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Contenido

● La física médica y la imagen médica

● Técnicas de imagen médica

● Terapia con fotones y terapia hadrónica. 

● Grupo IRIS
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La medicina necesita a la física

La medicina utiliza propiedades físicas para ayudar al 
diagnóstico y a la curación de enfermedades, e incluso para 
mitigar el dolor.

Física médica: aplicación de la física al diagnóstico y a la terapia en 
medicina
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Qué es la física médica?

Origen de la física médica:

Rayos X de Röntgen en 1895

REVOLUCIÓN.  Uno de los pilares de la medicina moderna

    Primer premio Nobel de  
        física en 1901 
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Qué es la física médica?

● Aplicación de la física al diagnóstico y a la terapia en medicina

● La física de partículas desempeña un papel esencial en  algunas 
técnicas de imagen médica:

● Se utilizan partículas (algunos tipos concretos) como en otras 
áreas, generalmente a menores energías.

● Mismo tipo de detectores que en otras áreas (física de altas 
energías, de astropartículas)

 

=> La física médica se beneficia directamente de los 
avances en otras áreas de la física. 
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Imagen médica
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Diagnóstico por imagen

Técnicas invasivas: Se 'entra' 
en el cuerpo para poder 
explorarlo.

Técnicas no invasivas:

Nos basamos en propiedades 
físicas para explorar el cuerpo 
desde fuera.

Endoscopia Rayos X

Necesitamos un 
'agente' que 
transmita la 
información



8G. Llosá  

Imagen médica

Estructural Funcional

TAC

Resonancia magnéticaEcografía

PET

SPECT

Información anatómica Información sobre procesos 
químicos y metabólicos

Resonancia 
magnética 
funcional

Radiografía
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Imagen médica
Estructural Funcional

Multimodalidad
Radiografía y TAC

Resonancia magnética

Ecografía

PET-TAC PET

SPECT
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Un poco de historia...

● Imagen de la mano, 1895

● Aumento de la señal con pantallas centelleadoras que el paciente tiene 
que sujetar.

● Imagen en tiempo real con pantallas centelleadoras
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Imagen médica estructural. Rayos X
Estructural Funcional

Multimodalidad

Resonancia magnética

Ecografía

PET-TAC PET

SPECT

Radiografía y TAC
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Fotones
● No tienen carga ni masa 

● Imagen y radioterapia

VISIBLE
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Fotones
● Rayos X 

VISIBLE
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Rayos X

Generadores de Rayos X

¿De dónde los sacamos?
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Rayos X (radiografía)

● Los fotones atraviesan el cuerpo del paciente, y 
detectamos al otro lado los que pasan.

● La diferencia de densidad de los tejidos hace que se 
atenuen más o menos. Es como ver la sombra.

¿Y cómo los vemos?
Con una película, una pantalla, o un detector (ej. Mamografía digital)
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Rayos X

Mamografía Rayos X con 
contraste

pantomografía
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Fluoroscopia

Rayos X en vivo
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Fluoroscopia 

 Fluoroscopia de la médula espinal 
en 1909, con el primer aparato.

Se utiliza una pantalla para verlo. Operación de un soldado en 
la primera guerra mundial, 
utilizando fluoroscopia para 
localizar las balas.
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Tomografía axial computarizada (TAC)
● Emisor y detectores giran alrededor del paciente.
● Muchas radiografias (proyecciones) tomadas desde distintos ángulos 

alrededor del paciente. 
● Combinando la información de distintos ángulos reconstruimos una 

sección en 2D (corte) 
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Tomografía axial computarizada (TAC)
● Combinando la información de distintos ángulos reconstruimos una 

sección en 2D (corte).

● El scan de todo el cuerpo del paciente y la combinación de todas las 
secciones nos da una imagen en 3D.
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Tomografía axial computarizada (TAC)
● Necesaria la reconstrucción de imágenes
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Tomografía axial computarizada (TAC)

Imagen plana 
(Radiografia)

TAC TAC con 
contraste
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Tomografía axial computarizada (TAC)
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Tomografía axial computarizada (TAC)

Allan MacLeod Cormack, físico 
teórico, sentó las bases de la 
tomografía. 

Tomógrafo de Cormack en 1963.

Escáner de G.N. Hounsfield en 1968

Godfrey Hounsfield 
hizo el primer 
escáner en 1968 e 
introdujo el 
ordenador. 
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Tomografía axial computarizada (TAC)
Godfrey Hounsfield y Allan 
Cormack ganaron el Premio 
Nobel en 1979

imagewasreducedto20 s. Next, thenumber of detectorswasincreased to30; this
allowed the acquisition of a reconstructed image with a resolution of 320 9 320
pixels.

Fromthevery beginning, computed tomography was commercially significant.
Six EMI CT 1000modelsweresold in1973, two of themto theUnitedStates, and

Fig. 2.9 Turning points in the history of computed tomography

Fig. 2.10 Co-creators of computed tomography: Allan MacLead Cormack (a), Godfrey
Newbold Hounsfield (b)

18 2 History of Computed Tomography

Entre 1974 y 1976 se 
instalaron los primeros 
escáneres

En la actualidad es un método de diagnóstico 
ampliamente utilizado.
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Imagen médica funcional. PET y SPECT
Estructural Funcional

Multimodalidad

TAC

Resonancia magnética

Ecografía

PET-TAC PET

SPECT
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Principales técnicas funcionales
● Permiten ver el 'funcionamiento' de un órgano: procesos funcionales y 

metabólicos.

● Gammagrafía, 

● Tomografía por emisión de un fotón (SPECT), 

● Tomografía por emisión de positrones (PET).

● Aplicaciones en oncología, neurología y cardiología.
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Fotones
● Para imagen

VISIBLE
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FOTÓN

OTRAS PARTÍCULAS
(p,n,e-,e+)

ÁTOMO RADIACTIVO

               

Fotones

Desintegración radiactiva de núcleos
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Técnicas de emisión

● Se administra al paciente un radiotrazador: sustancia con un 
componente radiactivo, preparada para acumularse en el órgano 
que queremos estudiar.

El radiotrazador se distribuye por 
todo el cuerpo y se concentra sobre 
todo en la zona en estudio.
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Técnicas de emisión
● La sustancia radiactiva emite fotones que atraviesan el cuerpo y salen al 

exterior.

● Los detectamos con el detector
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Gammagrafía

● Imagen plana de la emisión de fotones.

● Radiotrazadores emisores de fotones (100-300 keV)

Tecnecio-99m: E=140 keV, vida media=6 horas
Indio-111: E=159 keV, vida media=13 horas

DETECTOR

COLIMADOR

PACIENTE
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Gammagrafía
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Tomografía por emisión de un fotón 
(SPECT)

● El detector gira alrededor del paciente. 

● Imágenes tomográficas
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Reconstrucción de imágenes
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Positrones → Fotones

● Positrón: es la antipartícula del electrón

ANTIMATERIA!!
● misma masa y carga positiva

● Al encontrarse se aniquilan
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Tomografía por emisión de positrones (PET)

● El radiotrazador emite positrones, que se 
aniquilan con los electrones del tejido, 
produciendo dos fotones de 511 keV en 
sentidos opuestos.

● Los dos fotones se detectan en un anillo de 
detectores
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Tomografía por emisión de positrones (PET)
● Los dos detectores que detectan los fotones se 

conectan mediante una linea de respuesta (LOR).

● Muchas LORs 'identifican' el origen de los fotones.

Adquisición de datos
Reconstrucción de la imagen Imagen médica
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Tomografía por emisión de positrones (PET)
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Tomografía por emisión de positrones (PET)
● Generalmente se usa 18F-FDG (glucosa modificada)
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Tomografía por emisión de positrones (PET)
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Más historia...

Mapeo manual con 
contadores  Geiger 

1951: Benedict Cassen inventa el 
primer escáner automático (detector 
pegado a un plotter).

1952: Hal Anger 
inventa la cámara 

gamma.

1953: Primeras 
imágenes con positrones 
(Gordon Brownell)

1959: Inicio del
SPECT (D. Kuhl)

1974: Primer PET para estudios 
humanos.

(M. Phelps, E. Hoffman, T. 
Pogossian) 
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Imagen médica multimodalidad
Estructural Funcional

Multimodalidad

TAC

Resonancia magnética

Ecografía

PET-TAC PET

SPECT
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Multimodalidad
● Combina imágenes de dos tipos. En general estructurales y funcionales

● Casi todos los hospitales compran 
ahora PET-TAC.

● En el futuro PET-MR?

● Primeros equipos existentes.

● Mucha mejor resolución.

● Posibilidad de ver los tejidos 
blandos.

● Menor dosis de radiación.
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Multimodalidad

PET

TAC

PET
+ 

TAC

información 
funcional

información 
anatómica

información 
anatómica

y 
funcional
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Multimodalidad
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Multimodalidad

RM:
anatomía

PET:
función

RM + PET:
información

funcional
y anatómica
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Radioterapia y terapia hadrónica
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Radioterapia y terapia hadrónica
● La radiación destruye el tejido.

● Enfocada al tejido canceroso.

● El tejido sano tiene mayor capacidad de recuperación.
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Fotones
● Tratamiento de radioterapia

VISIBLE
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Fotones para radioterapia

Aceleradores para radioterapia
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Radioterapia
● Planificacion: Los radiofísicos en los hospitales estudian la mejor forma 

de irradiar el tumor evitando dañar el tejido sano. El médico decide.

● Se basan en imágenes previamente adquiridas para saber donde está.

Existen técnicas para 
ajustar la radiación al 
tumor.
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Radioterapia
● Dosimetría para ver la dosis administrada.

DOSÍMETRO

DOSÍMETRO

DOSÍMETRO
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Terapia hadrónica o Hadronterapia
● Partículas cargadas pesadas (protones, iones de carbono) en vez de 

fotones. 

● La profundidad varía con la energía.

profundidad (cm)

do
si

s 
 (

%
)

haz de protones (250 MeV)

haz de 
fotones 
(6 MV)

pico de Bragg
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Protones o iones de C, O

Producidos en grandes aceleradores en centros especializados.

● Protones: componentes del núcleo 
atómico. 

● Iones de C, O : átomos a los que les 
faltan electrones
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Terapia hadrónica
● Técnica más compleja. Necesita un centro especial con un acelerador. 

Más cara, pero más indicada en algunos casos - reduce los efectos 
secundarios.

● Numerosos centros en todo el mundo.

http://ptcog.web.psi.ch/ptcentres.htm
l
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Terapia hadrónica en Valencia
● Instalación de física médica IFIMED en Valencia:

● Investigación en imagen y terapia hadrónica

● Tratamiento de pacientes

● Aplicaciones a otras áreas
http://ific.uv.es/ifimed/

Fase 1 completada: laboratorios de detectores, imagen y aceleradores
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Laboratorios
● Laboratorio de instrumentación

● Sala PET

Super Argus PET/CT
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Terapia hadrónica
● Ventaja: la dosis de radiación se administra de forma más precisa, y 

se reduce la dosis en el tejido sano.

● Muy ventajosa en algunos tipos de tumores (ojo, próstata, cerebro, 
niños...)

● En otros casos no demostrado. DECIDE EL MÉDICO

Opp 6X
~1980

3-Field
~1990

Protons
~2009

IMRT
~2005
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Monitorización de la terapia hadrónica
● Al no atravesar el cuerpo la radiación, no se puede utilizar un 

dosímetro.

● Otras técnicas necesarias para monitorización.

● En la actualidad se utiliza el PET.
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Monitorización con PET
● No se inyecta un radiofármaco, se usan los positrones creados en el 

tejido al ser irradiado.

● Se hace una planificación de la terapia, y una simulación, y se 
comparan los resultados.
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Alternativas

● Al irradiar el tejido también se producen otras partículas. 

● Entre ellas, fotones de alta energía.

● Se producen inmediatamente depues de irradiar el tejido, por lo que se 
podría monitorizar la terapia mientras se está irradiando al paciente.

● Se estudia el mejor modo de detectarlos=> campo de investigación 
activo.

Energy (MeV)
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● Investigamos para avanzar el estado del arte: nuevos detectores, 
nuevas técnicas, nuevos algoritmos.

● Conexión con la física de Altas Energías para aprovechar los avances.

● Proyectos y colaboraciones internacionales.

Grupo IRIS:  Image Reconstruction, 
Instrumentation and Simulations for medical 

applications. http://ific.uv.es/iris

 Sondas PET y Compton Dispositivo para monitorización 
de la terapia hadrónica

 PET de alta resolución y 
eficiencia 
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Detectores

FOTONES ÓPTICOS

(baja energía)

RAYO GAMMA

(FOTÓN de alta 
energía)

CRISTAL 
CENTELLEADOR

FOTODETECTOR

ELECTRÓNICA 
DE LECTURA

DÍGITOS
● Posición

● Energía

SEÑALES 
ELÉCTRICAS
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Detectores

CRISTALES CENTELLEADORES

FOTODETECTORES

ELECTRÓNICA DE 
LECTURA

Mejora de cristales, fotodetectores y electrónica

PMT

DETECTORES 
DE SILICIO

SiPM
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Reconstrucción de imágenes

Image

 Imagen: último paso. 
 Objetivo: calidad

resolución
fidelidad
etc..

 Poco procesado de imagen

Image Science
 Modelar la física

 Software de reconstrucción 
dedicado para prototipos. 

 Optimizar la reconstrucción

Instrumentation

 Applicación de nuevos  
detectores: (d)SiPMs,etc.
 PrototiposProof of concept 

Compton Camera
PET 

Mejorar la calidad de la imagen final 

Adquisición de datos Reconstrucción de la imagen Imagen médica
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Silicio: Cámaras Compton 
CÁMARA GAMMA CÁMARA COMPTON

DETECTOR

COLIMADOR

PACIENTE
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Silicio: Cámaras Compton 
CÁMARA GAMMA CÁMARA COMPTON

DETECTOR

COLIMADOR

PACIENTE
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Silicio: Cámaras Compton
● Aplicación: sonda Compton para imágenes de la próstata
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Silicio: MADEIRA
● 'Lupa' para mejorar la resolución en una zona

PET PET + sonda
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PET con cristales continuos
● Aumento de eficiencia y resolución a bajo coste.

● Pioneros en el uso de SiPMs. 

TRANSAXIAL SAGITTAL

Fuentes puntuales: 
FWHM mejor que 1 mm.
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Telescopio Compton
● Alternativa: gammas emitidos por los nucleos del tejido excitados 

durante la terapia.  

● Emisión ~ ns tras irradiación

● ~ 7 veces más partículas/cGy.

● Espectro continuo de energía hasta 10-20 MeV.

Energy (MeV)

Proton treatment plan Emission of gammas

Brain tumor. CMS TPS (Elekta)
AKH and Med. Univ. Vienna.
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Telescopio Compton

Problemas si no sabemos la E del fotón, o si no 
se absorbe (MeV)

Dos detectores:

● Energía determinada

● Efficiencia menor

Multicapa: 3 interacciones en 3 detectores 
(+ orden correcto):

E0=E1+
1
2
(E2+√E2

2
+4

E2m ec
2

1−cos θ2

)

cos (θ)=1−
E1m ec

2

E0(E0−E1)

QUEREMOS COMBINAR LOS DOS TIPOS DE EVENTOS
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Telescopio Compton
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Telescopio Compton

Ajuste gausiano al perfil máximo

Resolución espacial (FWHM):
● 4 mm con Na-22 en el pico de 1273 keV
● 3.1 mm with Y-88  en el pico de 1836 keV 

20 mm
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Telescopio Compton

898 keV

1836 keV

1275 keV

511 keV

● Corte E: 950kev < Esum < 1950 keV
● Fuentes separadas 40 mm.
● Imágenes reconstruidas simultáneamente.

Sum energy spectrum



78G. Llosá  

Comparación con simulaciones
DATOS EXPERIMENTALES:

SIMULACIONES CON GATE:
Sum energy spectrum
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Telescopio Compton
● Na-22: 650 keV< Esum < 1350 keV

5.6 mm FWHM

36 mm

40 mm

32 mm
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Telescopio Compton

5.2 mm FWHM

898 keV

1836 keV

Sum energy spectrum

4.5 % FWHM
 @ 1836 keV
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Pruebas en haz
● Haz de protones
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Reconstrucción de imágenes

PETETE  (Home made)

Error de ParalajeCompton telescope  (Home made)
 Novelty: Monitor the dose in proton therapy by using Compton cameras

 Novelty: Combine monolithic scintillator crystals with Silicon Photomultipliers
 Still in its developing stages
 Preliminary, better space resolution 
 Enhanced sensitivity
 Submillimeter resolution

DETECTORS

SOURCE

TRANS
AXIAL
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Reconstrucción de imágenes
Error de Paralaje

Interacción en cristales
Photelectric

Compton
 The same photon is detected twice
 Two potential Lines of Response
 Usually ignored
 The convey useful information

20% of  ICS improves 10% SNR
Without hampering resolution

Funciones base

Two uncorrelated photons are detected in coincidence

 Lines of response are incorrect
Enhance noise
Reduce contrast
Hamper quantification

SP

i j

Pixels:

Blobs:
m ,a ,r =

1
Im 

1−r /a
2


m
Im1−r /a

2


Pixels: Blobs:

Rij=
2 e−−S

1−2
2 S i−e S PiS j−eS P j

22−S−PeS=0

Coincidencias accidentales
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Reconstrucción de imágenes

Size

 The imaging device is usually described by a huge matrix ( ~100 Gbytes )

 
   Not all elements are independent, some are related by the symmetry of 

the imaging device

 Computing only the independent pieces of the system matrix can 
drastically dicrease the size of the matrix.

Speed

Lossless

Lossy

 Obtaining the image may require many time. From hours to days.
 Goal: Accelerate the process without degrading the quality of the final image

 Use Graphical Processing Units, GPUs, is 5x faster
 Adapt code to run in GRID

 Goal: Accelerate the process allowing some degradation of  the quality 
of the final image
 New algorithm: Simulated One Pass List Mode, SOPL

 On they fly
 Hibrid based on standard ray tracing techniques

Velocidad
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Conclusiones

● La física médica constituye un apoyo esencial a la medicina, que 
aumenta al mejorar las tecnologías.

● Es un campo de investigación multidisciplinar, que combina la física 
básica con las aplicaciones, y con otras disciplinas (medicina, 
matemáticas, informática...).

● La fisica de partículas es esencial en imagen y en terapia.

● Existe mucho margen de mejora. 

 La gente con ideas nuevas es siempre bienvenida!
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Aplicación de las distintas técnicas
● NO SON EQUIVALENTES

● El médico tiene que decidir cuándo son necesarias y cuál es la más 
apropiada. 

● Se siguen protocolos.

Técnica Agente Radiación ionizante

Radiografía/TAC  Fotones (rayos X)  SI

Resonancia Campos electromagnéticos NO

Ecografía Ultrasonidos NO

SPECT/Gamma Fotones (rayos gamma) SI

PET Positrones → Fotones (gamma) SI
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Radiactividad
● Criterio ALARA – Para todo.

● Radiactividad natural: rayos cósmicos y materiales radiactivos presentes 
naturalmente, viajeros frecuentes en avión.

● Las dosis que se aplican están muy, muy lejos de tener efectos 
apreciables a corto plazo. 

● Siempre existe un riesgo – probabilidad máxima de 1/1000 de 
desarrollar un cancer secundario debido a algunas de las pruebas con 
mayor radiación.

Probabilidad 'natural' es 1/5. 

● Importante tener control de las pruebas que se hacen.

Siempre justificado: 

● Cuando sea necesario 

● Con importante valor diagnostico.
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Dosis

Dosis efectiva 
(mSv)

   Ejemplos y equivalencias

0 Ecografía, resonancia magnética*.

< 1 - Densitometría ósea: 0.001 mSv.
- Vuelo Madrid-Paris; 0.005 mSv.
- Radiografías de tórax, extremidades o pelvis- 0.1 mSv 
(Rad. Natural 10 dias).
- Vuelo Madrid-Nueva York: 0.03 mSv.
- Mamografía - 0.4 mSv (Rad. Natural 7 semanas).

1-5 - Rad. Natural 1 año: 2-3 mSv.
- RX de columna lumbar, gammagrafía ósea, TAC de cabeza 
y cuello – 4 mSv

5-10 - TAC de tórax y abdomen- 7 mSv.

>10 - TAC de abdomen/pelvis: 10-20  mSv (Rad natural 4-8 años)
- PET/TAC: 25 mSv

* Aquí sólo se habla de radiación, no de otro tipo de riesgos. 
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Ecografía (Ultrasonidos)
● Ondas sonoras de alta frecuencia (ultrasonidos) 1-10 MHz.

● El transductor las emite y recibe las 
ondas reflejadas en los distintos 
órganos (eco)



91G. Llosá  

Ecografía (ultrasonidos)
● En  1942, el psiquiatra Karl Dussik intentó detectar tumores cerebrales 

midiendo la atenuación del sonido a través del craneo (hiperfonografía 
del cerebro).

● En 1947 Douglas Howry detectó estructuras de tejidos suaves al 
examinar los reflejos producidos por los ultrasonidos.
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Ecografía (ultrasonidos)
● Ecografía Doppler: permite visualizar el flujo que atraviesa estructuras 

del cuerpo (ej. Vasos sanguíneos).

● Ecografía 3D: se emiten los ultrasonidos en diferentes ángulos y 
direcciones.

● Ecografía 4D: imagen en tiempo real.
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Resonancia magnética
● Campos magnéticos y señales de radiofrecuencia 

que perturban los protones del tejido.

● La señal que devuelven los protones cuando cesa 
la perturbación es detectada, y depende del tejido.

● Muy alta resolución (micras) y permite ver tejidos 
blandos.

● No es radiación ionizante y no se han visto efectos 
hasta la fecha. Incompatible con metales.

Resonancia magnética

Tumor

No B B

Basada en el momento 
magnético nuclear de los 
átomos

Como una brujula y un iman
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Terapia hadrónica en Europa

Valencia forma parte de la plataforma Europea ENLIGHT  (European 
Network for LIGht ion Hadron Therapy) para terapia hadrónica

El proyecto Europeo ENVISION (FP7) está enfocado a la mejora de la 
terapia hadrónica en todos sus aspectos:

● Desarrollo de detectores para monitorización de la terapia 

● Planificación del tratamiento

● Simulaciones

● Dosimetría en vivo

● Blancos móviles

● Modelos físicos
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