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Motivation

The Kerr-Newman-(anti) de Sitter (KN(a)dS))metric is the most
general exact stationary black hole solution of the Einstein-Maxwell
system of differential equations

Now that scalar particles have been observed in Nature solving
exactly the massive KGF equation in curved backgrounds is
fundamentally important

The recent spectacular observation of gravitational waves predicted
by the theory of General Relativity from the binary black hole merger
GW150914 adds further motivation for investigating the interaction of
scalar particles with the curved black hole spacetime.
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The Kerr-Newman-de Sitter black hole metric

The metric in Boyer-Lindquist coordinates:

ds2 =
∆KN
r

Ξ2ρ2
(cdt − a sin2 θdφ)2 − ρ2

∆KN
r

dr2 − ρ2

∆θ
dθ2

− ∆θ sin2 θ

Ξ2ρ2
(acdt − (r2 + a2)dφ)2 (1)

∆θ := 1 +
a2Λ

3
cos2 θ, Ξ := 1 +

a2Λ
3

, (2)

ρ2 = r2 + a2 cos2 θ (3)

∆KN
r :=

(
1− Λ

3
r2
) (

r2 + a2
)
− 2

GM

c2
r +

Ge2

c4
, (4)

This is accompanied by a non-zero electromagnetic field F = dA with vector
potential (G = c = 1):

A = − er

Ξ(r2 + a2 cos2 θ)
(dt − a sin2 θdφ). (5)
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The massive KGF equation in the curved KN(a)dS black
hole spacetime

The Klein-Gordon-Fock (KGF) equation for a scalar field Φ that describes
the dynamics of a massive scalar electrically charged particle of charge q,
in a curved spacetime is described by the equation:

�Φ + µ2Φ = 0, (6)

where,

�Φ =
1√
−g

Dν(
√
−gg µνDµΦ) (7)

The gauge differential operator:

Dµ = ∂µ − iqAµ (8)
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The massive KGF equation in the curved KN(a)dS black
hole spacetime

Here we calculate the D’Alembertian of the massive KGF equation for the
Kerr-Newman-de Sitter spacetime. We start with the case of a massive neutral particle:

�Φ 3 1√
−g

∂

∂φ

(√
−gg φφ ∂Φ

∂φ

)
= g φφ ∂2Φ

∂φ2
= − Ξ2

ρ2 sin2 θ
{ 1

∆θ
− a2 sin2 θ

∆KN
r

}∂2Φ
∂φ2

, (9)

�Φ 3 1√
−g

∂

∂t

(√
−gg φt ∂Φ

∂φ

)
+

1√
−g

∂

∂φ

(√
−gg tφ ∂Φ

∂t

)
= 2g φt ∂2Φ

∂t∂φ
= 2

aΞ2

ρ2

{
− 1

∆θ
+

r2 + a2

∆KN
r

}
∂2Φ
∂t∂φ

, (10)

�Φ 3 1√
−g

∂

∂t

(√
−gg tt ∂Φ

∂t

)
= g tt ∂2Φ

∂t2
=

Ξ2

ρ2

[
(r2 + a2)2

∆KN
r

− a2 sin2 θ

∆θ

]
∂2Φ
∂t2

. (11)

Using the the ansatz:

Φ = Φ(~r , t) = R(r)S(θ)e imϕe−iωt , (12)
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The massive KGF equation in the curved KN(a)dS black
hole spacetime

we proved the separation of radial from angular parts that yields the DEs:

1

sin θ

d
dθ

(
sin θ∆θ

dS(θ)

dθ

)
+ S(θ)

[
−m2Ξ2

sin2 θ

1

∆θ
+

2aΞ2

∆θ
mω− Ξ2a2 sin2 θω2

∆θ
− µ2a2 cos2 θ + Klm

]
= 0,

(13)

d
dr

(
∆KN
r

dR

dr

)
+

R(r)

∆KN
r

[Ξ2K 2 − r2µ2∆KN
r −Klm∆KN

r ] = 0, (14)

where
K (r) := ω(r2 + a2)− am (15)

Now including the contribution from the electric charge of the scalar particle we
calculate the modified radial Fuchsian differential equation:

d
dr

(
∆KN
r

dR

dr

)
+

R(r)

∆KN
r

[
Ξ2
(

K − eqr

Ξ

)2
− r2µ2∆KN

r −Klm∆KN
r

]
= 0 (16)

while the angular equation remains unaltered.
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Heun’s differential equation

d2y

dz2
+

(
γ

z
+

δ

z − 1
+

ε

z − a

)
dy

dz
+

αβz − q

z(z − 1)(z − a)
y = 0 (17)

In (17), y and z are regarded as complex variables and α, β, γ, δ, ε, q, a are
parameters, generally complex and arbitrary, except that a ∈ C \ {0, 1}.
The first five parameters are linked by the equation

γ + δ + ε = α + β + 1 (18)

Heun’s equation is thus of Fuchsian type with regular singularities at the
points z = 0, 1, a, ∞. The exponents at these singularities are computed
through the indicial equation to be:
{0, 1− γ}; {0, 1− δ}; {0, 1− ε}; {α, β}. The sum of these exponents
must take the value 2, according to the general theory of Fuchsian
equations. The Heun equation includes an accessory or auxiliary
parameter, namely the quantity q ∈ C, which in many applications
appears as a spectral parameter.

G. V. Kraniotis (UOI) The Klein-Gordon-Fock equation in the curved spacetime of the Kerr-Newman (anti) de Sitter black hole24 May 2016, Planck 2016 7 / 37



Heun’s differential equation

d2y

dz2
+

(
γ

z
+

δ

z − 1
+

ε

z − a

)
dy

dz
+

αβz − q

z(z − 1)(z − a)
y = 0 (17)

In (17), y and z are regarded as complex variables and α, β, γ, δ, ε, q, a are
parameters, generally complex and arbitrary, except that a ∈ C \ {0, 1}.
The first five parameters are linked by the equation

γ + δ + ε = α + β + 1 (18)

Heun’s equation is thus of Fuchsian type with regular singularities at the
points z = 0, 1, a, ∞. The exponents at these singularities are computed
through the indicial equation to be:
{0, 1− γ}; {0, 1− δ}; {0, 1− ε}; {α, β}. The sum of these exponents
must take the value 2, according to the general theory of Fuchsian
equations.

The Heun equation includes an accessory or auxiliary
parameter, namely the quantity q ∈ C, which in many applications
appears as a spectral parameter.

G. V. Kraniotis (UOI) The Klein-Gordon-Fock equation in the curved spacetime of the Kerr-Newman (anti) de Sitter black hole24 May 2016, Planck 2016 7 / 37



Heun’s differential equation

d2y

dz2
+

(
γ

z
+

δ

z − 1
+

ε

z − a

)
dy

dz
+

αβz − q

z(z − 1)(z − a)
y = 0 (17)

In (17), y and z are regarded as complex variables and α, β, γ, δ, ε, q, a are
parameters, generally complex and arbitrary, except that a ∈ C \ {0, 1}.
The first five parameters are linked by the equation

γ + δ + ε = α + β + 1 (18)

Heun’s equation is thus of Fuchsian type with regular singularities at the
points z = 0, 1, a, ∞. The exponents at these singularities are computed
through the indicial equation to be:
{0, 1− γ}; {0, 1− δ}; {0, 1− ε}; {α, β}. The sum of these exponents
must take the value 2, according to the general theory of Fuchsian
equations. The Heun equation includes an accessory or auxiliary
parameter, namely the quantity q ∈ C, which in many applications
appears as a spectral parameter.

G. V. Kraniotis (UOI) The Klein-Gordon-Fock equation in the curved spacetime of the Kerr-Newman (anti) de Sitter black hole24 May 2016, Planck 2016 7 / 37



The Confluent Heun Equation (CHE)

This is obtained by merging the singularity at z = a of Heun’s equation with
that at z = ∞, resulting in an equation still having regular singularities at z = 0
and z = 1, and an irregular singularity of rank 1 at z = ∞ (RONVEAUX).
Indeed, dividing (17) by a we derive:

z(z − 1)
(z

a
− 1
)

y ′′(z) +
[
γ(z − 1)

(z

a
− 1
)
+ δz

(z

a
− 1
)
+

ε

a
z(z − 1)

]
y ′(z)

+

(
α

β

a
z − q

a

)
y(z) = 0. (19)

We let a→ ∞ and simultaneously let β, ε, q → ∞ in such a way that

β

a
→ ε

a
→ −ν,

q

a
→ −σ, (20)

which yields:

d2y

dz2
+

[
γ

z
+

δ

z − 1
+ ν

]
dy

dz
+

[
ανz − σ

z(z − 1)

]
y(z) = 0, (21)

in which γ, δ, α are the same parameters as in the original equation (17) while
ν, σ are new. CHE
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Value of scalar mass for which the angular Fuchsian
equation is solved in terms of Heun functions

The angular differential equation was determined to be:

1

sin θ

d
dθ

(
sin θ∆θ

dS(θ)

dθ

)
+ S(θ)

[
−m2Ξ2

(sin θ)2
1

∆θ
− Ξ2a2 sin2 θω2

∆θ
+

2aΞ2mω

∆θ
− µ2a2 cos2 θ

]
= −KlmS(θ) (22)

By defining the variable x := cos θ, and setting µ =
√

2Λ
3 , Λ > 0, equation (22)

becomes:[(
1 +

a2Λ
3

x2

)
(1− x2)

d2

dx2
+ 2

a2Λ
3

x(1− x2)
d

dx
− 2

(
1 +

a2Λ
3

x2

)
x

d
dx

]
S

+

[
−Ξ2a2ω2(1− x2)

1 + a2Λ
3 x2

+
2aωmΞ2

1 + a2Λ
3 x2

− m2Ξ2

(1 + a2Λ
3 x2)(1− x2)

]
S

+

[
−2

a2Λ
3

x2

]
S = 0 (23)
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Value of scalar mass for which the angular Fuchsian
equation is solved in terms of Heun functions

The angular Fuchsian equation (23) has four regular singularities at the points ±1,± i√
αΛ

,

which we denote with the tuple (a1, a2, a3, a4) = (−1, 1,− i√
αΛ

, i√
αΛ
). The automorphism

group of the parameter space of Heun’s equation has recently been determined, thus we
apply first to equation (23) the homographic transformation of the independent variable :

z =
a2 − a4
a2 − a1

x − a1
x − a4

=
1− i√

αλ

2

x + 1

x − i√
αΛ

, αΛ :=
a2Λ

3
, (24)

where such a transformation is designed to map the three singularities a1, a2, a4 into

0, 1, ∞. The fourth singularity a3
(24)→ z3 =

a3−a1
a3−a4

a2−a4
a2−a1 . With this transformation we have:

(1 + αΛx2)(1− x2) =
αΛ16iΞ2

√
αΛ

z(z − 1)(z − z3)

[2z
√

αΛ −
√

αΛ + i ]4
, (25)

where

z3 = −
1

2

(
−1 +

αΛ − 1

2i
√

αΛ

)
. (26)

Equation (23) with the aid of (24) becomes:
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Value of scalar mass for which the angular Fuchsian
equation is solved in terms of Heun functions

{
d2

dz2
+

[
1

z
+

1

z − 1
+

1

z − z3
− 2

z − z∞

]
d

dz

− m2

4

1

z2
− m2

4

1

(z − 1)2
+

(
Ξaω

2
√

αΛ
− m
√

αΛ

2

)2
1

(z − z3)2
+

2

(z − z∞)2
+

1

z

[
m2(1 + 2i

√
αΛ + 3αΛ)

2(−i +
√

αΛ)2
+

2mΞξ

(1 + i
√

αΛ)2
− 2αΛ

(1 + i
√

αΛ)2
+

Klm

(1 + i
√

αΛ)2

]
+

1

z − 1

[−m2(1− 2i
√

αΛ + 3αΛ)

2(i +
√

αΛ)2
− −2mξΞ

(1− i
√

αΛ)2
− 2αΛ

(1− i
√

αΛ)2
− Klm

(1− i
√

αΛ)2

]
+

1

z − z3

[−8im2αΛ
√

αΛ

Ξ2
+

8im
√

αΛξ

Ξ
+

8i
√

αΛ

Ξ2
+

4i
√

αΛKlm

Ξ2

]
+

1

z − z∞

−8i
√

αΛ

Ξ

}
S(z) = 0, (27)

where z∞ = −−i(1+
√

αΛi)
2
√

αΛ
and ξ := aω. The four singularities z = 0, 1, z3, z∞ have

exponents:

{ |m|2 ,− |m|2 }, {
|m|
2 ,− |m|2 }, {

i
2

(
Ξξ√
αΛ
−m
√

αΛ

)
,− i

2

(
Ξξ√
αΛ
−m
√

αΛ

)
}, {2, 1}. Thus

equation (27) is not of a Heun type.
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√

αΛ)2
− Klm

(1− i
√

αΛ)2

]
+

1

z − z3

[−8im2αΛ
√

αΛ

Ξ2
+

8im
√

αΛξ

Ξ
+

8i
√

αΛ

Ξ2
+

4i
√

αΛKlm

Ξ2

]
+

1

z − z∞

−8i
√

αΛ

Ξ

}
S(z) = 0, (27)

where z∞ = −−i(1+
√

αΛi)
2
√

αΛ
and ξ := aω. The four singularities z = 0, 1, z3, z∞ have

exponents:

{ |m|2 ,− |m|2 }, {
|m|
2 ,− |m|2 }, {

i
2

(
Ξξ√
αΛ
−m
√

αΛ

)
,− i

2

(
Ξξ√
αΛ
−m
√

αΛ

)
}, {2, 1}. Thus

equation (27) is not of a Heun type.
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Value of scalar mass for which the angular Fuchsian
equation is solved in terms of Heun functions

The F-homotopic transformation or index transformation of the dependent variable
S :

S(z) = zα1(z − 1)α2(z − z3)
α3(z − z∞)

α4 S̄(z) (28)

where α1 = α2 =
|m|
2 , α3 = ± i

2

(
Ξξ√
αΛ
−m
√

αΛ

)
, α4 = 1 is designed to reduce one

of the exponents of the finite singularities 0, 1, z3 to zero and to eliminate the finite
z∞ singularity. In other words transforms (27) into the Heun form (17). Indeed
application of (28) into (27) yields:

{
d2

dz2
+

[
2α1 + 1

z
+

2α2 + 1

z − 1
+

2α3 + 1

z − z3

]
d

dz
+

αβz − q

z(z − 1)(z − z3)

}
S̄(z) = 0,

(29)
where the auxiliary parameter q is calculated in terms of the cosmological constant,
spin of the black hole,the parameters m, ω and is given by the expression:

q =
i

4
√

αΛ

{
−(1 + i

√
αΛ)

2[2α1α2 + α2 + α1]− 4
√

αΛi [2α1α3 + α3 + α1]

− m2

2
((1 + i

√
αΛ)

2 + 4αΛ) + Klm − 2i
√

αΛ + 2Ξmξ

}
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Value of scalar mass for which the angular Fuchsian
equation is solved in terms of Heun functions

The parameters α, β are given in terms of the physical parameters by the expression:

αβ = q − (z3 − 1)× coef .of
1

z − 1

=
i

4
√

αΛ

{
−(1 + i

√
αΛ)

2[2α1α2 + α2 + α1]− 4
√

αΛi [2α1α3 + α3 + α1]

− m2

2
((1 + i

√
αΛ)

2 + 4αΛ) + Klm − 2i
√

αΛ + 2Ξmξ

}

+
i

4
√

αΛ

{
m2

2

(
(1− i

√
αΛ)

2 + 4αΛ
)
− 2mξΞ−Klm − 2

√
αΛi

+ (1− i
√

αΛ)
2[2α1α2 + α2 + α1] + i4

√
αΛ(−2α2α3 − α3 − α2)

}
(30)
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Closed form solution of the radial equation for a massive
charged particle in the KNdS black hole spacetime in terms
of Heun functions for specific values of the scalar mass

The massive radial Fuchsian equation:

d
dr

(
∆KN
r

dR

dr

)
+

R(r)

∆KN
r

[
Ξ2
(

K − eqr

Ξ

)2
− r2µ2∆KN

r −Klm∆KN
r

]
= 0 (31)

We write the quantity ∆KN
r in terms of the radii of the event and Cauchy horizons

r+, r− and the cosmological horizon r+Λ for positive cosmological constant:

∆KN
r = −Λ

3
(r − r+)(r − r−)(r − r+Λ )(r − r−Λ ) (32)

There are five regular singularities in (31), at the points r±, r±Λ , ∞. Applying the
homographic substitution

z =

(
r+ − r−Λ
r+ − r−

)(
r − r−
r − r−Λ

)
(33)
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Exact solution for the massive-charged radial KGF
Fuchsian equation

Equation (32) in terms of the new variable is written:

∆KN
r = −Λ

3

Hz3
∞z(z − 1)(z − zr )

(z∞ − z)4
, (34)

where H := (r−−r−Λ )2(r+−r−)(r+Λ−r−)
zr

. Also we have the following relations:

r =
r−z∞ − r−Λ z

z∞ − z
, (35)

dz

dr
=

z∞(r− − r−Λ )

(r − r−Λ )2
=

1

z∞

1

r− − r−Λ
(z∞ − z)2 =

r+ − r−
r+ − r−Λ

1

r− − r−Λ
(z∞ − z)2 (36)

d2z

dr2
=
−2z∞(r− − r−Λ )

(r − r−Λ )3
,

d2z
dr2(
dz
dr

)2 =
−2

z∞ − z
. (37)

The quantities z∞, zr are defined as follows:

z∞ :=
r+ − r−Λ
r+ − r−

, zr := z∞

(
r+Λ − r−

r+Λ − r−Λ

)
. (38)
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Applying the homographic transformation (33) in the radial equation for a
massive charged particle (16) we obtain:

1(
dz
dr

)2 1

∆KN
r

d∆KN
r

dr

dR

dr
=

{
1

z
+

1

z − 1
+

1

z − zr
− 4

z − z∞

}
dR

dz
. (39)

However the term proportional to dR
dz , taking into account a contribution

from the second derivative, will eventually be:{
1

z
+

1

z − 1
+

1

z − zr
+
−2

z − z∞

}
dR

dz
(40)

We also have for the term
−r2µ2R

( dz
dr )

2
∆KN
r

, the expansion:

−r2µ2R(
dz
dr

)2
∆KN
r

=
A

(z∞ − z)2
+

B

z∞ − z
+

C

z
+

D

z − 1
+

F

z − zr
, (41)
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Exact solution for the massive-charged radial KGF
Fuchsian equation

where we compute the coefficients of the expansion as follows:

A =
3µ2

Λ
, (42)

B =
3µ2

Λ
1

r− − r−Λ

[
(r−Λ + r−)zr − 2r−z∞ − 2r−zrz∞ − (r−Λ − 3r−)z2

∞

(1− z∞)(zr − z∞)z∞

]
, (43)

C =
3µ2

Λ
1

r+ − r−

1

r+Λ − r−

r2−
z∞

, (44)

D = −3µ2

Λ
zr

r+ − r−

1

r+Λ − r−

1

z∞

[r−Λ − r−z∞]2

(zr − 1)(z∞ − 1)
, (45)

F =
3µ2

Λ
1

r+ − r−

1

r+Λ − r−

1

z∞

(r−Λ zr − r−z∞)2

(zr − 1)(zr − z∞)2
(46)

Let us calculate the exponents of the singularity at z∞. The indicial equation takes
the form:

F (r) = r(r − 1)− 2r +
3µ2

Λ
= 0, (47)

and the exponents are computed to be:

r1,2µz∞
=

3

2
± 1

2

√
9− 12µ2

Λ
. (48)
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Exact solution for the massive-charged radial KGF
Fuchsian equation

Subsequently we compute the exponents for the regular singularities
z = 0, z = 1, z = zr . Indeed the indicial equation for the z = 1 singularity takes the
form:

F (r) = r(r − 1) + r +
a4

α2
Λ

[ΞK (r+)− eqr+]2

(r+ − r−Λ )2(r+ − r+Λ )2(r+ − r−)2
= 0 (49)

Thus the roots are calculated to be:

r1,2z=1 ≡ µ2 = ±
ia2

αΛ

ΞK (r+)− eqr+

(r−Λ − r+)(r− − r+)(r
+
Λ − r+)

(50)

Likewise we compute the exponents of the other two singularities:

r1,2z=0 ≡ µ1 = ±
ia2

αΛ

ΞK (r−)− eqr−
(r− − r−Λ )(r+ − r−)(r

+
Λ − r−)

,

r1,2z=zr ≡ µ3 = ±
ia2

αΛ

[ΞK (r+Λ )− eqr+Λ ]

(r−Λ − r+Λ )(r+ − r+Λ )(r− − r+Λ )
.

(51a)

(51b)

Thus we see that in general the massive radial Fuchsian KGF equation for a
charged particle in the curved spacetime of a cosmological rotating charged black
hole possess five singularities including the infinity.
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Choosing a value of the scalar mass in terms of Λ as µ =
√

2
3Λ the exponents of

the z∞ singularity become r1,2
z∞,µ2= 2

3 Λ
= 2, 1. Thus applying the F -homotopic

transformation of the dependent variable R

R(z) = zµ1(z − 1)µ2(z − zr )
µ3(z − z∞)

r2z∞ R̄(z) (52)

we eliminate the z∞ singularity and reduce one of the exponents of the three finite
singularities z = 0, 1, zr to zero. Consequently for this value for the scalar mass the
radial part of the KGF Fuchsian equation in the curved spacetime of the KNdS
black hole becomes a Heun differential equation:

{
d2

dz2
+

[
2µ1 + 1

z
+

2µ2 + 1

z − 1
+

2µ3 + 1

z − zr

]
d

dz

+
αβz − q

z(z − 1)(z − zr )

}
R̄(z) = 0. (53)

The F− homotopic transformation (52) factors out the z∞ singularity because it
eliminates both terms ∝ 1

(z−z∞)2
and ∝ 1

z−z∞
respectively. Indeed the last term

vanishes:

1

z − z∞

(
1

z∞
− 1

1− z∞
− 1

zr − z∞

)
− B

z − z∞

=
1

z − z∞

(r− − r+)(r
−
Λ + r+Λ + r− + r+)

(r−Λ − r−)(r
−
Λ − r+)

= 0, (54)

due to Vieta’s relations, i.e. r−Λ + r+Λ + r− + r+ = 0.
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Theorem

For the value: µ =
√

2Λ
3 both radial and angular Fuchsian dif.equations

are solved in closed analytic form in terms of general Heun functions.
Thus both radial R̄(z) and angular parts S̄(z) are expressed locally in
terms of Heun functions: Hl(ai , qi ; αi , βi , γi , δi ; z), i = R̄, S̄ .
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The four roots r−Λ , r+Λ , r−, r+ of the quartic polynomial ∆KN
r can be given in closed

analytic form, in terms of the elliptic functions ℘,℘′:

α =
1

2

℘′(−x1/2 + ω)− ℘′(x1)

℘(−x1/2 + ω)− ℘(x1)
, (55)

β =
1

2

℘′(−x1/2 + ω + ω′)− ℘′(x1)

℘(−x1/2 + ω + ω′)− ℘(x1)
, (56)

γ =
1

2

℘′(−x1/2 + ω′)− ℘′(x1)

℘(−x1/2 + ω′)− ℘(x1)
, (57)

δ =
1

2

℘′(−x1/2)− ℘′(x1)

℘(−x1/2)− ℘(x1)
. (58)

The point x1 is defined by the equation:

−6℘(x1) = −
3

Λ
+ a2, (59)

while ω, ω′ denote the half-periods of the Weierstraß elliptic function ℘. The
equations:

4℘′(x1) =
6

Λ
, −3℘2(x1) + g2 = −

3

Λ
(a2 + e2), (60)

determine the Weierstraß invariants (g2, g3) with the result:

g2 =
1

12

(
− 3

Λ
+ a2

)2

− 3

Λ
(a2 + e2), (61)

g3 = −
1

216

(
− 3

Λ
+ a2

)3

− 3

Λ
1

6
(a2 + e2)

(
− 3

Λ
+ a2

)
− 9

4Λ2
. (62)
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False singular points and exact solution of the angular KGF
equation

There are also special values of the scalar field mass for which the
fourth singularity z∞ can be of special character namely that of a
false singularity.

In this case too, the angular Fuchsian equation can in principle be
solved exactly in terms of Heun functions.

There is a deep connection between a Fuchsian equation with false
singular points and finite-gap elliptic Schrödinger equation. It is
worth exploring further generalisations of this connection from closed
form solutions of massive KGF equation in curved BH backgrounds
with false singular point(s).

We proceed to introduce the concept of false or apparent singularity.
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The concept of false singularity

An arbitrary Fuchsian equation of second order can be written in the form:

d2Y

dz2
= f (z)

dY

dz
+ g(z)Y (63)

where f (z) and g(z) are known rational functions. We assume that (63)
has regular singular points (i.e. the poles of the coefficients f and g)
ai , i = 1, . . . , v , and that a local expansion at each singular point yields a
pair of exponents {αi , βi} that characterise the local behaviour there.

Definition

We call a singular point ai false if both exponents αi and βi are
non-negative integers and there are no logarithmic terms in the local
expansion near the singular point.

We discuss briefly these restrictions on the coefficients of eqn.(63) so that
the singular point aj is false.
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The concept of false singularity

Considering the simplest false point with the exponents equal to 0 and 2,
then, from the general theory of Fuchsian equations, the exponents follow
from a characteristic equation, and local to aj :

f (z) =
1

z − aj
+ f0 + O(z − aj ), g(z) =

g−1
z − aj

+ g0 + O(z − aj ), (64)

for some constants f0, g−1, g0. The solution corresponding to the exponent
zero can be written in the form:

Y (z) =
∞

∑
m=0

cm(z − aj )
m = c0 + c1(z − aj ) + c2(z − aj )

2 +O((z − aj )
3),

(65)
for some constants c0, c1, c2. Substituting (65) into (63) we obtain
recursive equations for the coefficients at different orders of (z − aj ) which
yields the following condition that guarantees the absence of logarithmic
terms local to aj :

g−1f0 − g0 + (g−1)
2 = 0. (66)

fs
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Conditions on the coefficients of the massive Fuchsian
angular KGF equation such that the fifth singular point is
a false singular point

Equation (22) with the aid of (24) becomes:{
d2

dz2
+

[
1

z
+

1

z − 1
+

1

z − z3
− 2

z − z∞

]
d

dz

− m2

4

1

z2
− m2

4

1

(z − 1)2
+

(
Ξaω

2
√

αΛ
− m
√

αΛ

2

)2
1

(z − z3)2
+

a2µ2

αΛ(z − z∞)2
+

1

z

[
m2(1 + 2i

√
αΛ + 3αΛ)

2(−i +
√

αΛ)2
+

2mΞξ

(1 + i
√

αΛ)2
+

a2µ2

(−i +
√

αΛ)2
+

Klm

(1 + i
√

αΛ)2

]
+

1

z − 1

[−m2(1− 2i
√

αΛ + 3αΛ)

2(i +
√

αΛ)2
− −2mξΞ

(1− i
√

αΛ)2
− a2µ2

(i +
√

αΛ)2
− Klm

(1− i
√

αΛ)2

]
+

1

z − z3

[−8im2αΛ
√

αΛ

Ξ2
+

8im
√

αΛξ

Ξ
+

4ia2µ2

√
αΛΞ2

+
4i
√

αΛKlm

Ξ2

]
+

1

z − z∞

−4ia2µ2

√
αΛΞ

}
S(z) = 0, (67)

We have five singular points. The exponentials at the singular point z∞ are obtained
by solving the indicial equation:

F (r) = r(r − 1) + p0r + q0 = 0 (68)
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where p0 = limz→z∞(z − z∞)
−2

z−z∞
= −2 and

q0 = limz→z∞(z − z∞)2Q(z) = a2µ2

αΛ
. Thus we obtain r1,2(µ) =

3±
√

9−4 a2µ2

αΛ
2 .

Now choosing
5

4
=

a2µ2

αΛ
, (69)

and performing the homotopy transformation for the dependent variable

S(z) = zα1(z − 1)α2(z − z3)
α3(z − z∞)

α4 S̄(z) (70)

now with α4 =
1
2 one transforms (67) into an equation with the same

singularities however the exponents of the singular point z∞ will be now {0, 2},
i.e. non-negative integers. Thus, for this choice of scalar mass we can arrange
matters so that the singularity z∞ becomes false. However in order for this to
be true, also the condition (66), that guarantees the absence of logarithmic
terms needs to be satisfied. The terms appearing in (66) are calculated to be:
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Conditions on the coefficients of the massive Fuchsian
angular KGF equation such that the fifth singular point is
a false singular point

For the choice of scalar mass µ =
√

5
12Λ the coefficients in (66) are:

g−1 =
−i
√

αΛ

Ξ
, (71)

f0 =
2α1 + 1

z∞
+

2α2 + 1

z∞ − 1
+

2α3 + 1

z∞ − z3
, (72)

g0 =

[
m2(1 + 2i

√
αΛ + 3αΛ)

2(−i +
√

αΛ)2
+

2mξΞ
(1 + i

√
αΛ)2

+
−2αΛ

(1 + i
√

αΛ)2
+

Klm

(1 + i
√

αΛ)2

]
1

z∞

+

[
m2

2

(
1 +

4αΛ

(1− i
√

αΛ)2
−
)

2mξΞ
(1− i

√
αΛ)2

+
2αΛ

(1− i
√

αΛ)2
− Klm

(1− i
√

αΛ)2

]
1

z∞ − 1

+

[−8im2αΛ
√

αΛ

Ξ2
+

8im
√

αΛξ

Ξ
+

8i
√

αΛ

Ξ2
+

4i
√

αΛKlm

Ξ2

]
1

z∞ − z3
(73)
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Exact solution of Heun’s differential equation with a false
singular point

Consider the Fuchsian Heun equation with a false singular point:

d2Y

dζ2
+

(
γ

ζ
+

δ

ζ − 1
+
−1

ζ − a

)
dY

dζ
+

(αβζ − q)Y )

ζ(ζ − 1)(ζ − a)
= 0, (74)

the point ζ = a is the false singularity. The exponents at this point are equal to 0
and 2 and thus ε = −1. Using the Fuchs relation that the sum of all exponents
depend only on the number of singular points we now have that δ = 2− γ + β + α.
Using isomonodromy mappings Shanin and Craster (2002) have shown that the
exact solution of (74) is given by hypergeometric functions of Gauß:

Y (ζ) = (1− a)(γ− 1)F (α, β, γ− 1, ζ) + (q − a(1 + α + β + αβ− γ))F (α, β, γ, ζ)
(75)

We have verified this analytically using properties and recurrence relations of Gauß
hypergeometric function-Kraniotis 2016. This leads us to the conjecture:
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Conjecture

We expect that in the case of Fuchsian equation with 5 singularities as it
is the case for the radial and angular differential equations for a massive
charged scalar particle in the KNdS black hole spacetime for most of the
parameter space, that if one of the singularities is false, the solution will be
expressed in terms of Heun functions.
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Exact solution of the radial equation for a massive neutral
scalar particle in the Kerr-Newman spacetime

Assuming Λ = 0, the radial equation for a massive neutral particle (q = 0) is:

d
dx

[
x(x + 2d)

dR

dx

]
+

[
ω2

M2x(x + 2d)
{M2[(x + d + 1)2 − (d2 − 1)]− e2}2 + 2e2aωm

M2x(x + 2d)

− 4aωm(x + d + 1)

x(x + 2d)
− µ2M2(x + d + 1)2 +

m2a2

M2x(x + 2d)
− (ω2a2 + Klm)

]
R = 0, (76)

where we introduced a new independent variable:

Mx = r − r+, r± = M ±Md , (77)

Using the change of variables:

R(x) = e2idM
√

ω2−µ2zz±
i

2M

√
4A−M2

(z − 1)±
i

2M

√
4C−M2

Y (z)z1/2(z − 1)1/2(x(x + 2d))−1/2,
(78)

yields the confluent Heun equation:

Y ′′(z) +

(
α +

γ

z
+

δ

z − 1

)
Y ′(z) +

wz − σ

z(z − 1)
Y (z) = 0 (79)

(recall (21))
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Exact solution of the radial equation for a massive neutral
scalar particle in the Kerr-Newman spacetime

where the coefficients are calculated to be:

A =
d2M2 + (am + (−2(1 + d)M2 + e2)ω)2

4d2
, (80)

B =
1

4d3
(−a2m2 + d2M2(−1− 2Klm − 2(1 + d)2M2µ2) + 2am(2M2 − e2)ω

− (2a2d2M2 − 4(1 + d)2(−1 + 2d)M4 + 4(−1 + d2)M2e2 + e4)ω2) (81)

C =
d2M2 + (am + (2(−1 + d)M2 + e2)ω)2

4d2
(82)

D =
1

4d3
(d2M2(1 + 2Klm + 2(−1 + d)2M2µ2) + 2am(−2M2 + e2)ω

+ (4(−1 + d)2(1 + 2d)M4 + 4(−1 + d2)M2e2 + e4)ω2 + a2(m2 + 2d2M2ω2))
(83)

also we made use of a change in the independent variable:

z = − x

2d
, (84)

An exact solution of the radial KGF eqn in the KN spacetime is:

R(z) =
M√
∆KN

e2idM
√

ω2−µ2zz
1
2±

i
2M

√
4A−M2

(z − 1)
1
2±

i
2M

√
4C−M2

Hc(α, w , γ, δ, σ, z).

(85)
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Exact solution of the radial equation for a massive neutral
scalar particle in the Kerr-Newman spacetime

The parameters of the confluent Heun function Hc(α, w , γ, δ, σ, z) are computed
to be:

α = 4idM
√

ω2 − µ2, γ = 1± i

M

√
4A−M2, δ = 1± i

M

√
4C −M2,

σ =

(
−2dB

M2
− 1

2

)
+

1

2
+

4idM
√

ω2 − µ2

2

(
1 +

i

M

√
4A−M2

)
−
(

1

2
+

i

2M

√
4A−M2

)(
1 +

i

M

√
4C −M2

)
,

w =
−2d

M2
(B + D) + 4idM

√
ω2 − µ2 +

4idM
√

ω2 − µ2

2

[
i

M

√
4A−M2 +

i

M

√
4C −M2

]
We became interested in obtaining expansions of the form:

Y = ∑
µ

aµYµ, Yµ = F (αµ, γµ, s0z) (86)

where F (α, γ, z) := ∑∞
ν=0

(α)νz
ν

(γ)νν! denotes the Kummer confluent hypergeometric

function. In particular the series in terms of F (α0 + µ, γ0, s0z) is right hand
terminated if

δ = −N or
w

α
= −N (87)

Also if α0 = γ the series is right hand terminated if

γ + δ +
(
−w

α

)
= −N (88)

ac
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Exact solution of the radial equation for a massive charged
scalar particle in the Kerr-Newman spacetime

Following similar steps as in the previous pages the exact solution of the radial
part of the KGF differential equation for a massive charged particle in the KN
black hole spacetime will involve the confluent Heun function:

Hc(α′, w ′, γ′, δ′, σ′, z)

≡ HeunC

(
4idM

√
ω2 − µ2,± i

M

√
4A′ −M2,± i

M

√
4C ′ −M2,− 2d

M2
(B ′ + D ′),

1

2
+

2dB ′

M2
, z

)
(89)

where

α′ = 4idM
√

ω2 − µ2, (90)

γ′ = 1± i

M

√
4A′ −M2, (91)

δ′ = 1± i

M

√
4C ′ −M2, (92)

σ′ =

(
−2dB ′

M2
− 1

2

)
+

1

2
+

4idM
√

ω2 − µ2

2

(
1 +

i

M

√
4A′ −M2

)
− 1

2

(
1 +

i

M

√
4A′ −M2

)(
1 +

i

M

√
4C ′ −M2

)
(93)

w ′ =
−2d

M2
(B ′ + D ′) + 4idM

√
ω2 − µ2 +

4idM
√

ω2 − µ2

2

[
i

M

√
4A′ −M2 +

i

M

√
4C ′ −M2

]
,

(94)

the variable z is given in (84) and in (89) we wrote the exact solution also in
terms of the confluent Heun function: HeunC(α, β, γ, δ, η, z), defined in Maple.
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A′ = A− 1

4d2

(
−e2q2M2(1 + d)2 + 4eM3qω(1 + d)2 − 2e3qMω(d + 1)

)
B ′ = B − 1

4d3

(
2aemMq + e2M2q2(1− d2) + 2d2M4µ2(1 + d)2 + 4eM3qω(d3 + 2d2 − 1) + 2e3qMω

)
C ′ = C − 1

4d2

(
2aeqmM(d − 1)− e2q2M2(1− d)2 + 4eqM3ω(d − 1)2 + 2e3qMω(d − 1)

)
D ′ = D − 1

4d3
(−2aeqmM − e2q2M2(1− d2)− 2d2M4µ2(d − 1)2 + 4eqωM3(1− 2d2 + d3)

− 2e3qMω)

Constraining the parameters of the theory so that the solution when expanded in terms of the
confluent Kummer hypergeometric functions is right hand terminated we derive the
conditions:

δ′ = 1± i

M

√
4C ′ −M2 = −N or (95)

w ′

α′
=

−2d
M2 (B

′ + D ′) + 4idM
√

ω2 − µ2 +
4idM
√

ω2−µ2

2

[
i
M

√
4A′ −M2 + i

M

√
4C ′ −M2

]
4idM

√
ω2 − µ2

= −N

(96)

Also if α0 = γ′ the series is right hand terminated if:

γ′ + δ′ +

(
−w ′

α′

)
= −N (97)
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A′ = A− 1

4d2
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A possible application: gravitational radiation from an
axion cloud around a KNdS black hole

Now that we have entered a very exciting era for general relativity
from the detection of gravitational radiation (GW) from the binary
black hole merger GW150914, a natural question arises:

Is it possible of detecting signals from string theory through GW
detectors?

Due to their high dimensionality, the compactification process of the
extra dimensions of string theory results in extra degrees of freedom
usually associated with the shape and size of the extra dimensions
called the moduli.

One of the moduli is the QCD axion. There are also other scalar
moduli, the so called string axions with ultralight masses: e.g. from
10−10eV− 10−33eV, and further below.
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Superradiance-constraining the mass of ultralight axionic
degrees of freedom

An axion field of mass mA = 10−10eV has a Compton wavelength
h

mAc
= 12417m which corresponds to the size of a black hole with a mass

mBH ∼ 10M� while for an axion mass mA = 10−16eV its length is comparable
to the length GMBH

c2
of the galactic centre supermassive black hole

MBH = 4.04× 106M� SgrA*.

A superradiant instability effectively takes place if the Compton wavelength of
the axion mass µ has the order of the gravitational radius of a black hole.
The superradiant instability (SI) has been investigated by theoretical
motivations (e.g. Brito et al 2015-LNP 906)-the axiverse scenario (Arvanitaki
et al 2010, Yoshino & Kodama 2014) has provoked renewed interest in the
topic because it suggests that the SI may happen in the Universe and signals
from an axion field may be observed by gravitational wave detectors.
Thus an interesting application of our exact analytic solutions of the KGF
equation in the curved spacetime of a KNdS black hole will be the
investigation of superradiant instabilities in such gravitational backgrounds
that can be used to constrain the mass of ultralight axionic degrees of freedon
and perhaps vindicating such a scenario- especially when combined with
precision measurements of the relativistic effects for the galactic centre SgrA*
black hole which will determine its fundamental parameters M, a, e, Λ.
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Conclusions

Exact analytic solutions for the massive KFG equation for a charged particle in
the curved spacetime of a KNdS black hole were derived.

We first derived the radial and angular Fuchsian differential equations that
result by separating variables in the general relativistic massive KGF equation
in the KN-(a)dS black hole spacetime.
The resulting Fuchsian differential eqns. contain more than 4 regular
singularities-thus they suggest a generalisation of Heun functions.

For the value: µ =
√

2Λ
3 both radial and angular Fuchsian dif.equations are

solved in closed analytic form in terms of general Heun functions.
For other values of µ for the bosonic field one of the singularities become a
false singularity provided the conditions (71)− (73) for a false (0, 2)

singularity we derived, are satisfied-e.g. for µ =
√

5
12Λ this is the case for the

angular Fuchsian eqn.
The closed form analytic solutions for the radial and angular equations for a
massive charged scalar particle in the KN spacetime are expressed in terms of
confluent Heun functions. The latter, under certain conditions on the
parameters they reduce to a sum-with finite number of terms-of confluent
Kummer hypergeometric functions.
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