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The X(3872)

Narrow state seen in B decays and pp̄ collision decaying to ππJ/ψ, πππJ/ψ, γJ/ψ and D0D̄0π0.

Belle 2003

B± → K±π+π−J/Ψ

D0 2004

ππJ/Ψ in pp̄ collisions

CDFII 2004

ππJ/Ψ in pp̄ collisions

BaBar 2005

B− → K−π+π−J/Ψ
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The X(3872)

LHCb determines JP C = 1++ in 2014
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X(3872) partners

Experimental search of the Xb: bottom partner in the 1++ sector

Phys. Lett. B 727, 57 (2013). CMS didn’t find it in the Υ(1S)π+π− decay channel

in pp collisions

Phys. Lett. B 740, 199 (2015). ATLAS also didn’t find it in the same decay channel

Phys. Rev. Lett. 113, 142001 (2014). Belle didn’t find it in ωΥ(1S) in e+e−

collisions between 10.55 and 10.65 GeV
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X(3872) partners

HQSS expectation: Charm sector

J. Nieves and M. Pavón-Valderrama, Phys. Rev. D 86, 056004

HQSS implies the existence of a 2++ D∗D∗ partner X(4012)

Assuming the X(3915) to be the 0++ partner a total of six-molecular states.

Spin independent (C0a) and spin dependent (C0b) terms.

Small coupled channel effects.

No coupling with cc̄ states.

HQSS and HFS expectations: Charm and Bottom sector relations

Feng-Kun Guo et al., Phys. Rev. D 88, 054007

A 1++ isoscalar BB∗ state at 10.58 GeV V LO
DD∗ (1++) = V LO

BB∗ (1++)

Isovector partners of Zb in the chamonium sectors are predicted
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The Chiral Quark Model

J. Vijande et al., J. Phys. G 31

Spontaneous Chiral Symmetry Breaking →
→ Golstone bosons

M = Ψ̄(iγ
µ
∂µ −MU

γ5 )Ψ

U
γ5 = e

iπaλaγ5/fπ ∼ 1 +
1

fπ

γ5λ
a
π

a − 1

2f2
π

π
a
π

a

→ Goldstone bosons exchange

→ Scalar boson exchanges

π0

η

K0 K+

K− K̄+

π− π+

Gluon coupling

Lgqq = i
√

4παsΨ̄γµG
µ
c λ

c
Ψ

→ One gluon exchange

Confinement

Interactions:

Vqiqj
=

8

>

>

<

>

>

:

qiqj = nn ⇒ VCON + VOGE + VGBE + VSBE

qiqj = nQ ⇒ VCON + VOGE

qiqj = QQ ⇒ VCON + VOGE
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The B1B2 interaction

ψB = φB(~pξ1 , ~pξ2 )χBξc[1
3]

φB(~pξ1 , ~pξ2 ) =

»

2b2

π

–

3
4

e
−b2p2

ξ1

»

3b2

2π

–

3
4

e
− 3b2

4
p2

ξ2

ψB1B2
= A

h

χ(~P )ψST
B1B2

i

= A
h

φB1
(~pξB1

)φB2
(~pξB2

)χ(~P )χST
B1B2

ξc[2
3]

i

6V12 9V36 2V12P36 V36P36

4V14P36 4V13P36 4V16P36

Rayleigh-Ritz variational principle (Resonating Group Method)

(H− ET ) |ψ 〉 = 0 ⇒ 〈 δψ | (H− ET ) |ψ 〉 = 0
„

~P
′ 2

2µ
− E

«

χ(~P
′
) +

R

“

RGMVD(~P
′
, ~Pi) +RGMK(~P

′
, ~Pi)

”

χ(~Pi)d~Pi = 0

Tα′

α (z; p′, p) = V α′

α (p′, p) +
P

α′′

R

dp′′ p′′2 V α′

α′′ (p
′, p′′) 1

z−Eα′′ (p′′)
Tα′′

α (z; p′′, p)

Lippmann-Schwinger Equation
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NN System

Quark χN3LO CD-Bonn Exp.

ED (MeV) 2.2246 2.224575 2.224575 2.224575(9)

rm (fm) 1.985 1.978 1.970 1.97535(85)

AS (fm−1/2) 0.8941 0.8843 0.8846 0.8846(9)

η 0.0250 0.0256 0.0256 0.0256(4)

Constituent quark model, Phys. Rev C 62, 034002 (2000)

Antisymmetry is not present in D(∗)D̄(∗).

One bound state in NN , what happens in D(∗)D̄(∗)
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The M1M2 system

Quark interactions → Cluster interaction.

For the DD∗ system only direct RGM Potential:

RGMVD(~P ′, ~Pi) =
P

i∈A,j∈B

R

d~pξ′
A
d~pξ′

B
d~pξAd~pξB

φ∗
A(~pξ′

A
)φ∗

B(~pξ′
B

)Vij(~P
′, ~Pi)φA(~pξA)φB(~pξB )

φC(~pC) is the wave function for cluster C solution of Schrödinger’s

equation using Gaussian Expansion Method.
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The M1M2 system

Quark interactions → Cluster interaction.

For the DD∗ system only direct RGM Potential:

RGMVD(~P ′, ~Pi) =
P

i∈A,j∈B

R

d~pξ′
A
d~pξ′

B
d~pξAd~pξB

φ∗
A(~pξ′

A
)φ∗

B(~pξ′
B

)Vij(~P
′, ~Pi)φA(~pξA)φB(~pξB )

φC(~pC) is the wave function for cluster C solution of Schrödinger’s

equation using Gaussian Expansion Method.

Rearrangement processes (like DD∗ → J/ψω)
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3P0 model

Pair creation Hamiltonian:

H = g

Z

d
3
xψ̄(x)ψ(x)

Non relativistic reduction:

T = −3
√

2γ
′

X

µ

Z

d
3
pd

3
p
′
δ
(3)

(p+ p
′
)

»

Y1

„

p− p′

2

«

b
†
µ(p)d

†
ν(p

′
)

–C=1,I=0,S=1,J=0

with γ′ = 25/2π1/2γ, γ = g
2m

(in the light quark sector)

Transition potential:

˙

φM1
φM2

β
˛

˛T |ψα〉 = Phβα(P )δ(3)(~Pcm)

|qq̄ >α

|AB >β
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3P0 model

J. Segovia, DRE, F. Fernández, Phys. Lett. B 715, 322 (2012)

Running coupling

γ(µ) =
γ0

log( µ
µ0

)

γ0 = 0,81 ± 0,02

µ0 = (49,84 ± 2,58) MeV
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3P0 model
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Coupling qq̄ and qq̄q̄q sectors

Hadronic state: |Ψ〉 =
P

α cα |ψ〉 +
P

β χβ(P ) |φM1φM2β〉

Solving the coupling with cc̄ states → Schrödinger type equation:

X

β

Z

“

H
M1M2
β′β

(P
′
, P ) + V

eff

β′β
(P

′
, P )

”

χβ(P )P
2
dP = Eχβ′ (P

′
)

with

V
eff

β′β
(P

′
, P ) =

X

α

hβ′α(P ′)hαβ(P )

E −Mα

qq̄
A

B

A′

B′

The cc̄ amplitudes are given by,

cα =
1

E −Mα

X

β

Z

hαβ(P )χβ(P )P
2
dP
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Resonance states

Lippman-Schwinger equation

T
β′β

(E;P
′
, P ) = V

β′β
T (P

′
, P )+

X

β′′

Z

dP
′′
P

′′2
V

β′β′′

T (P
′
, P

′′
)

1

E − Eβ′′ (P ′′)
T

β′′β
(E;P

′′
, P )

with V β′β
T (P ′, P ) = V β′β(P ′, P ) + V β′β

eff (P ′, P ), V eff

β′β
(P ′, P ) =

P

α

h
β′α(P ′)hαβ(P )

E−Mα
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Resonance states

Lippman-Schwinger equation

T
β′β

(E;P
′
, P ) = V

β′β
T (P

′
, P )+

X

β′′

Z

dP
′′
P

′′2
V

β′β′′

T (P
′
, P

′′
)

1

E − Eβ′′ (P ′′)
T

β′′β
(E;P

′′
, P )

with V β′β
T (P ′, P ) = V β′β(P ′, P ) + V β′β

eff (P ′, P ), V eff

β′β
(P ′, P ) =

P

α

h
β′α(P ′)hαβ(P )

E−Mα

Solution (Baru et al. Eur. Phys. Jour. A 44, 93 (2010))

T
β′β

(E;P
′
, P ) = T

β′β
V (E;P

′
, P ) +

X

α,α′

φ
β′α′

(E;P
′
)∆

−1

α′α
(E)φ̄

αβ
(E;P )

Non resonant contribution

Resonant contribution

with

T
β′β
V (E;P

′
, P ) = V

β′β
(P

′
, P ) +

X

β′′

Z

dP
′′
P

′′2
V

β′β′′
(P

′
, P

′′
)

1

z − Eβ′′ (P ′′)
T

β′′β
V (E;P

′′
, P )
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Resonance states

−

|qq̄ >α

|AB >β

|qq̄ >α

|AB >β|AB >β′

Solution (Baru et al. Eur. Phys. Jour. A 44, 93 (2010))

T
β′β

(E;P
′
, P ) = T

β′β
V (E;P

′
, P ) +

X

α,α′

φ
β′α′

(E;P
′
)∆

−1

α′α
(E)φ̄

αβ
(E;P )

Non resonant contribution

Resonant contribution

with

φαβ′
(E;P ) = hαβ′ (P ) −

P

β

R Tβ′β
V (E;P, q)hαβ(q)

q2/2µ− E
q2 dq,

φ̄αβ(E;P ) = hαβ(P ) − P

β′
R
hαβ′ (q)T

β′β
V (E; q, P )

q2/2µ− E
q2 dq
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Resonance states

−

|qq̄ >α

|AB >β

|qq̄ >α′ |qq̄ >α

|AB >β |AB >β′

|qq̄ >α′

Solution (Baru et al. Eur. Phys. Jour. A 44, 93 (2010))

T
β′β

(E;P
′
, P ) = T

β′β
V (E;P

′
, P ) +

X

α,α′

φ
β′α′

(E;P
′
)∆

−1

α′α
(E)φ̄

αβ
(E;P )

Non resonant contribution

Resonant contribution

with

∆
α′α

(E) =
n

(E −Mα)δ
α′α

+ Gα′α
(E)

o

Gα′α(E) =
P

β

R

dqq2
φαβ(q, E)hβα′ (q)

q2/2µ− E
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Resonance states

Resonance mass (pole position)

˛

˛

˛

∆α′α(Ē)
˛

˛

˛

=
˛

˛

˛

(Ē −Mα)δα′α + Gα′α(Ē)
˛

˛

˛

= 0

Bare cc̄ probabilities

n

Mαδ
αα′

− Gα′α(Ē)
o

cα′(Ē) = Ē cα(Ē)

Molecular wave function

χβ′(P ′) = −2µβ′
P

α

φβ′α(E;P ′)cα

P ′2 − k2
β′

Normalization
X

α

|cα|
2 +

X

β

< χβ |χβ >= 1
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HQSS

Our convention is that meson and antimeson are qq̄ states so C(D) = D̄ and

C(D∗) = −D̄∗.

So

C|AB; JTMTSABL〉 = (−1)JAB−JA−JB+L|C(B)C(A); JTMTSBAL〉

Our C-parity states are

C|DD̄; JTMT 0L〉 = (−1)L|DD̄; JTMT 0L〉

|Ψ±

DD̄∗ 〉 =
1√
2
(|DD̄∗; JTMT 1L〉 ∓ |D∗D̄; JTMT 1L〉)

C|Ψ±

DD̄∗ 〉 = ±(−1)L|Ψ±

DD̄∗ 〉

C|D∗D̄∗; JTMTSABL〉 = (−1)SAB+L|D∗D̄∗; JTMTSBAL〉

HQSS implies that (S waves)

HS23
= δS′

T
ST
δS′

23S23
δS′

14S14

〈( 1

2 n̄
,
1

2n
)S′

23(
1

2 c̄
,
1

2 c
)S′

14;S′
T |H|( 1

2 n̄
,
1

2n
)S23(

1

2 c̄
,
1

2 c
)S14;ST 〉
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HQSS

If we consider only S-waves for D(∗)D(∗) states so we have

We only have H0 and H1

0++ sector

|DD(0++)〉 =
1

2
|( 1

2

1

2
)0(

1

2
,
1

2
)0; 0〉 +

√
3

2
|( 1

2

1

2
)1(

1

2
,
1

2
)1; 0〉

|D∗D∗(0++)〉 = −
√

3

2
|( 1

2

1

2
)0(

1

2
,
1

2
)0; 0〉 +

1

2
|( 1

2

1

2
)1(

1

2
,
1

2
)1; 0〉

So

〈DD(0++)|H|DD(0++)〉 =
1

4
H0 +

3

4
H1 (C0a)

〈D∗D∗(0++)|H|D∗D∗(0++)〉 =
3

4
H0 +

1

4
H1

〈DD(0++)|H|D∗D∗(0++)〉 = 〈D∗D∗(0++)|H|DD(0++)〉

=

√
3

4
(H1 −H0) (

√
3C0b)
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HQSS

We consider only S-waves for D(∗)D(∗) states so we have

1+− sector

|DD∗(1+−)〉 =
1√
2

»

|( 1

2

1

2
)0(

1

2
,
1

2
)1; 1〉 − |( 1

2

1

2
)1(

1

2
,
1

2
)0; 1〉

–

〈DD∗(1+−)|H|DD∗(1+−)〉 =
1

2
(H0 +H1)

1++ sector

|DD∗(1++)〉 = |( 1

2

1

2
)1(

1

2
,
1

2
)1; 2〉

〈DD∗(1++)|H|DD∗(1++)〉 = H1

2++ sector

|D∗D∗(2++)〉 = −|( 1

2

1

2
)1(

1

2
,
1

2
)1; 2〉

〈D∗D∗(2++)|H|D∗D∗(2++)〉 = H1
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HQSS

We find the relations

2√
3
〈D∗D∗(0++)|H|DD(0++)〉 = 〈DD(0++)|H|DD(0++)〉

−〈D∗D∗(0++)|H|D∗D∗(0++)〉
2〈DD∗(1+−)|H|DD∗(1+−)〉 = 〈DD(0++)|H|DD(0++)〉

+〈D∗D∗(0++)|H|D∗D∗(0++)〉
〈DD∗(1++)|H|DD∗(1++)〉 = 〈D∗D∗(2++)|H|D∗D∗(2++)〉

=
3

2

»

〈DD(0++)|H|DD(0++)〉

−1

3
〈D∗D∗(0++)|H|D∗D∗(0++)〉

–
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HQSS

HQSS Breaking

Mass

Teo.(MeV) Exp.(MeV)

D 1896 1867

D∗ 2017 2009

B 5275 5279

B∗ 5315 5325

Wave function
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HQSS

We find the relations

2√
3
〈D∗

D
∗
(0

++
)|H|DD(0

++
)〉 = 〈DD(0

++
)|H|DD(0
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)〉 − 〈D∗
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HQSS

We find the relations

〈DD∗
(1

++
)|H|DD∗

(1
++

)〉 = 〈D∗
D

∗
(2

++
)|H|D∗

D
∗
(2

++
)〉

=
3

2

»

〈DD(0
++

)|H|DD(0
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)〉 − 1

3
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D
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HQSS

Charmonium

 3.4

 3.5

 3.6

 3.7

 3.8

 3.9

 4

 4.1

 4.2

 4.3

0++ 1++ 2++

M
(G

eV
)

DD

DD*

D*D*

0++ 1++ 2++

3452 3504 3531
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4043

4241 4271 4289

Bottomonium

 10.2
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 10.4

 10.5

 10.6

 10.7

 10.8

0++ 1++ 2++

M
(G

eV
) BB

BB*

B*B*

0++ 1++ 2++
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10221 10236 10246

10315

10500 10513 10521

10569

10726 10737 10744

10781
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The X(3872)

3S1 and 3D1 DD
∗ partial waves included.

Coupling to 1++ ground and first excited cc̄ states with bare masses within the model:

cc̄(13P1) → M = 3503,9 MeV cc̄(23P1) → M = 3947,4 MeV and

Isospin breaking MD± +MD∗± 6= MD0 +MD∗0

Parameter free calculation.

M (MeV ) cc̄(13P1) cc̄(23P1) D0D∗0 D±D∗∓ Assignment

3937 0 % 79 % 7 % 14 %

3863 1 % 30 % 46 % 23 % → X(3872)

3467 95 % 0 % 2,5 % 2,5 %

Isospin probabilities: PI=0 = 66 %, PI=1 = 3 %, Pcc̄ = 30 %.

Fine tune 3P0 γ strength parameter to Ebind. PI=0 ∼ 70 %, PI=1 ∼ 23 %, Pcc̄ ∼ 7 %

P.G. Ortega, J. Segovia, DRE, F. Fernández, Phys. Rev. D 81 (2010)

P.G. Ortega, DRE, F. Fernández, J. Phys. G 40 (2013)

M. Takizawa, S. Takeuchi, PTEP 9 (2013) at hadron level
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Dependence on γ

No X(3872) without coupling to cc̄ states

X(3872) Mass vs. γ
Probabilities for different

channels vs. X(3872) Mass

 3860
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No DD∗ interaction included.

DD∗ interaction included.

D0D̄∗0 component
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cc̄(2P ) component

cc̄(1P ) component
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The 2++ charmonium sector

We couple the cc̄(2 3P2), cc̄(1 3F2), DD(1D2), DD∗(3D2), DsDs(1D2),

D∗D∗(5S2), D∗D∗(1D2), D∗D∗(5D2)

No new state appears, we only find the original cc̄ states dressed

M(MeV) cc̄(2 3P2) cc̄(1 3F2) DD(1D2) DD∗(3D2)

3887 38.0 0.2 47.8 10.0

4012 0.9 52.1 21.6 21.0

M(MeV) DsDs(1D2) D∗D∗(5S2) D∗D∗(1D2) D∗D∗(5D2)

3887 0.2 2.4 0.2 1.1

4012 2.6 0.5 0.7 0.6

M(MeV) ΓDD (MeV) ΓDD∗ (MeV) ΓDsDs
(MeV)

3887 12.3 21.6 -

4012 0.6 49.5 1.6
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The Xb 1++ state

Channels: bb̄(3 3P1), bb̄(4 3P1), BB̄∗( 3S1), BB̄∗( 3D1).

The bb̄(3 3P1) has been measured by LHCb, JHEP 10, 088 (2014)

M(3 3P1) = 10515,7+2,2+1,5
−3,9−2,1MeV

M(3 3P2) −M(3 3P1) = 10,5MeV

Very shallow bound state with Ebind = −0,016 MeV and Γ = 1,7 MeV

No definite conclusions can be obtained about its existence
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Xb properties
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The Xb 2++ state

Channels: bb̄(3 3P2), bb̄(4 3P2), bb̄(2 3F2), B∗B̄∗( 5S2), B∗B̄∗( 5D2), B∗B̄∗( 1D2).
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Xb properties
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Summary

We have studied the partners of the X(3872) using a Chiral Quark model

HQSS relations are almost fulfilled by the interaction Hamiltonian

HQSS breaking effects are mostly due to threshold effects

The coupling to cc̄ and bb̄ states produces discrepancies from HQSS expectations

The 1++ state in the charmonium sector is bound due to the coupling with the 2P

cc̄ state

In the 2++ charmonium sector we don’t have a new state, however we have a

dressed cc̄ state with a mass of 4012 MeV.

In the bottom sector the 1++ state have a strong repulsion due to the coupling

with the 3P state and no definite conclusions about its existence can be obtained

In the bottom sector the 2++ state is bounded with and without coupling to bb̄

states
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