of the

mlpHiggs.root file:

 TFile::Open("http://root.cern.ch/files/mlpHiggs.root")

ROOT Tutorial – Luca Fiorini 43

Machine Learning

ROOT Tutorial – Luca Fiorini 44

PyRoot
ROOT is developed in C++ and has a native C++ interpretar,
but it is interfaced also to other languages, such as python.

Open (i)python:
In [1]: import ROOT
In [2]: h = ROOT.TH1F("h", "h", 100, 0, 0)
In [3]: h.GetName()
Out[3]: 'h'
In [4]: r= ROOT.TRandom()
In [5]: for i in xrange(0,1000): h.Fill(r.Gaus())
In [6]: h.Draw()

Now you can redo all the
tutorial in python if you wish!

ROOT Tutorial – Luca Fiorini 45

RootBook
Interactive ROOT in your Browser!
https://app.mybinder.org:80/3000949792/notebooks/index.ipynb

ROOT Tutorial – Luca Fiorini 46

ROOT is MUCH more
In this talk, I presented the most basic classes typically used
during physics analyses

ROOT contains
many more
libraries, and has
several more
applications

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

