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The context of (experimental) nuclear astrophysics
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X-ray flux
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En quimica:

Estructura atomica (e- valencia) - Reacciones quimicas
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En astrofisica: Estructura nuclear = Reacciones nucleares (NUCLEOSINTESIS
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How to bring x-ray bursts to the lab?

X-ray flux
AN




How to bring x-ray bursts to the lab?
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To learn more...

* Bibliography:
*H. Schatz et al., Phys. Rev. Lett. 86, 3471 (2001) — Published 16 April 2001, End
Point of the rp Process on Accreting Neutron Stars
» A.Parikh, et al., The effects of variations in nuclear interactions o n
nucleosynthesis in thermonuclear supernovae , Astronomy & Astrophysics,
Volume 557, id.A3, 11 pp DOI:
10.1051/0004-6361/201321518
*A. Parikh, et al., Nucleosynthesis in type | X-ray bursts , Progress in Particle and
Nuclear Physics, Volume 69, p. 225-253. (2013)
*Nature 302, 317 - 319 (24 March 1983); doi:10.1038/302317a0 Sub-second
pulsations simultaneously observed at microwaves an d hard X rays in a solar
burst

* The JINA center for the evolution of the elements:

http://www.jinaweb.orqg/

» Schools: 3rd Astrophysical Nuclear Reaction Network School

https://indico.gsi.de/conferenceDisplay.py?ovw=True&confld=4596




The context of (experimental) nuclear astrophysics
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just after Big-Bang
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The context of (experimental) nuclear astrophysics
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Nucleosynthesis of the light-to-medium heavy nuclei (up to Fe)

» Hydrostatic evolution stages of massive stars
e Iron group elements are built in the last burning phase before SN explosion
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—~>Beyond the Fe-group, no further fusion reactions (charged particles) are possible



. after first (massive) stars evolved 6
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What kind of reactions could originate the heaviest nuclei?
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What kind of reactions could originate the heaviest nuclei?

—~>Neutrons produce 75% of all the elements

- 0.005% of the total abundances (!)

- 10-12 orders-of-magnitude difference between H and the rarest (heaviest) nuclei (!)
BB<——Fusion —><—Neutrons ——/————————————————————————————————>

‘150 o o

MASS 'NUMI ER : 3




What kind of reactions could originate the heaviest nuclei?

—~>Neutrons produce 75% of all the elements

- 0.005% of the total abundances (!)

- 10-12 orders-of-magnitude difference between H and the rarest (heaviest) nuclei (!)
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El origen de los elementos pesados: procesos sy r
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The rapid (r-) neutron capture process

 Several candidates: SNe, NS-Mergers, NS-BH Mergers, etc T=108-1019K
 High entropy and neutron density conditions required N, = 10%0-10%" cm3

Argast et al., 2004
s

Cas A (Chandra X—Ray' observatory)



R-process nucleosynthesis
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R-process nucleosynthesis: relevant nuclear input
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How to bring Supernovae to the lab?
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How to bring Supernovae to the lab?

Radioactive ion
RIB ::> of interest
Facility (neutron rich)

E (see Alejandro’s talk)

EgﬂillI|IIII|IIII|IIII|IIII|IIII|IIII|IIII|II
N
i
B

1 1 1 1 1 1 I 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 I 1 1
20 40 60 80 100 120 140
Neutren number N



How to bring Supernovae to the lab?

90
?2;: RIB | Radioactive ion
% 6o  [— >| of interest
3 : Facility (neutron rich)
£ 405 e & (see Alejandro’s talk)
2 05 it . ©
C | el i
- ;!33‘ _ _
10§5§%|f..|...|...|...|...|...|.. Q/B_MZ,N MZ"']-’N_]-
20 40 80 80 100 120 140
Neutron number N
8 %
(ov) = (kT)*? j E [ (E) [&xp(-E / KT)dE
iV, 0
1
Ty, =
Y S,(E)xf(Z,R M, ~M,, .~ Ei)
0<E;<Qg

ZSﬁ(Ei)X f(Z,R, MZ,N _Mz+1,N—1_ El)
P = ShsE=Qg

ZSﬁ(Ei)X f(Z, R, MZ,N _Mz+1,N—1 - Ei)

0<E <Qy




Principle of TOF Mass Measurements
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Stellar Nucleosynthesis

stable isotopes O (A 0200)
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First observation of Te in metal poor stars (!!)
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I. Roederer et al., The Astroph. Journ. Lett. 2012
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Other (weaker) neutron sources in the universe: red giants

Dark Energy
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Pattern Dark Ages Development of
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Two different s-process sites
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The s-process mechanism

S process in Massive Stars (Red Giants)
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- Neutron beam facility
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(n,y) Cross sections via prompt y-ray(s) detection
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(n,y) Cross sections via prompt y-ray(s) detection
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Example: Temperature in TP AGB Stars

Evolutionary Tracks off the Main Sequence

TP-AGB stars 1-3 M,

shell H-burning He-flash
0.9-108 K 3-3.5:108 K
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Temperature in TP AGB Stars

* How hot is the stellar environment where s-process nucleosynthesis takes place?
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Temperature in TP AGB Stars

* How hot is the stellar environment where s-process nucleosynthesis takes place?
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Temperature in TP AGB Stars
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| ast slide: links to learn more

* JINA-CEE youtube seminar series: nucleosynthesis topics, theory, observations and experiments
https://www.youtube. com/channeI/UCTa4BtOW06mYdquCstR5A
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« WEBNUCLEO (B. Meyer’s blog and code): E Bradley S. Meyer
nuclosynthesis network code + examples to
learn

https://sourceforge.net/u/mbradle/bloqg/ - .

Home

Profile  Activity ~ Blog Wiki

. | Comparing a network calculation with and without entropy generation

In my last post, | ran a calculation at fixed density with no charge-changing reactions but with entropy generation. The calculation
began with pure “He at a mass density of 3 x 70% g/cc and a temperature of 2 billion Kelvins. The system evolved into nuclear
statistical equilibrium (NSE) in about a nanosecond with a temperature of 10.318 billion Kelvins. ... read mare

Fosted by @ 2016.06-17

* MESA (Modules for Experiments in Stellar Astrophysics) https://sourceforge.net/projects/mesa/

* NUGRID: http://www.nugridstars.org/
" b ‘
.“'- ".\

* NUPECC:Nuclear Physics European Collaboration ) L SSSEEENC L Lt
Committee = .'—_r'ﬂi
http://www.nupecc.org/?display=Irp2010/main T i

[[allslte} | publications | | projects | data and software | meetings




