

1st Hadron Spanish Network Days
and
Spanish-Japanese JSPS Workshop

Valencia, Valencian Community (Spain),
June 15-17, 2015

Volodymyr Magas

The study of $\Lambda_b \rightarrow J/\psi \ K \ \Xi$ decay

In collaboration with **A. Feijoo Aliau, A. Ramos & E. Oset**

University of Barcelona, Spain

A. Feijoo, V.K. Magas and A. Ramos

“The $K^- p \rightarrow K\Xi$ reaction in coupled channel

chiral models up to next-to-leading order”

arXiv:1502.07956 [nucl-th], to appear in PRC

A. Feijoo's talk on Tuesday

&

L. Roca, M. Mai, E. Oset, and Ulf-G. Meißner

“Predictions for the $\Lambda_b \rightarrow J/\Psi \Lambda(1405)$ decay”

arXiv:1503.02936v1 [hep-ph]

= $\Lambda_b \rightarrow J/\psi K \Xi$ decay

Unitary extension of Chiral Perturbation Theory ($U_\chi PT$)

- nonperturbative scheme to calculate scattering amplitude

Bethe-Salpeter equation:

$$T_{ij} = V_{ij} + V_{il}G_lV_{lj} + V_{il}G_lV_{lk}G_kV_{kj} + \dots$$

$$T_{ij} = V_{ij} + V_{il}G_lT_{lj}$$

$$T_{ij}(E; k_i, k_j) = V_{ij}(k_i, k_j) + \sum_k \int d^3 q_k V_{ik}(k_i, q_k) \tilde{G}_k(E; q_k) T_{kj}(E; q_k, k_j)$$

On shell factorization of T_{kj} and V_{ik}

$$T_{ij}(E) = V_{ij} + \sum_k V_{ik}G_k(E) T_{kj}(E) , \rightarrow \boxed{T = (\mathbf{1} - \mathbf{V}\mathbf{G})^{-1}\mathbf{V}}$$

where $G_k(E) = \int d^3 q_k \tilde{G}_k(E; q_k)$

Coupled-channel algebraic equations system

In S=-1 sector, i,j and k indexes run over these 10 channels:

$$K^- p, \bar{K}^0 n, \pi^0 \Lambda, \pi^0 \Sigma^0, \pi^+ \Sigma^-, \pi^- \Sigma^+, \eta \Lambda, \eta \Sigma^0, K^+ \Xi^-, K^0 \Xi^0$$

Unitary extension of Chiral Perturbation Theory ($U_\chi PT$)

- nonperturbative scheme to calculate scattering amplitude

Loop function: $G_k = i \int \frac{d^4 q}{(2\pi)^4} \frac{M_k}{E_k(\vec{q})} \frac{1}{\sqrt{s} - q^0 - E_k(\vec{q}) + i\epsilon} \frac{1}{q^2 - m_k^2 + i\epsilon}$

Adopting the *dimensional regularization*:

$$G_k = \frac{M_k}{16\pi^2} \left\{ \color{red} a_k(\mu) + \ln \frac{M_k^2}{\mu^2} + \frac{m_k^2 - M_k^2 + s}{2s} \ln \frac{m_k^2}{M_k^2} - 2i\pi \frac{q_k}{\sqrt{s}} \right. \\ \left. + \frac{q_k}{\sqrt{s}} \ln \left(\frac{s^2 - ((M_k^2 - m_k^2) + 2q_k\sqrt{s})^2}{s^2 - ((M_k^2 - m_k^2) - 2q_k\sqrt{s})^2} \right) \right\}$$

subtraction constants for the dimensional regularization scale $\mu = 1\text{GeV}$ in all the k channels.

With isospin symmetry

$$a_{K^- p} = a_{\bar{K}^0 n} = \color{red} a_{\bar{K} N}$$

$$a_{\pi^0 \Lambda} = \color{red} a_{\pi \Lambda}$$

$$a_{\pi^0 \Sigma^0} = a_{\pi^+ \Sigma^-} = a_{\pi^- \Sigma^+} = \color{red} a_{\pi \Sigma}$$

$$\color{red} a_{\eta \Lambda}$$

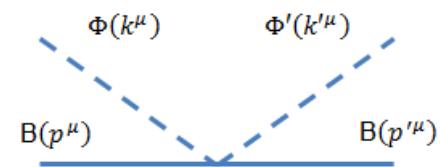
$$a_{\eta \Sigma^0} = \color{red} a_{\eta \Sigma}$$

$$a_{K^+ \Xi^-} = a_{K^0 \Xi^0} = \color{red} a_{K \Xi}$$

6 PARAMETERS!

FORMALISM

Effective Chiral Lagrangian at LO



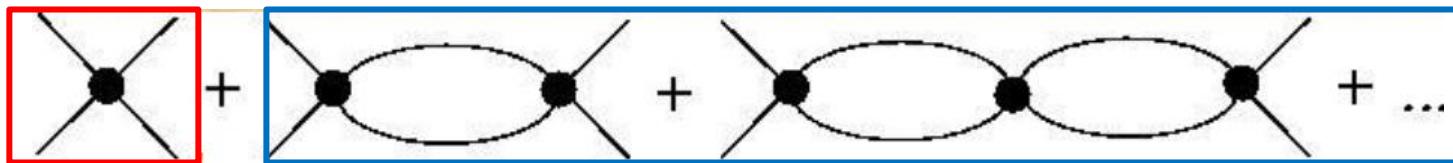
WT, lowest order term

$$\mathcal{L}_{MB}^{(1)}(B, U) = \langle \bar{B} i \gamma^\mu \nabla_\mu B \rangle - M_B \langle \bar{B} B \rangle + \frac{1}{2} D \langle \bar{B} \gamma^\mu \gamma_5 \{u_\mu, B\} \rangle + \frac{1}{2} F \langle \bar{B} \gamma^\mu \gamma_5 [u_\mu, B] \rangle$$

$$V_{ij}^{WT} = -C_{ij} \frac{1}{4f^2} \bar{u}(p) \gamma^\mu u(p) (k_\mu + k'_\mu) \xrightarrow[\text{S-wave aprox.}]{\text{At low energies} +} V_{ij}^{WT} = -C_{ij} \frac{1}{4f^2} (k^0 + k'^0)$$

For the channels of interest $C_{K^- p \rightarrow K^0 \pi^0} = C_{K^- p \rightarrow K^+ \pi^-} = 0$:

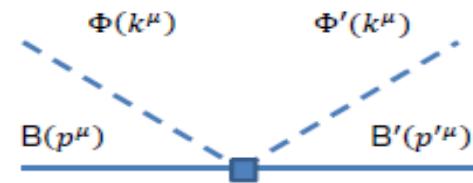
- **There is no direct contribution of these reactions at lowest order**
- The rescattering terms due to the coupled channels are the only contribution to the scattering amplitude.



These reactions are very sensitive to the NLO corrections!!!

FORMALISM

Effective Chiral Lagrangian up to NLO



$$\mathcal{L}_{MB}^{(2)}(B, U) = b_D \langle \bar{B} \{ \chi_+, B \} \rangle + b_F \langle \bar{B} [\chi_+, B] \rangle + b_0 \langle \bar{B} B \rangle \langle \chi_+ \rangle + d_1 \langle \bar{B} \{ u_\mu, [u^\mu, B] \} \rangle \\ + d_2 \langle \bar{B} [u_\mu, [u^\mu, B]] \rangle + d_3 \langle \bar{B} u_\mu \rangle \langle u^\mu B \rangle + d_4 \langle \bar{B} B \rangle \langle u^\mu u_\mu \rangle$$

NLO, next-to-leading order contact term

At low energies
+
S-wave approx.

$$V_{ij}^{NLO} = \frac{1}{f^2} (D_{ij} - 2(k_\mu k'^\mu) L_{ij}) \sqrt{\frac{M_i + E_i}{2M_i}} \sqrt{\frac{M_j + E_j}{2M_j}}$$

$$L_{K^- p \rightarrow K^0 \Xi^0} \neq 0, \quad L_{K^- p \rightarrow K^+ \Xi^-} \neq 0$$

direct contributions to Ξ production reactions at NLO

Finally: $V_{ij} = V_{ij}^{WT} + V_{ij}^{NLO}$

$$T = (1 - VG)^{-1}V$$

$$T_{ij}^{NLO}$$

Fitting parameters:

- Decay constant f
Its usual value, in real calculations, is between $1.15 - 1.2 f_\pi^{exp}$ in order to simulate effects of higher order corrections . $(f_\pi^{exp} = 93.4 \text{ MeV})$
- 6 subtracting constants $a_{\bar{K}N}$, $a_{\pi\Lambda}$, $a_{\pi\Sigma}$, $a_{\eta\Lambda}$, $a_{\eta\Sigma}$, $a_{K\Sigma}$
- 7 coefficients of the NLO lagrangian terms $b_0, b_D, b_F, d_1, d_2, d_3, d_4$

Chiral meson-baryon effective Lagrangian at NLO

Recent Publications:

- B. Borasoy, R. Nißler, W. Wiese, **Eur. Phys. J. A25 (2005) 79**
- Y. Ikeda, T. Hyodo, W. Wiese, **Phys. Lett. B706 (2011) 63;**
Nucl. Phys. A881 (2012) 98
- Z.-H. Guo, J.A. Oller, **Phys. Rev. C87 (2013) 035202**
- M. Mai, U.G. Meissner, **Nucl. Phys. A900 (2013) 51**

- A. Feijoo, **Master Thesis**, U. of Barcelona (Nov 2012)
- A. Feijoo, V. Magas, A. Ramos, **arXiv:1311.5025**; **arXiv:1402.3971**;
arXiv:1502.07956 [nucl-th], to appear in **PRC**

Inclusion of hyperonic resonances in $K^-p \rightarrow K\Xi$ channels

Motivation

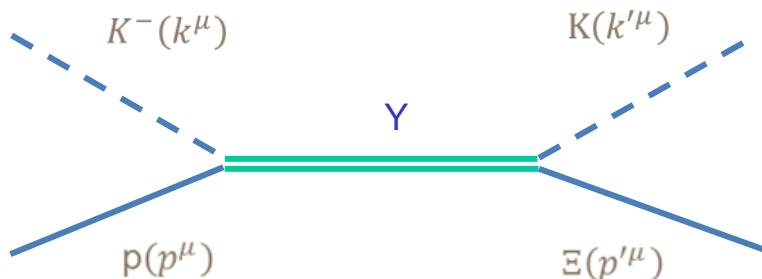
- Inclusion of high spin and high mass resonances allows us to study the accuracy and stability of the NLO parameters ($b_0, b_D, b_F, d_1, d_2, d_3, d_4$).
- It also allows the production of angular dependent scattering amplitudes; and hence, a better reproduction of the differential cross sections experimental data.

Resonance	$I (J^P)$	Mass (MeV)	Γ (MeV)	$\Gamma_{K\Xi}/\Gamma$
$\Lambda(1890)$	$0 \left(\frac{3}{2}^+ \right)$	1850 - 1910	60 - 200	
$\Lambda(2100)$	$0 \left(\frac{7}{2}^- \right)$	2090 - 2110	100 - 250	< 3%
$\Lambda(2110)$	$0 \left(\frac{5}{2}^+ \right)$	2090 - 2140	150 - 250	
$\Lambda(2350)$	$0 \left(\frac{9}{2}^+ \right)$	2340 - 2370	100 - 250	
$\Sigma(1915)$	$1 \left(\frac{5}{2}^+ \right)$	1900 - 1935	80 - 160	
$\Sigma(1940)$	$1 \left(\frac{3}{2}^- \right)$	1900 - 1950	150 - 300	
$\Sigma(2030)$	$1 \left(\frac{7}{2}^+ \right)$	2025 - 2040	150 - 200	< 2%
$\Sigma(2250)$	$1 \left(? \frac{5}{2}^- \right)$	2210 - 2280	60 - 150	

In Sharov, Korotkikh, Lanskoy, EPJA 47 (2011) 109, a phenomenological model was suggested in which several combinations of resonances were tested concluding that $\Sigma(2030)$ and $\Sigma(2250)$ were the most relevant.

See also
Jackson, Oh, Haberzettl, Nakayama,
arXiv: 1503.00845 [nucl-th]

Inclusion of hyperonic resonances in $K^- p \rightarrow K \Xi$ channels



K. Nakayama, Y. Oh, H. Habertzettl, Phys. Rev. C74, 035205 (2006)
 K. Shing Man, Y. Oh, K. Nakayama, Phys. Rev. C83, 055201 (2011)

Rarita-Schwinger method

$$\Sigma(2030), J^P = \frac{7}{2}^+, T^{7/2+}$$

$$\mathcal{L}_{BYK}^{7/2\pm}(q) = -\frac{g_{BY_{7/2}K}}{m_K^3} \bar{B} \Gamma^{(\mp)} Y_{7/2}^{\mu\nu\alpha} \partial_\mu \partial_\nu \partial_\alpha K + H.c.$$

$$\Sigma(2250), J^P = \frac{5}{2}^-, T^{5/2-}$$

$$\mathcal{L}_{BYK}^{5/2\pm}(q) = i \frac{g_{BY_{5/2}K}}{m_K^2} \bar{B} \Gamma^{(\pm)} Y_{5/2}^{\mu\nu} \partial_\mu \partial_\nu K + H.c.$$

Finally, the scattering amplitudes related to the resonances can be obtained in the following way :

$$T^{5/2-}(s', s) = \frac{g_{\Xi Y_{5/2} K} g_{N Y_{5/2} \bar{K}}}{m_K^4} \bar{u}_{\Xi}'(p') \frac{k'_{\beta_1} k'_{\beta_2} \Delta_{\alpha_1 \alpha_2}^{\beta_1 \beta_2} k^{\alpha_1} k^{\alpha_2}}{q - M_{Y_{5/2}} + i\Gamma_{5/2}/2} u_N^s(p) \exp\left(-\vec{k}^2/\Lambda_{5/2}^2\right) \exp\left(-\vec{k}'^2/\Lambda_{5/2}^2\right)$$

$$T^{7/2+}(s', s) = \frac{g_{\Xi Y_{7/2} K} g_{N Y_{7/2} \bar{K}}}{m_K^6} \bar{u}_{\Xi}'(p') \frac{k'_{\beta_1} k'_{\beta_2} k'_{\beta_3} \Delta_{\alpha_1 \alpha_2 \alpha_3}^{\beta_1 \beta_2 \beta_3} k^{\alpha_1} k^{\alpha_2} k^{\alpha_3}}{q - M_{Y_{7/2}} + i\Gamma_{7/2}/2} u_N^s(p) \exp\left(-\vec{k}^2/\Lambda_{7/2}^2\right) \exp\left(-\vec{k}'^2/\Lambda_{7/2}^2\right)$$

Inclusion of hyperonic resonances in $K^-p \rightarrow K\Xi$ channels

The total scattering amplitude for the $\bar{K}N \rightarrow K\Xi$ reaction taking into account the unitarized chiral contributions up to NLO plus the phenomenological contributions from the resonances reads:

$$T_{ij,s,s'}^{tot} = T_{ij,s,s'}^{NLO} + T_{s,s'}^{5/2^-} + T_{s,s'}^{7/2^+}$$

Fitting parameters.

- Decay constant f
- Subtracting constants $a_{\bar{K}N}$, $a_{\pi\Lambda}$, $a_{\pi\Sigma}$, $a_{\eta\Lambda}$, $a_{\eta\Sigma}$, $a_{K\Xi}$
- Coefficients of the NLO lagrangian terms $b_0, b_D, b_F, d_1, d_2, d_3, d_4$
- Masses and width of the resonances $M_{Y_{5/2}}, M_{Y_{7/2}}, \Gamma_{5/2}, \Gamma_{7/2}$
Not free at all, their values are constrained according to PDG summary
- Cutoff parameters from the form factor $\Lambda_{5/2}, \Lambda_{7/2}$
- Product of the coupling constants (one for each vertex) for both resonances
 $g_{\Xi Y_{5/2} K} \cdot g_{N Y_{5/2} \bar{K}}, \quad g_{\Xi Y_{7/2} K} \cdot g_{N Y_{7/2} \bar{K}}$

Experimental data

- Total cross sections for different channels
- Differential cross sections for $K^- p \rightarrow K\Xi$ reactions
- Branching ratios

$$\gamma = \frac{\Gamma(K^- p \rightarrow \pi^+ \Sigma^-)}{\Gamma(K^- p \rightarrow \pi^- \Sigma^+)} = \frac{\sigma_{\pi^+ \Sigma^- \rightarrow K^- p}}{\sigma_{\pi^- \Sigma^+ \rightarrow K^- p}}$$

$$R_n = \frac{\Gamma(K^- p \rightarrow \pi^0 \Lambda)}{\Gamma(K^- p \rightarrow \text{neutral states})} = \frac{\sigma_{\pi^0 \Lambda \rightarrow K^- p}}{\sigma_{\pi^0 \Lambda \rightarrow K^- p} + \sigma_{\pi^0 \Sigma^0 \rightarrow K^- p}}$$

$$R_c = \frac{\Gamma(K^- p \rightarrow \pi^+ \Sigma^-, \pi^- \Sigma^+)}{\Gamma(K^- p \rightarrow \text{inelastic channels})} = \frac{\sigma_{\pi^+ \Sigma^- \rightarrow K^- p} + \sigma_{\pi^- \Sigma^+ \rightarrow K^- p}}{\sigma_{\pi^+ \Sigma^- \rightarrow K^- p} + \sigma_{\pi^- \Sigma^+ \rightarrow K^- p} + \sigma_{\pi^0 \Lambda \rightarrow K^- p} + \sigma_{\pi^0 \Sigma^0 \rightarrow K^- p}}$$

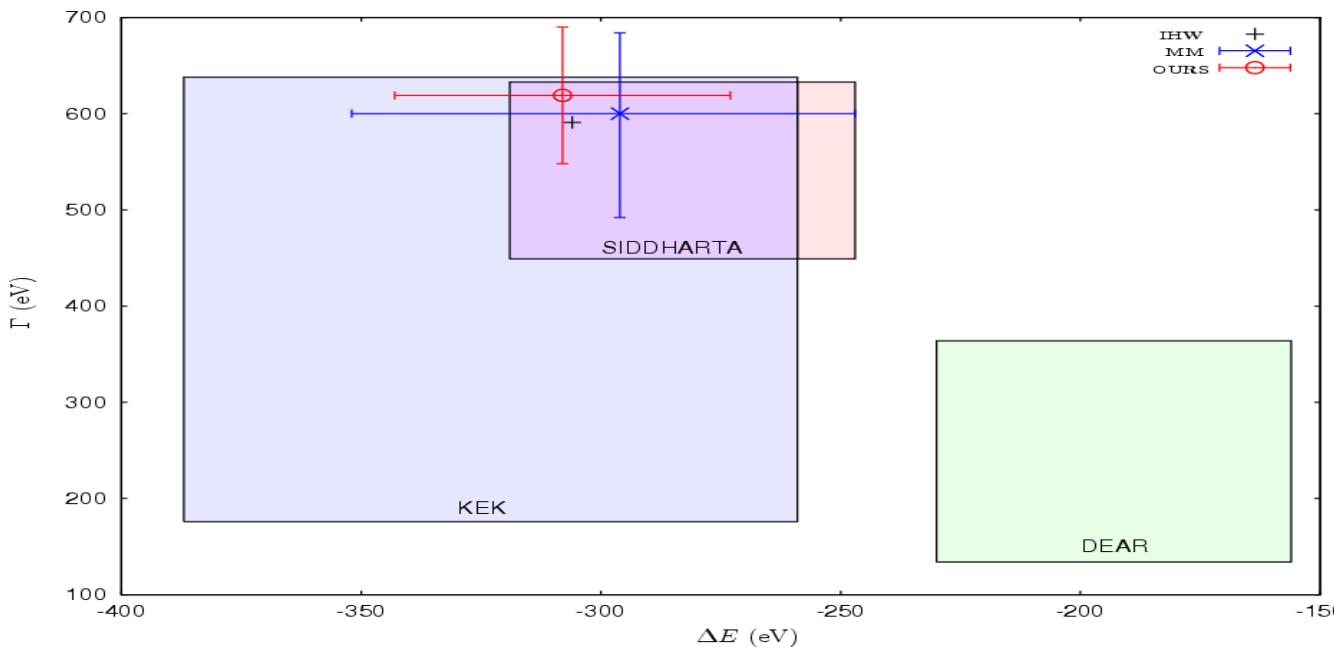
- Shift and width of the 1s state of the kaonic hydrogen

Recent experimental advances

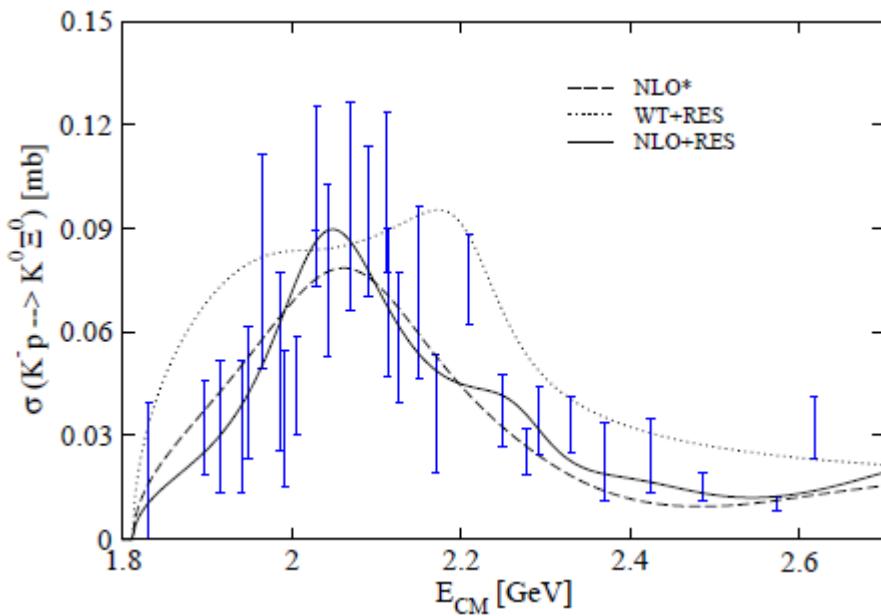
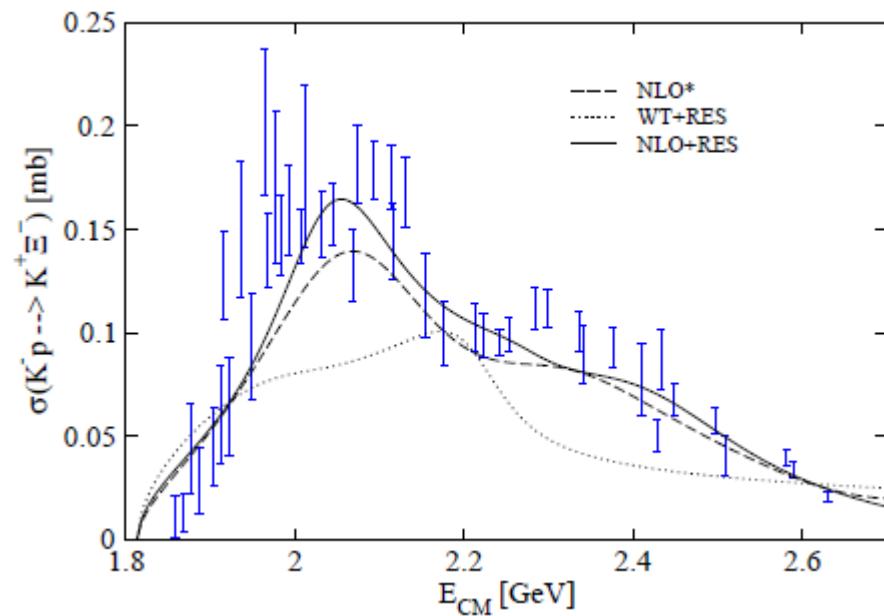
- The **SIDDHARTA** collaboration at DAΦNE collider has determined the most precise values of shift and width of the 1s state of the kaonic hydrogen induced by the strong interaction.

[**M. Bazzi et al, Phys. Lett. B704 (2011) 113**]

These measurements allowed us to clarify the discrepancies between KEK and DEAR results for the kaonic hydrogen shift and width of the ground state.



Results for $K^-p \rightarrow K\Xi$ channels

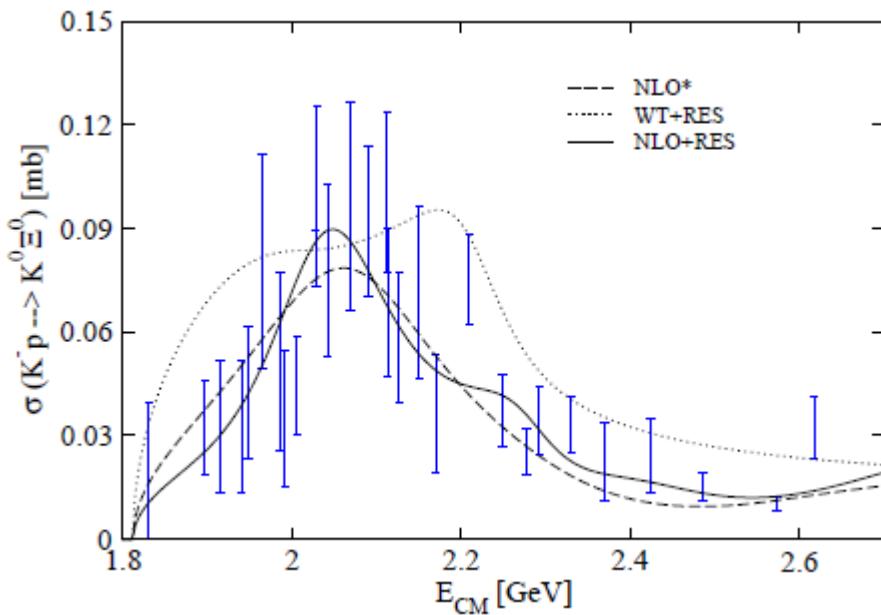
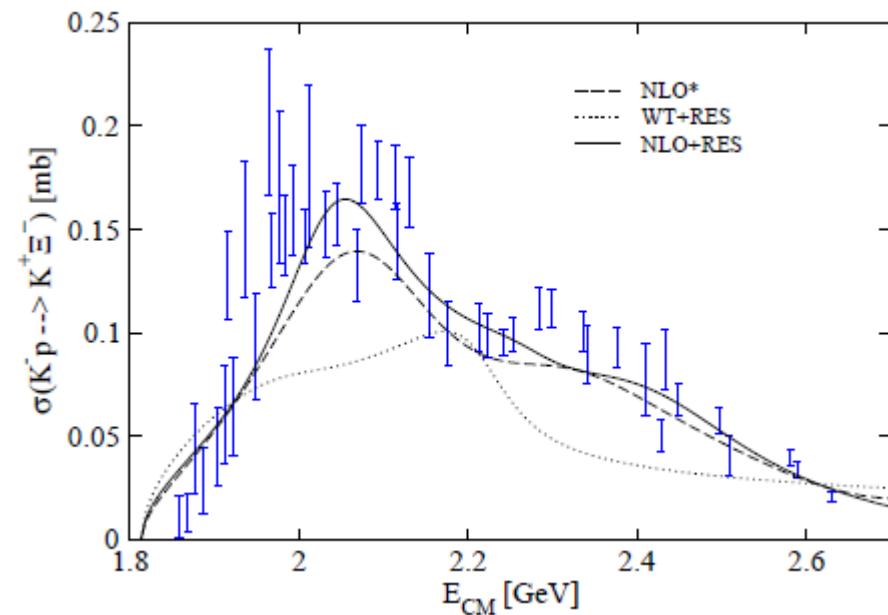


	γ	R_n	R_c	$a_p(K^-p \rightarrow K^-p)$	ΔE_{1s}	Γ_{1s}
NLO*	2.37	0.189	0.664	$-0.69 + i 0.86$	300	570
WT+RES	2.37	0.193	0.667	$-0.73 + i 0.81$	307	528
NLO+RES	2.39	0.187	0.668	$-0.66 + i 0.84$	286	562
Exp.	2.36	0.189	0.664	$-0.66 + i 0.81$	283	541
	± 0.04	± 0.015	± 0.011	$(\pm 0.07) + i (\pm 0.15)$	± 36	± 92

Results for $K^-p \rightarrow K\Xi$ channels

	NLO*	WT+RES	NLO+RES
$a_{\bar{K}N} (10^{-3})$	6.799 ± 0.701	-1.965 ± 2.219	6.157 ± 0.090
$a_{\pi\Lambda} (10^{-3})$	50.93 ± 9.18	-188.2 ± 131.7	59.10 ± 3.01
$a_{\pi\Sigma} (10^{-3})$	-3.167 ± 1.978	0.228 ± 2.949	-1.172 ± 0.296
$a_{\eta\Lambda} (10^{-3})$	-15.16 ± 12.32	1.608 ± 2.603	-6.987 ± 0.381
$a_{\eta\Sigma} (10^{-3})$	-5.325 ± 0.111	208.9 ± 151.1	-5.791 ± 0.034
$a_{K\Xi} (10^{-3})$	31.00 ± 9.441	43.04 ± 25.84	32.60 ± 11.65
f/f_π	1.197 ± 0.011	1.203 ± 0.023	1.193 ± 0.003
$b_0 (\text{GeV}^{-1})$	-1.158 ± 0.021	-	-0.907 ± 0.004
$b_D (\text{GeV}^{-1})$	0.082 ± 0.050	-	-0.151 ± 0.008
$b_F (\text{GeV}^{-1})$	0.294 ± 0.149	-	0.535 ± 0.047
$d_1 (\text{GeV}^{-1})$	-0.071 ± 0.069	-	-0.055 ± 0.055
$d_2 (\text{GeV}^{-1})$	0.634 ± 0.023	-	0.383 ± 0.014
$d_3 (\text{GeV}^{-1})$	2.819 ± 0.058	-	2.180 ± 0.011
$d_4 (\text{GeV}^{-1})$	-2.036 ± 0.035	-	-1.429 ± 0.006
$g_{\Xi Y_{5/2} K} \cdot g_{N Y_{5/2} \bar{K}}$	-	-5.42 ± 15.96	8.82 ± 5.72
$g_{\Xi Y_{7/2} K} \cdot g_{N Y_{7/2} \bar{K}}$	-	-0.61 ± 14.12	0.06 ± 0.20
$\Lambda_{5/2} (\text{MeV})$	-	576.7 ± 275.2	522.7 ± 43.8
$\Lambda_{7/2} (\text{MeV})$	-	623.7 ± 287.5	999.0 ± 288.0
$M_{Y_{5/2}} (\text{MeV})$	-	2210.0 ± 39.8	2278.8 ± 67.4
$M_{Y_{7/2}} (\text{MeV})$	-	2025.0 ± 9.4	2040.0 ± 9.4
$\Gamma_{5/2} (\text{MeV})$	-	150.0 ± 71.3	150.0 ± 54.4
$\Gamma_{7/2} (\text{MeV})$	-	200.0 ± 44.6	200.0 ± 32.3
$\chi^2_{\text{d.o.f.}}$	1.48	2.26	1.05

Results for $K^-p \rightarrow K\Xi$ channels



Model 1

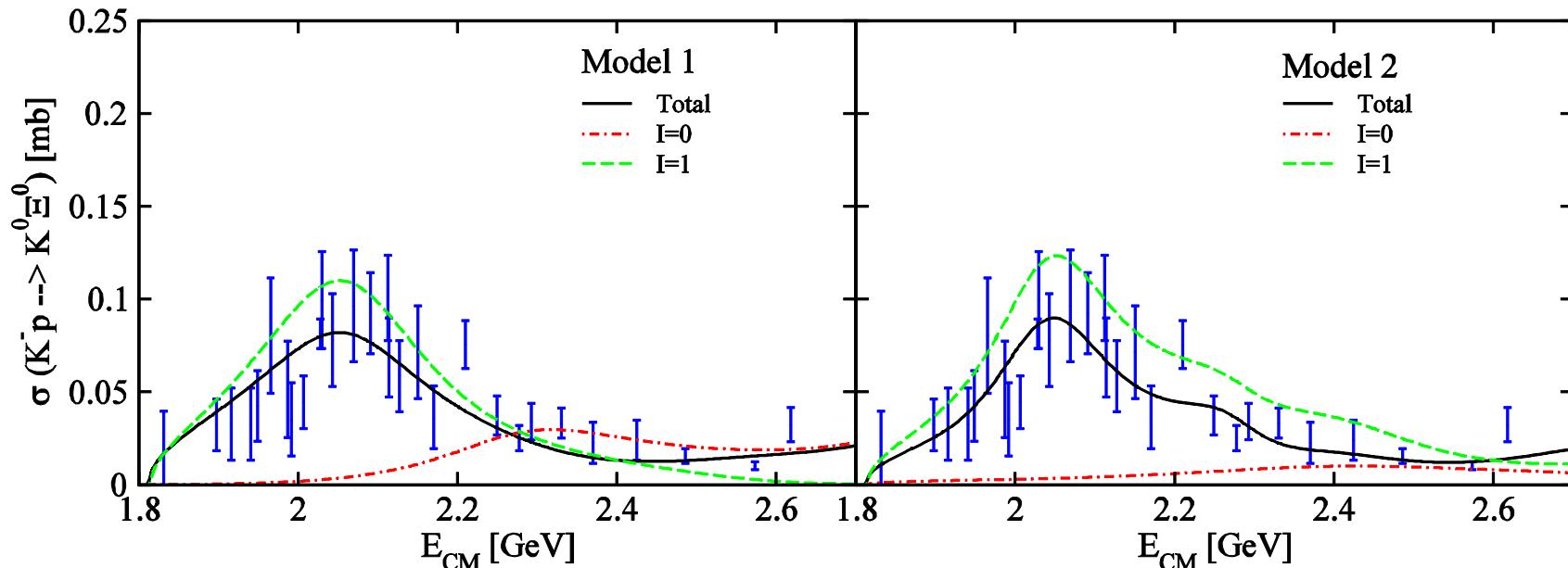
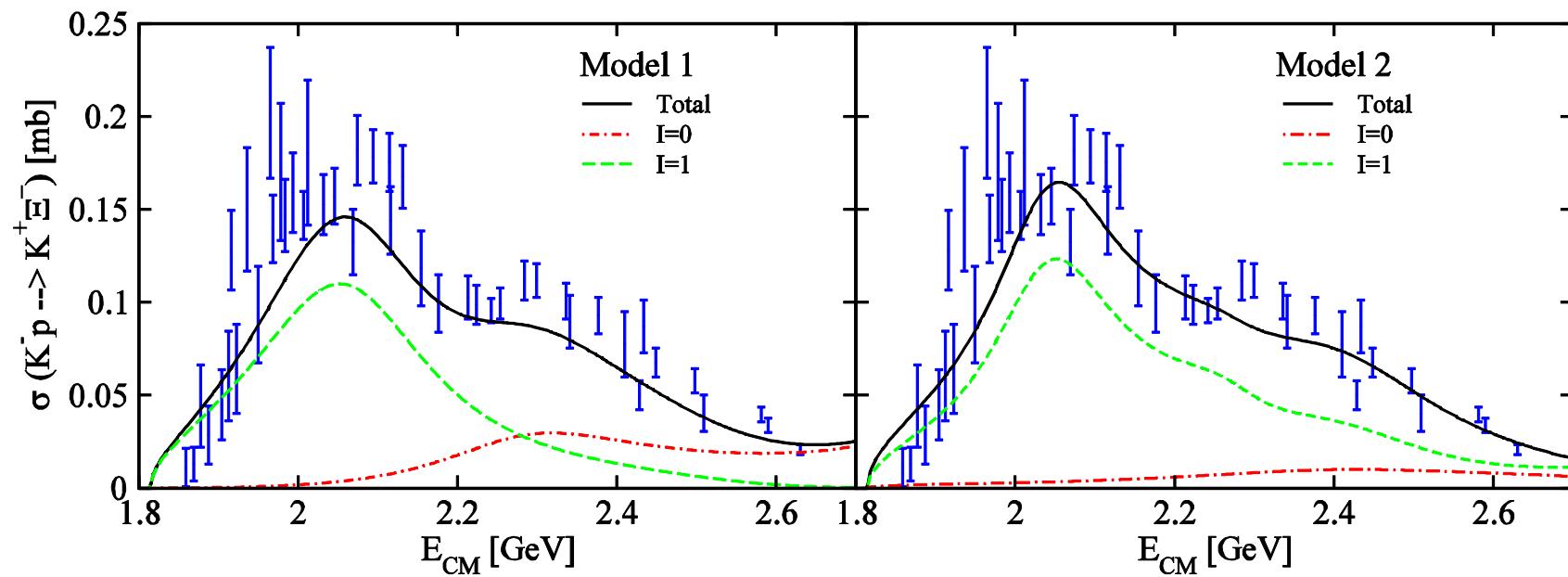
	γ	R_n	R_c	$a_p(K^-p \rightarrow K^-p)$	ΔE_{1s}	Γ_{1s}	
NLO*	2.37	0.189	0.664	$-0.69 + i 0.86$	300	570	
WT+RES	2.37	0.193	0.667	$-0.73 + i 0.81$	307	528	
NLO+RES	2.39	0.187	0.668	$-0.66 + i 0.84$	286	562	
Model 2	Exp.	2.36	0.189	0.664	$-0.66 + i 0.81$	283	541
		± 0.04	± 0.015	± 0.011	$(\pm 0.07) + i (\pm 0.15)$	± 36	± 92

Results for $K^-p \rightarrow K\Xi$ channels

$$|K^+\Xi^-> = -\frac{1}{\sqrt{2}} (|K\Xi>_{I=1} + |K\Xi>_{I=0})$$

$$|K^0\Xi^0> = \frac{1}{\sqrt{2}} (|K\Xi>_{I=1} - |K\Xi>_{I=0})$$

Results for $K^-p \rightarrow K\Xi$ channels



Results for $K^- p \rightarrow K\Xi$ channels

$$|K^+\Xi^-> = -\frac{1}{\sqrt{2}} (|K\Xi>_{I=1} + |K\Xi>_{I=0})$$

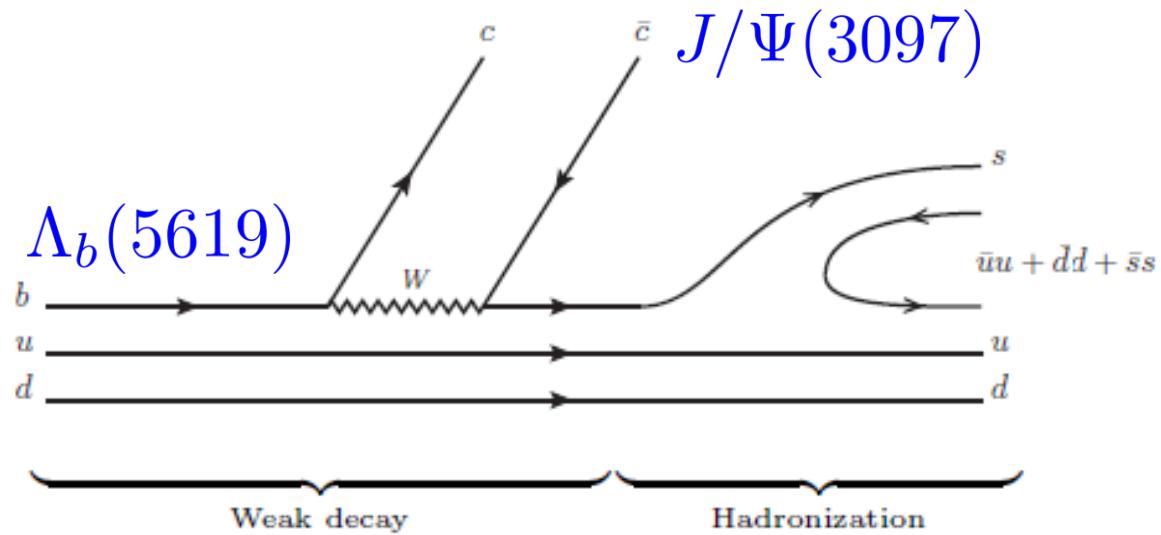
$$|K^0\Xi^0> = \frac{1}{\sqrt{2}} (|K\Xi>_{I=1} - |K\Xi>_{I=0})$$

Experimental data show dominance of the I=1 contribution

Complementary experimental information about
I=0 channel would be very useful

$\Lambda_b \rightarrow J/\psi \ K \ \Xi$ decay

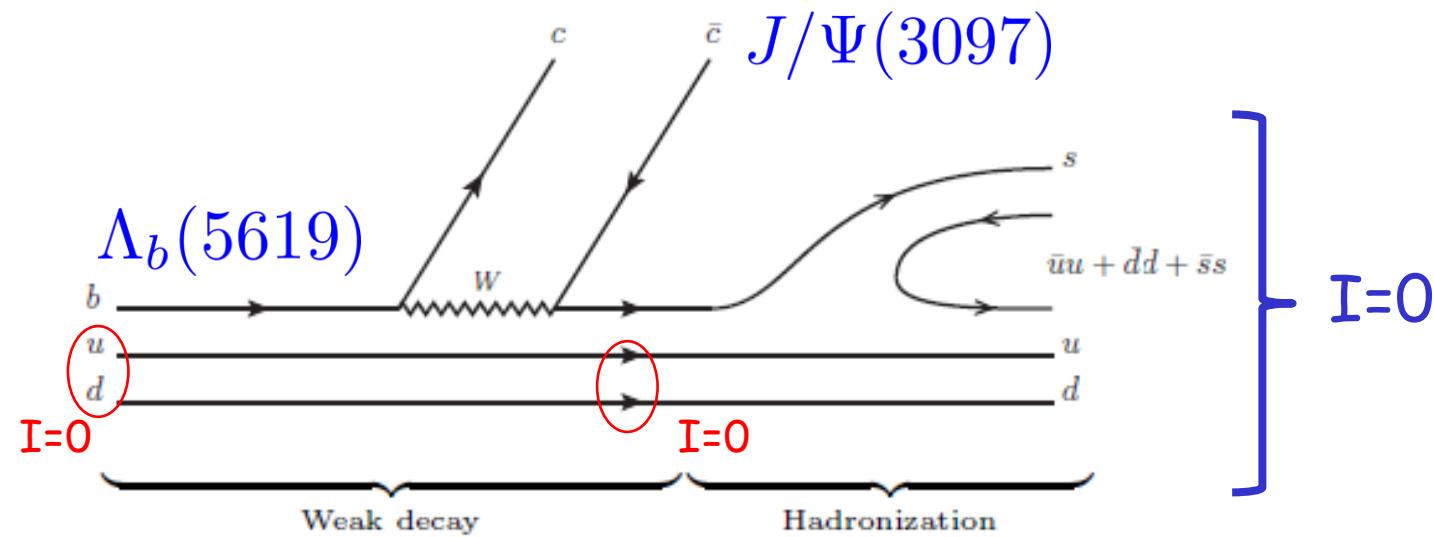
The $\Lambda_b \rightarrow J/\psi + \text{meson-baryon}$ process



$$|\Lambda_b\rangle = \frac{1}{\sqrt{2}}|b(u\bar{d} - \bar{d}u)\rangle \xrightarrow[\text{u, d - spectators}]{\text{Weak decay}} \frac{1}{\sqrt{2}}|s(u\bar{d} - \bar{d}u)\rangle$$

Cabibbo favored
transition

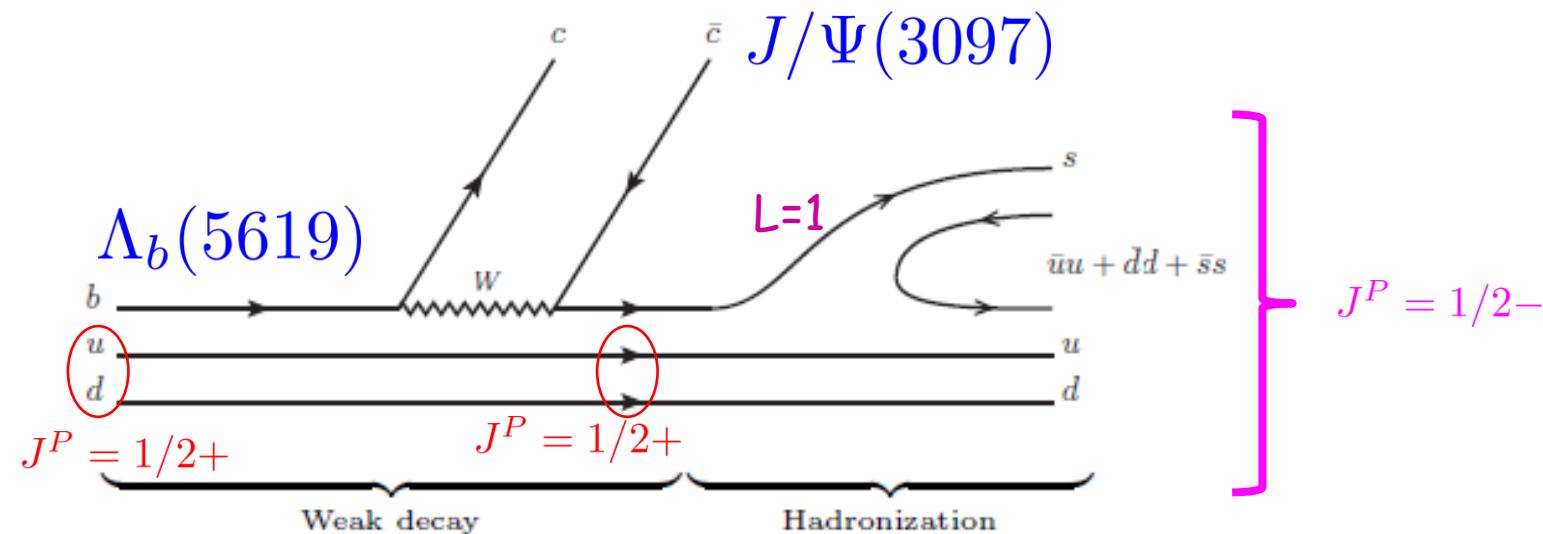
The $\Lambda_b \rightarrow J/\psi + \text{meson-baryon}$ process



$$|\Lambda_b\rangle = \frac{1}{\sqrt{2}}|b(u\bar{d} - \bar{d}u)\rangle \xrightarrow[\text{u, d - spectators}]{\text{Weak decay}} \frac{1}{\sqrt{2}}|s(u\bar{d} - \bar{d}u)\rangle$$

Cabibbo favored transition

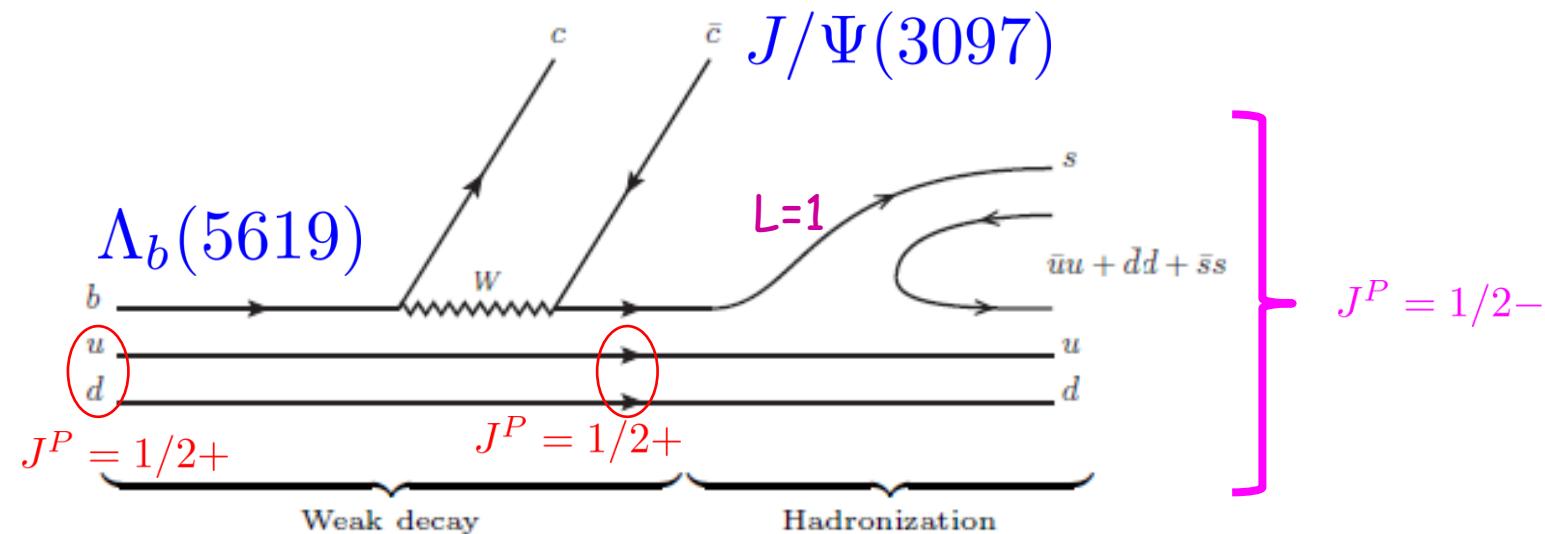
The $\Lambda_b \rightarrow J/\psi + \text{meson-baryon}$ process



$$|\Lambda_b\rangle = \frac{1}{\sqrt{2}}|b(u\bar{d} - \bar{u}d)\rangle \xrightarrow[\text{u, d - spectators}]{\text{Weak decay}} \frac{1}{\sqrt{2}}|s(u\bar{d} - \bar{u}d)\rangle$$

Cabibbo favored transition

The $\Lambda_b \rightarrow J/\psi + \text{meson-baryon}$ process



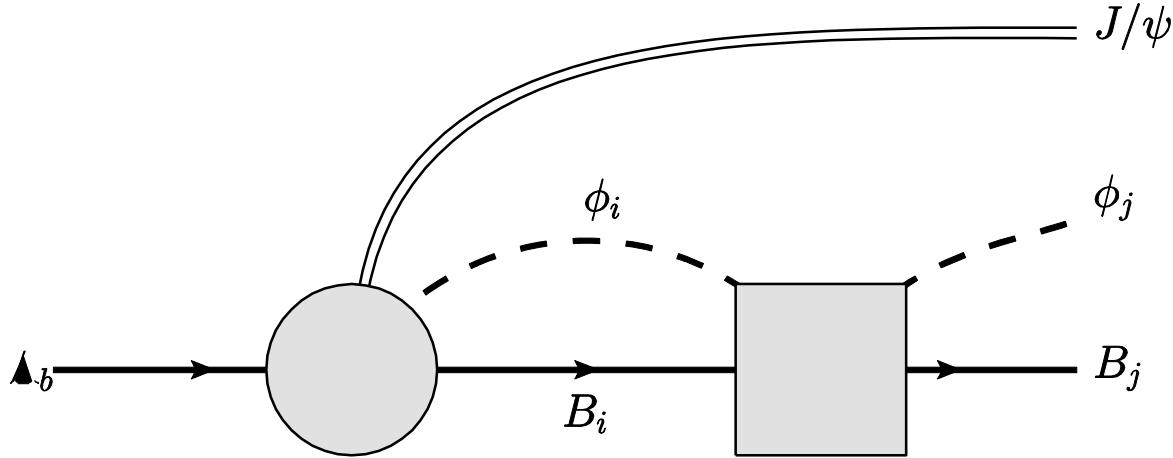
$$|\Lambda_b\rangle = \frac{1}{\sqrt{2}}|b(ud - du)\rangle \xrightarrow[\text{u, d - spectators}]{\text{Weak decay}} \frac{1}{\sqrt{2}}|s(ud - du)\rangle$$

Cabibbo favored transition

After hadronization

$$\begin{aligned}
|H\rangle &= \frac{1}{\sqrt{2}} |s(u\bar{u} + d\bar{d} + s\bar{s})(u\bar{d} - d\bar{u})\rangle \\
&= |K^- p\rangle + |\bar{K}^0 n\rangle - \frac{\sqrt{2}}{3} |\eta \Lambda\rangle + \frac{2}{3} |\eta' \Lambda\rangle
\end{aligned}$$

$\Lambda_b \rightarrow J/\psi B_j \phi_j$ decay



Transition amplitude

$$\mathcal{M}_j(M_{\text{inv}}) = V_p (h_j + \sum_i h_i G_i(M_{\text{inv}}) t_{ij}(M_{\text{inv}})) ,$$

$$h_{\pi^0 \Sigma^0} = h_{\pi^+ \Sigma^-} = h_{\pi^- \Sigma^+} = 0 , \quad h_{\eta \Lambda} = -\frac{\sqrt{2}}{3} ,$$

$$h_{K^- p} = h_{\bar{K}^0 n} = 1 , \quad h_{K^+ \Xi^-} = h_{K^0 \Xi^0} = 0 .$$

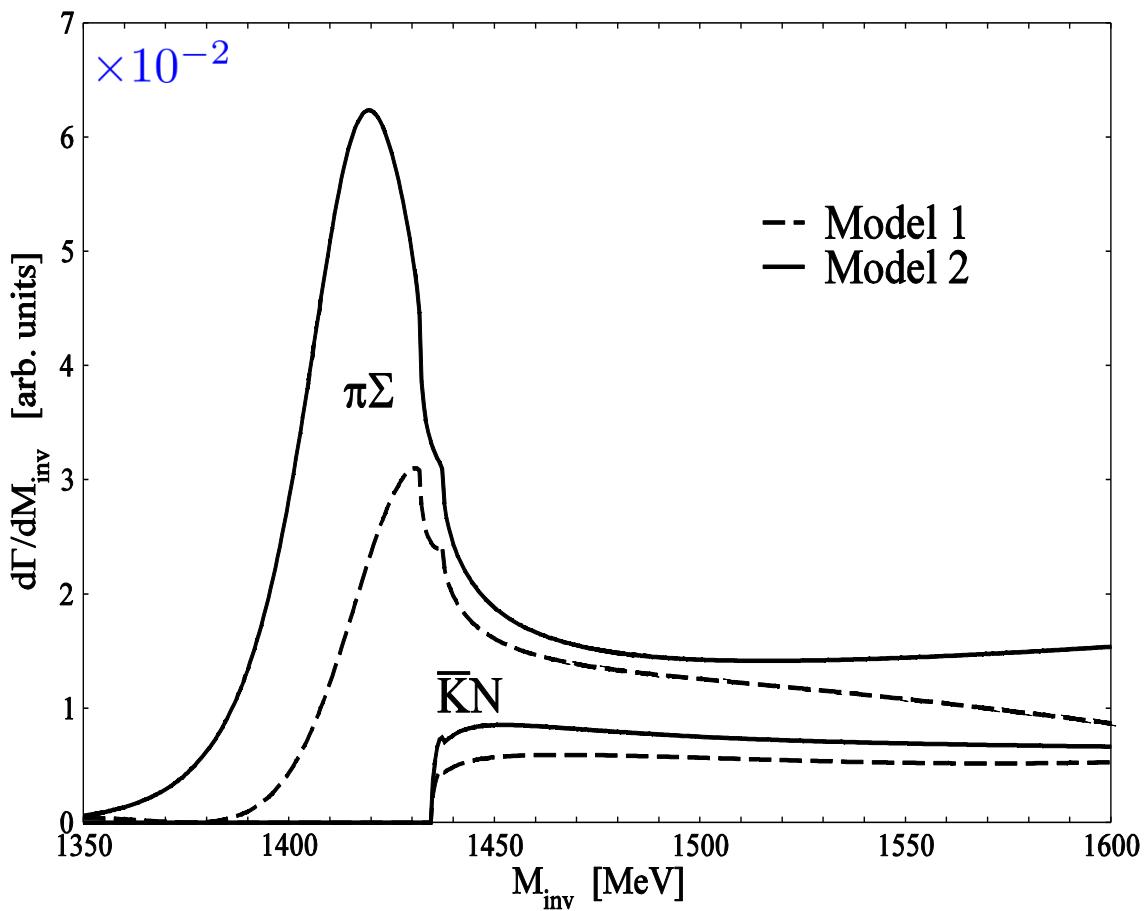
Unknown overall factor

⇒ Arbitrary units

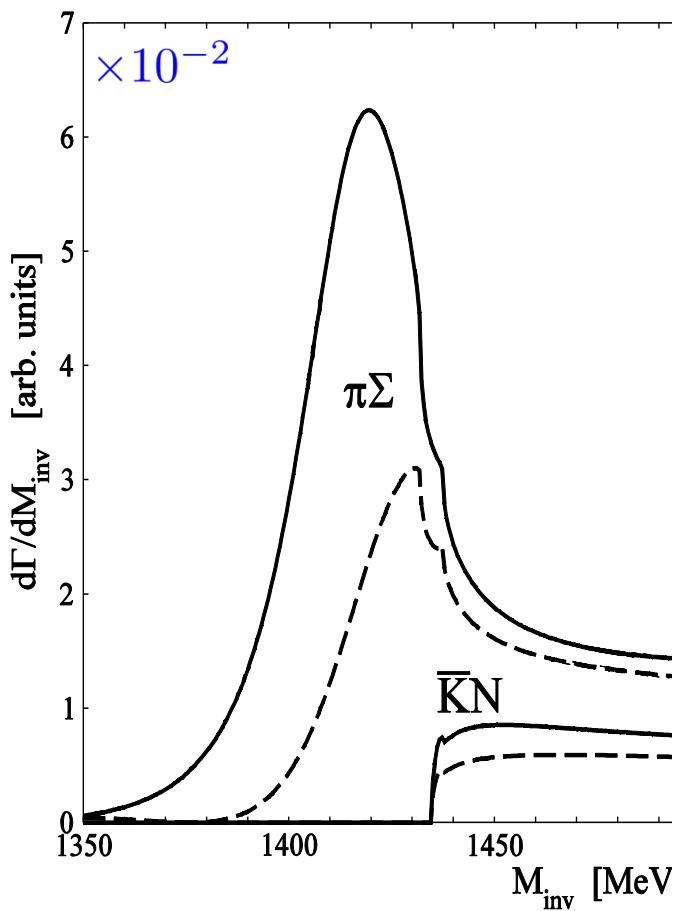
Invariant mass distribution

$$\frac{d\Gamma_j}{dM_{\text{inv}}}(M_{\text{inv}}) = \frac{1}{(2\pi)^3} \frac{m_j}{M_{\Lambda_b}} p_{J/\psi} p_j |\mathcal{M}_j(M_{\text{inv}})|^2$$

The $\pi\Sigma$ and $\bar{K}N$ invariant mass distributions

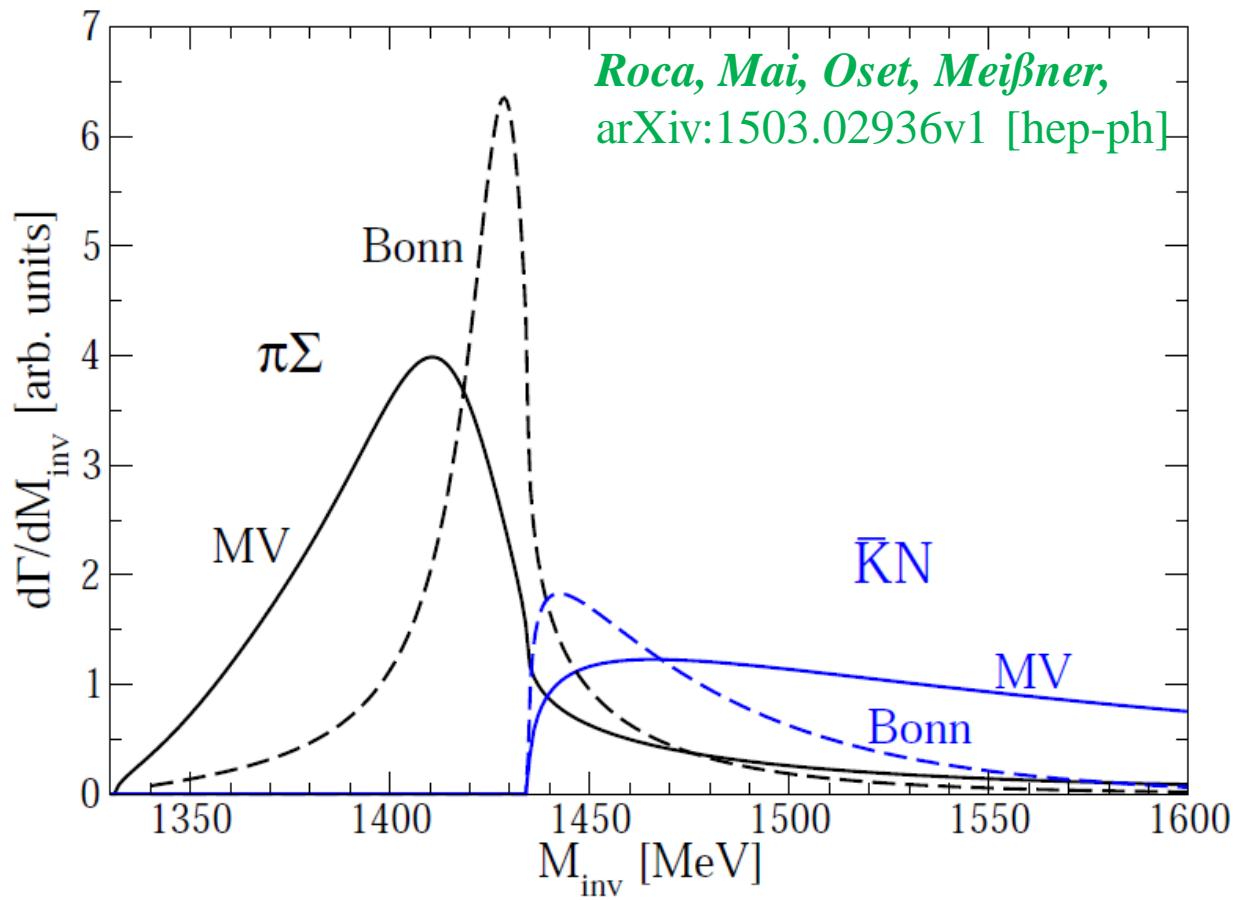


The $\pi\Sigma$ and $\bar{K}N$ invariant mass distributions



Bonn model

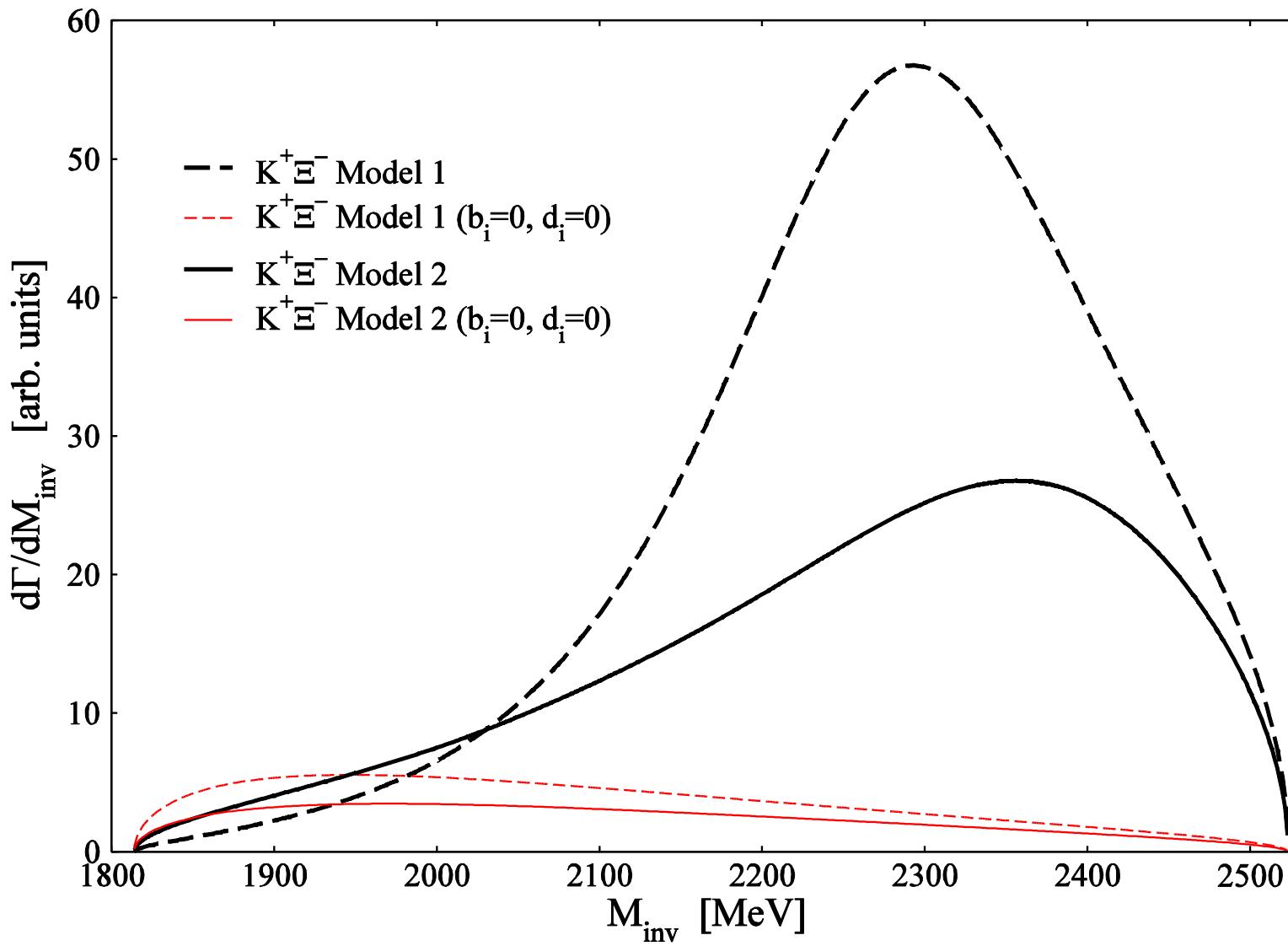
P. C. Bruns, M. Mai and U.-G. Meißner, Phys. Lett. B **697** (2011) 254.
M. Mai, P. C. Bruns and U.-G. Meißner, Phys. Rev. D **86** (2012) 094033.



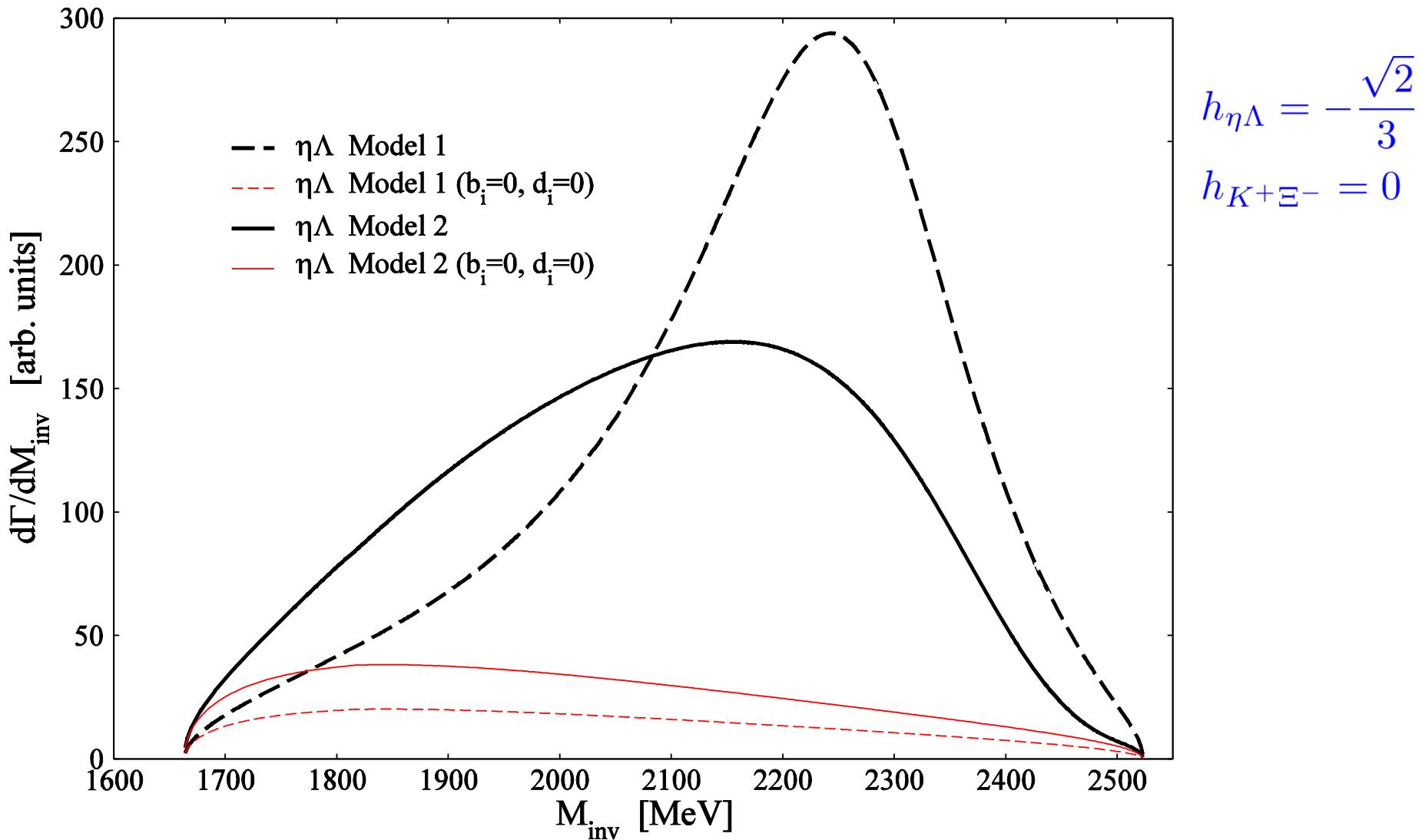
MV – Murcia-Valencia model

L. Roca and E. Oset, Phys. Rev. C **87**, no. 5, 055201 (2013).
L. Roca and E. Oset, Phys. Rev. C **88**, no. 5, 055206 (2013).

$\Lambda_b \rightarrow J/\psi \ \Xi^- \ K^+$ decay



$\Lambda_b \rightarrow J/\psi \ \Lambda \ \eta$ decay



Conclusions

Chiral Perturbation Theory with unitarization in coupled channels is a very powerful technique to describe low energy hadron dynamics

Next-to-leading order calculations are now possible

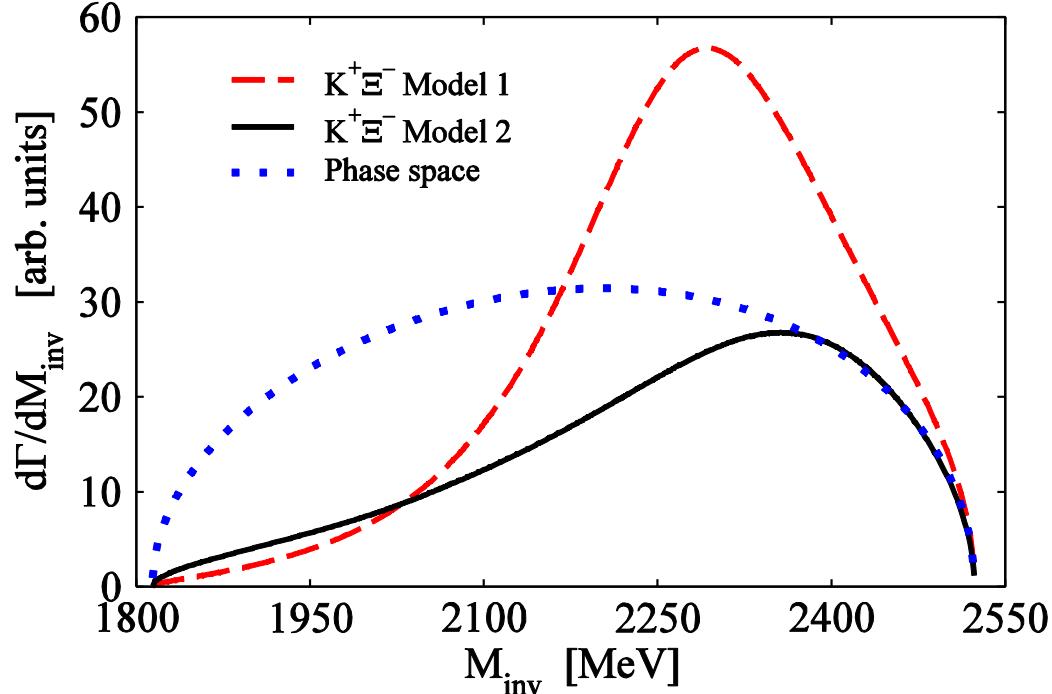
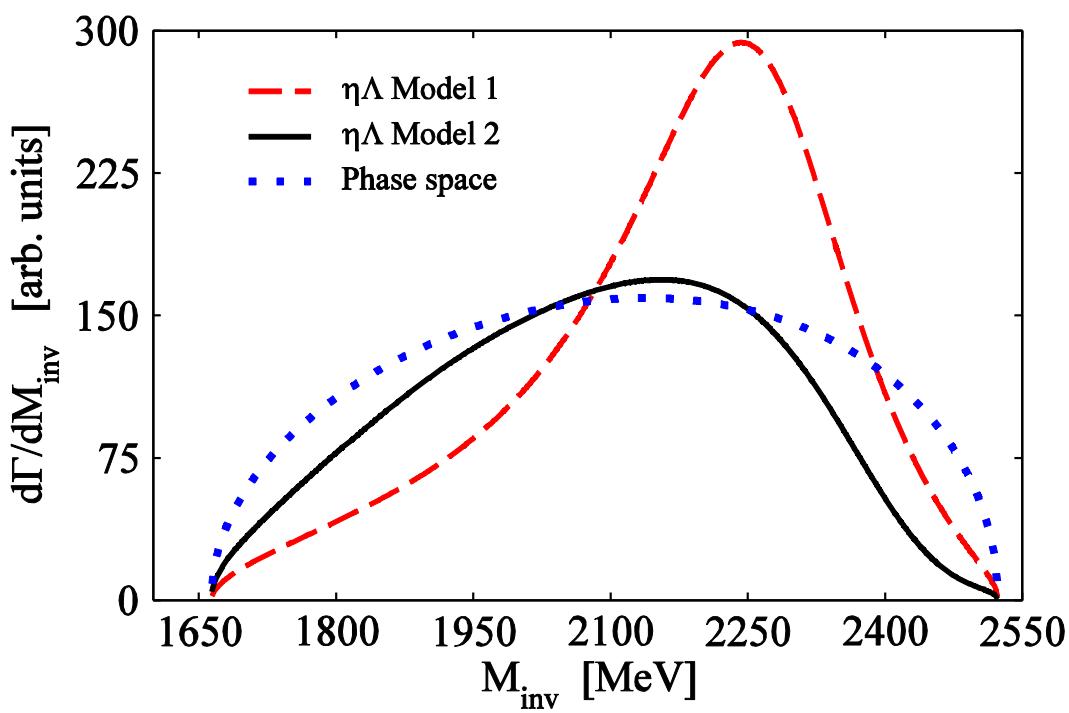
*NLO terms in the Lagrangian do improve
agreement with data*

*$K^- p \rightarrow K \Xi$ channels are very interesting and important
for fitting NLO parameters*

*Analysis of the $\Lambda_b \rightarrow J/\psi K \Xi$ decay data can provide
important information and help to fix NLO parameters*

Work in progress...

BACKUP SLIDES



FORMALISM

Effective Chiral Lagrangian up to NLO

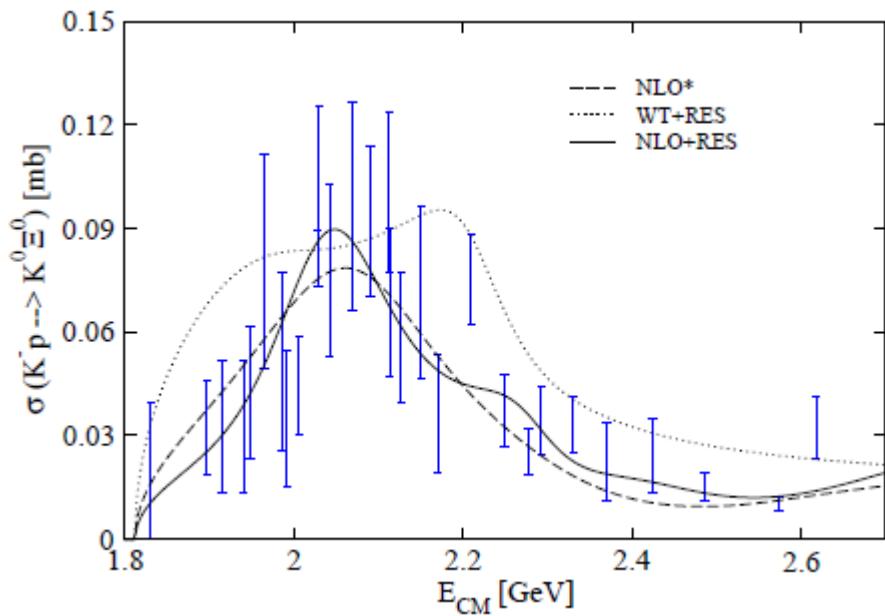
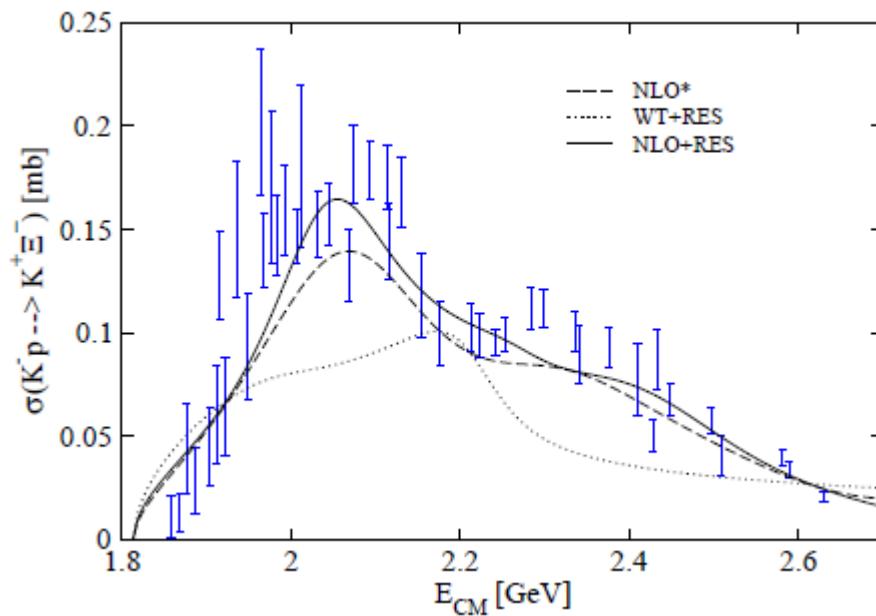
	K^-p	\bar{K}^0n	$\pi^0\Lambda$	$\pi^0\Sigma^0$	$\eta\Lambda$	$\eta\Sigma^0$	$\pi^+\Sigma^-$	$\pi^-\Sigma^+$	$K^+\Xi^-$	$K^0\Xi^0$
K^-p	$4(b_0 + b_D)m_K^2$	$2(b_D + b_F)m_K^2$	$\frac{-(b_D + 3b_F)\mu_1^2}{2\sqrt{3}}$	$\frac{(b_D - b_F)\mu_1^2}{2}$	0	$(b_D - b_F)\mu_1^2$	$\frac{(b_D + 3b_F)\mu_2^2}{6}$	$-\frac{(b_D - b_F)\mu_2^2}{2\sqrt{3}}$	0	0
\bar{K}^0n		$4(b_0 + b_D)m_K^2$	$\frac{(b_D + 3b_F)\mu_1^2}{2\sqrt{3}}$	$\frac{(b_D - b_F)\mu_1^2}{2}$	$(b_D - b_F)\mu_1^2$	0	$\frac{(b_D + 3b_F)\mu_2^2}{6}$	$\frac{(b_D - b_F)\mu_2^2}{2\sqrt{3}}$	0	0
$\pi^0\Lambda$			$\frac{4(3b_0 + b_D)m_\pi^2}{3}$	0	0	0	$\frac{4b_D m_\pi^2}{3}$	$-\frac{(b_D - 3b_F)\mu_1^2}{2\sqrt{3}}$	$\frac{(b_D - 3b_F)\mu_1^2}{2\sqrt{3}}$	$\frac{(b_D - 3b_F)\mu_1^2}{2\sqrt{3}}$
$\pi^0\Sigma^0$				$4(b_0 + b_D)m_\pi^2$	0	0	$\frac{4b_D m_\pi^2}{3}$	0	$\frac{(b_D + b_F)\mu_1^2}{2}$	$\frac{(b_D + b_F)\mu_1^2}{2}$
$\eta\Lambda$					$4(b_0 + b_D)m_\pi^2$	0	$\frac{4b_D m_\pi^2}{3}$	$\frac{4b_F m_\pi^2}{\sqrt{3}}$	$(b_D + b_F)\mu_1^2$	0
$\eta\Sigma^0$						$4(b_0 + b_D)m_\pi^2$	$\frac{4b_D m_\pi^2}{3}$	$-\frac{4b_F m_\pi^2}{\sqrt{3}}$	0	$(b_D + b_F)\mu_1^2$
$\pi^+\Sigma^-$							$\frac{4(3b_0\mu_3^2 + b_D\mu_4^2)}{9}$	0	$\frac{(b_D - 3b_F)\mu_2^2}{6}$	$\frac{(b_D - 3b_F)\mu_2^2}{6}$
$\pi^-\Sigma^+$								$\frac{4(b_0\mu_3^2 + b_D m_\pi^2)}{3}$	$\frac{(b_D + b_F)\mu_2^2}{2\sqrt{3}}$	$\frac{(b_D + b_F)\mu_2^2}{2\sqrt{3}}$
$K^+\Xi^-$									$4(b_0 + b_D)m_K^2$	$2(b_D - b_F)m_K^2$
$K^0\Xi^0$										$4(b_0 + b_D)m_K^2$

	K^-p	\bar{K}^0n	$\pi^0\Lambda$	$\pi^0\Sigma^0$	$\eta\Lambda$	$\eta\Sigma^0$	$\pi^+\Sigma^-$	$\pi^-\Sigma^+$	$K^+\Xi^-$	$K^0\Xi^0$
K^-p	$2d_2 + d_3 + 2d_4$	$d_1 + d_2 + d_3$	$-\frac{\sqrt{3}(d_1 + d_2)}{2}$	$\frac{-d_1 - d_2 + 2d_3}{2}$	$-2d_2 + d_3$	$-d_1 + d_2 + d_3$	$\frac{d_1 - 3d_2 + 2d_3}{2}$	$\frac{d_1 - 3d_2}{2\sqrt{3}}$	$-4d_2 + 2d_3$	$-2d_2 + d_3$
\bar{K}^0n		$2d_2 + d_3 + 2d_4$	$\frac{\sqrt{3}(d_1 + d_2)}{2}$	$\frac{-d_1 - d_2 + 2d_3}{2}$	$-d_1 + d_2 + d_3$	$-2d_2 + d_3$	$\frac{d_1 - 3d_2 + 2d_3}{2}$	$-\frac{(d_1 - 3d_2)}{2\sqrt{3}}$	$-2d_2 + d_3$	$-4d_2 + 2d_3$
$\pi^0\Lambda$			$2d_4$	0	0	0	0	d_3	$\frac{\sqrt{3}(d_1 - d_2)}{2}$	$-\frac{\sqrt{3}(d_1 - d_2)}{2}$
$\pi^0\Sigma^0$				$2(d_3 + d_4)$	$-2d_2 + d_3$	$-2d_2 + d_3$	d_3	0	$\frac{d_1 - d_2 + 2d_3}{2}$	$\frac{d_1 - d_2 + 2d_3}{2}$
$\eta\Lambda$					$2d_2 + d_3 + 2d_4$	$-4d_2 + 2d_3$	d_3	$\frac{2d_1}{\sqrt{3}}$	$d_1 + d_2 + d_3$	$-2d_2 + d_3$
$\eta\Sigma^0$						$2d_2 + d_3 + 2d_4$	d_3	$-\frac{2d_1}{\sqrt{3}}$	$-2d_2 + d_3$	$d_1 + d_2 + d_3$
$\pi^+\Sigma^-$							$2(d_3 + d_4)$	0	$\frac{-d_1 - 3d_2 + 2d_3}{2}$	$\frac{-d_1 - 3d_2 + 2d_3}{2}$
$\pi^-\Sigma^+$								$2d_4$	$-\frac{(d_1 + 3d_2)}{2\sqrt{3}}$	$\frac{d_1 + 3d_2}{2\sqrt{3}}$
$K^+\Xi^-$									$2d_2 + d_3 + 2d_4$	$-d_1 + d_2 + d_3$
$K^0\Xi^0$										$2d_2 + d_3 + 2d_4$

L_{ij}

D_{ij}

Results for $\bar{K}N \rightarrow K\Xi$ including $\Sigma(2030)$, $\Sigma(2250)$ resonances

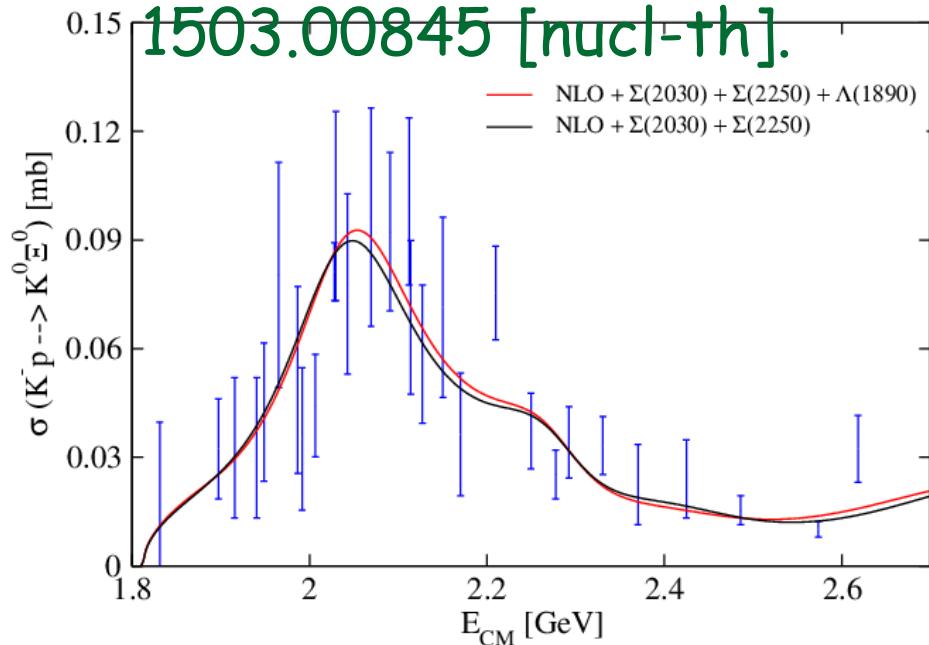
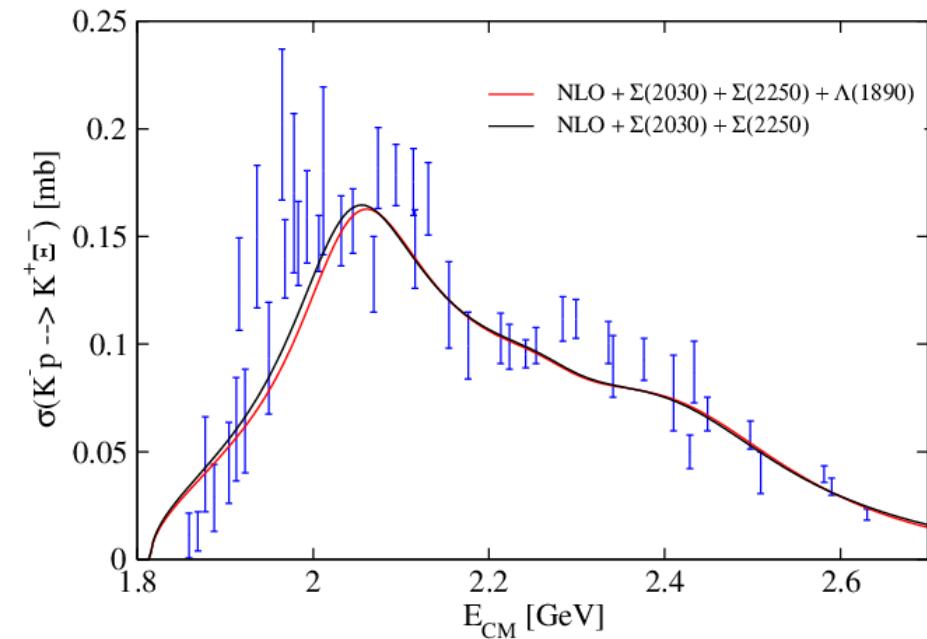


	γ	R_n	R_c	$a_p(K^- p \rightarrow K^- p)$	ΔE_{1s}	Γ_{1s}
NLO*	2.37	0.189	0.664	$-0.69 + i 0.86$	300	570
WT+RES	2.37	0.193	0.667	$-0.73 + i 0.81$	307	528
NLO+RES	2.39	0.187	0.668	$-0.66 + i 0.84$	286	562
Exp.	2.36	0.189	0.664	$-0.66 + i 0.81$	283	541
	± 0.04	± 0.015	± 0.011	$(\pm 0.07) + i (\pm 0.15)$	± 36	± 92

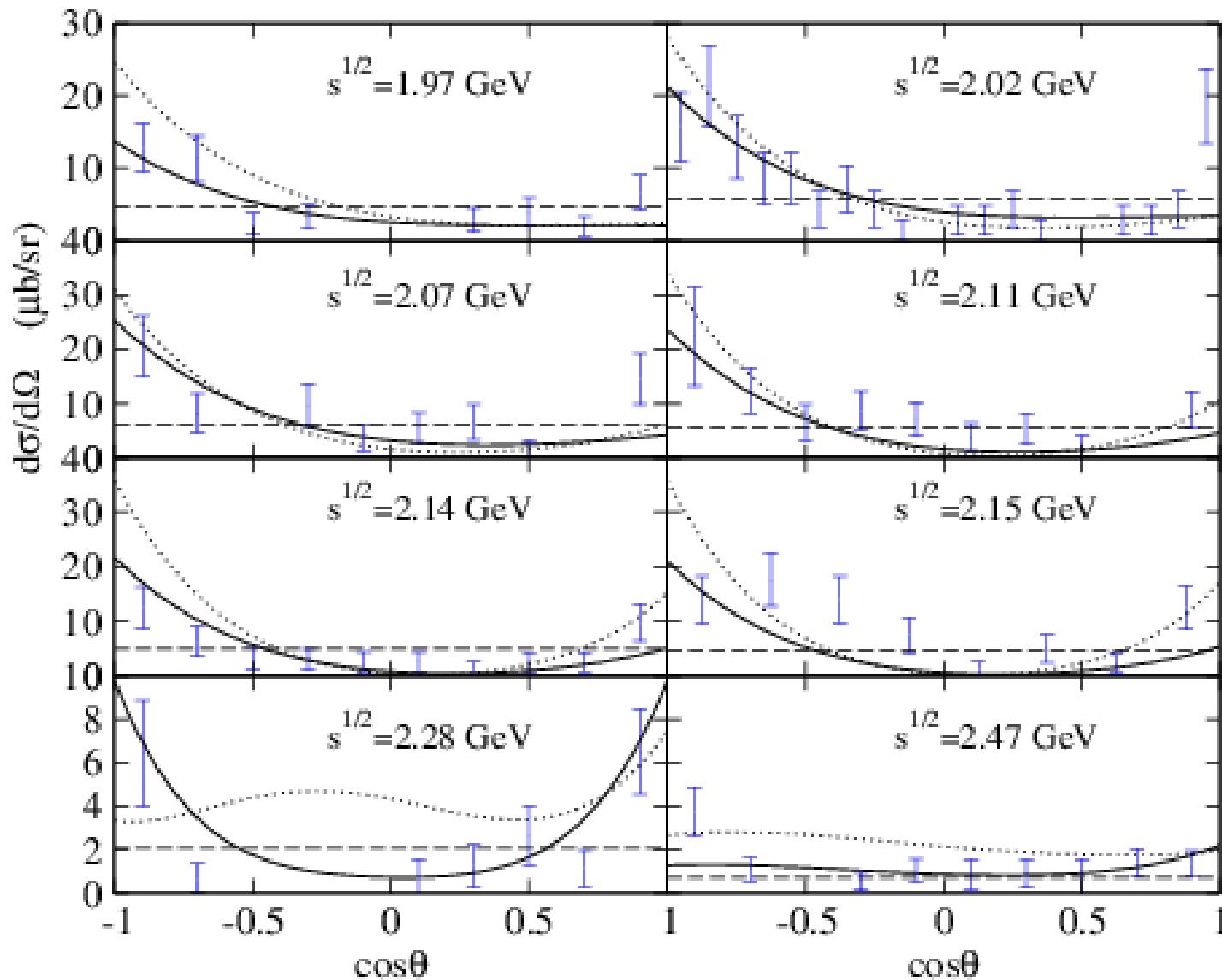
RESULTS II

What happens if a third resonance is added?

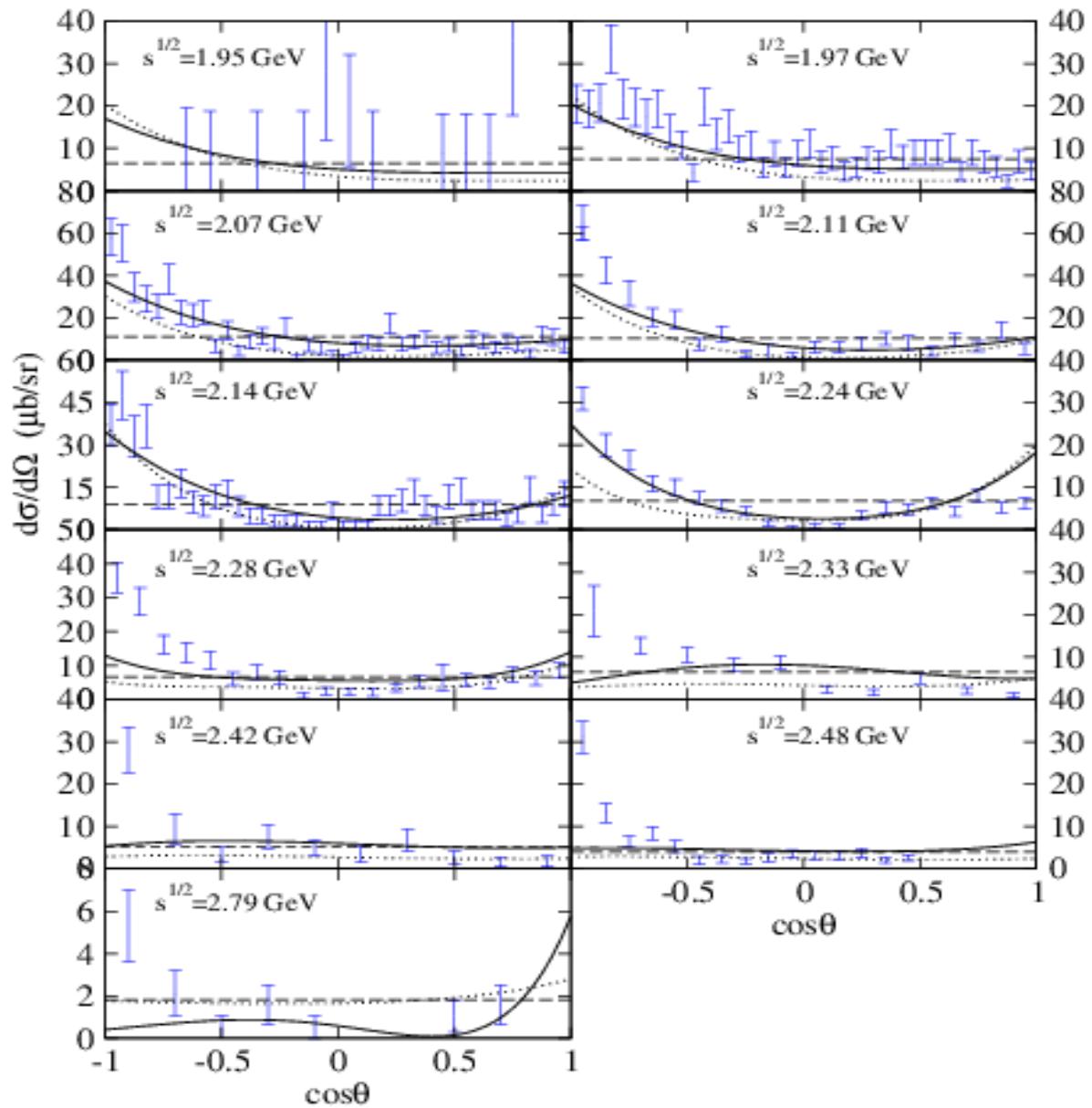
For instance $\Lambda(1890)$, as it was done in [B. C. Jackson, Y. Oh, H. Haberzettl and K. Nakayama, arXiv: 1503.00845 \[nucl-th\]](#):



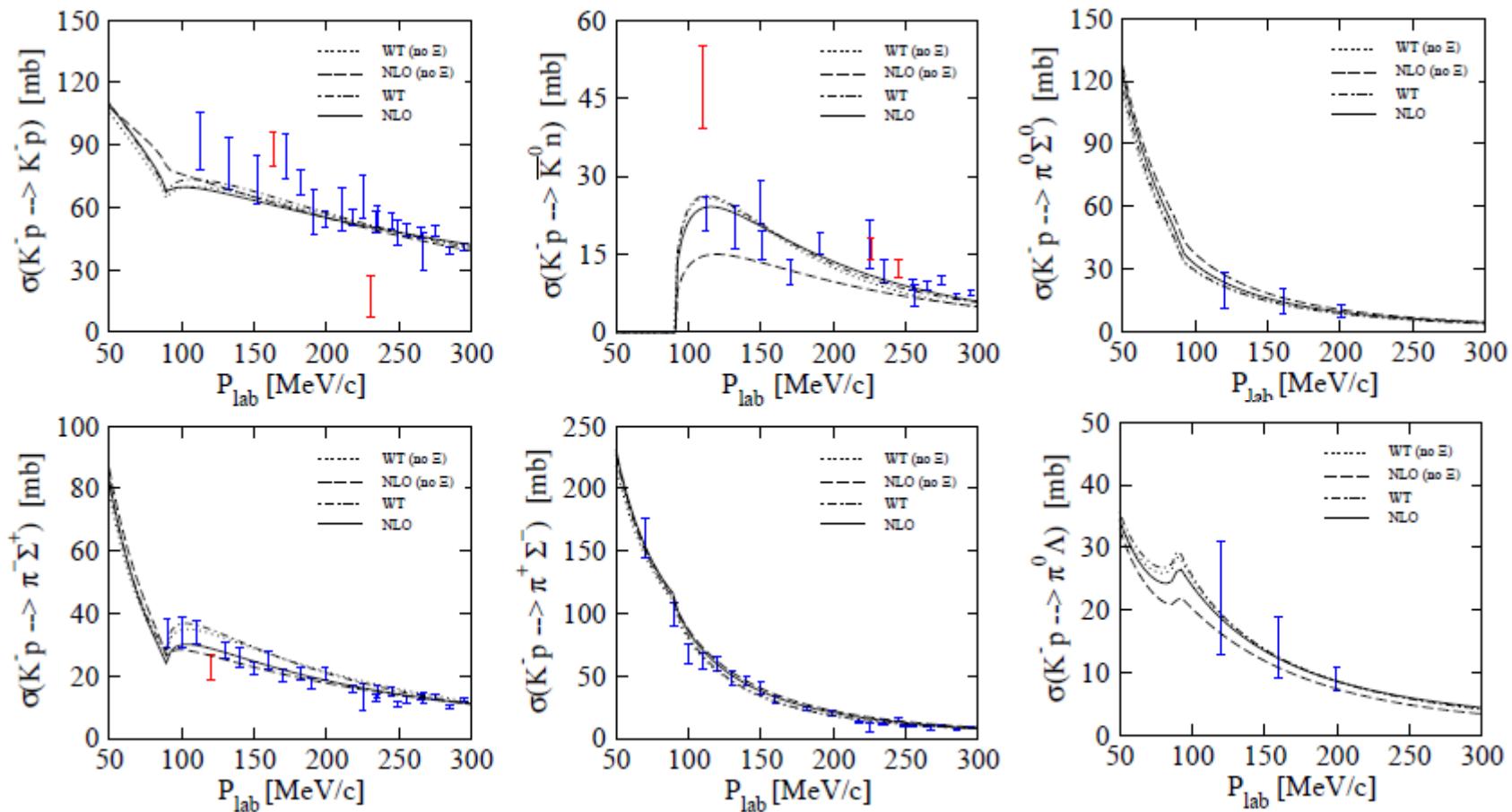
Differential cross section of the $\bar{K}N \rightarrow K^0 \Xi^0$



Differential cross section of the $\bar{K}N \rightarrow K^+ \Xi^-$

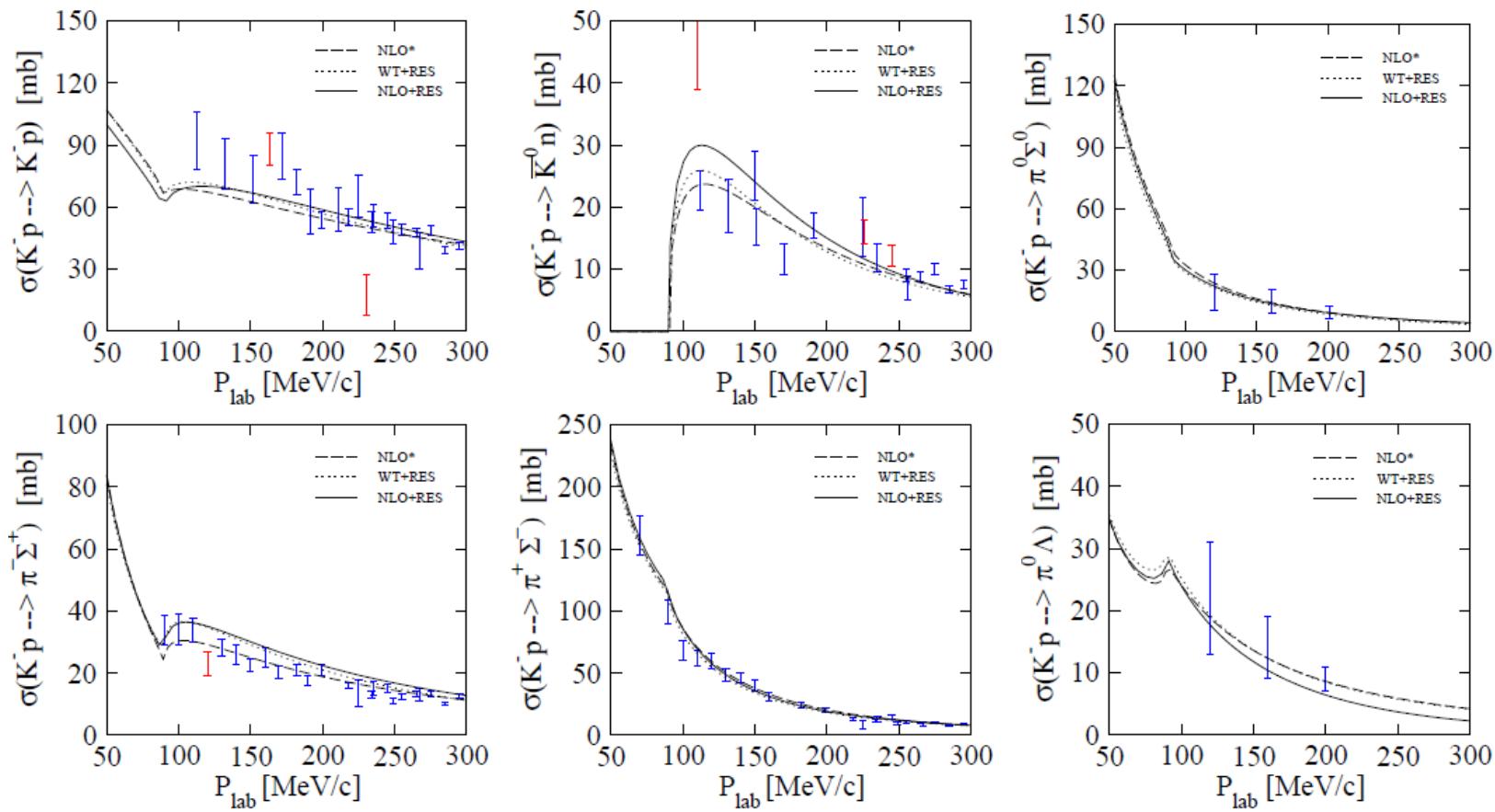


Results for $\bar{K}N \rightarrow K\Xi$



	γ	R_n	R_c	$a_p(K^- p \rightarrow K^- p)$	ΔE_{1s}	Γ_{1s}
WT (no $K\Xi$)	2.37	0.191	0.665	$-0.76 + i0.79$	316	511
NLO (no $K\Xi$)	2.36	0.188	0.662	$-0.67 + i0.84$	290	559
WT	2.36	0.192	0.667	$-0.76 + i0.84$	318	543
NLO	2.36	0.189	0.664	$-0.73 + i0.85$	310	557
Exp.	2.36	0.189 ± 0.015	0.664 ± 0.011	$(-0.66 + i0.81 \pm 0.07) + i(\pm 0.15)$	283	541
					± 36	± 92

Results for $\bar{K}N \rightarrow K\Xi$ including $\Sigma(2030)$, $\Sigma(2250)$ resonances



	γ	R_n	R_c	$a_p(K^- p \rightarrow K^- p)$	ΔE_{1s}	Γ_{1s}
NLO*	2.37	0.189	0.664	$-0.69 + i0.86$	300	570
WT+RES	2.37	0.193	0.667	$-0.73 + i0.81$	307	528
NLO+RES	2.39	0.187	0.668	$-0.66 + i0.84$	286	562
Exp.	2.36 ± 0.04	0.189 ± 0.015	0.664 ± 0.011	$-0.66 + i0.81$ $(\pm 0.07) + i(\pm 0.15)$	283 ± 36	541 ± 92

