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Introduction

Our purpose in this work is to reanalyze the inclusive (e, e′) scattering
data from 12C in terms of a new scaling variable (ψ∗) suggested by
the interacting relativistic Fermi gas (RFG) with scalar and vector
interactions (”the Walecka model”), which generate a relativistic
effective mass (m∗

N) for the nucleons.

By choosing m∗
N = 0.8mN we will show that most of the data fall

inside a region around the universal scaling function of the RFG. This,
in turns, suggests a method to exclude the subset of data which are
not dominated by the quasi-elastic process.

The band of data around the universal scaling function of RFG can be
generated with a Montecarlo simulation that reflects the genuine
fluctuations in the effective mass.

Finally, we transport this band into a theoretically predicted band for
neutrino scattering cross section.
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Scaling

The idea behind the scaling phenomenon is to express inclusive
scattering observables (cross sections or response functions) of weakly
interacting probes off composite systems (nuclei, atoms...) in terms
of elementary observables from the constituents of the composite
system.

The idea is to encode the maximum amount of information on the
dynamics of the composite system in an universal function depending
on the kinematic variables of the process and to use this function to
predict behaviors in other kinematic regions.

For inclusive scattering of weakly interacting probes, such electrons or
neutrinos, the cross sections depend on two independent variables
(ω, q), the energy and three-momentum transferred by the probe to
the constituent. In this situation, scaling of the first kind is reached
in an (ω, q) region if the cross sections depend only on a single
variable ψ = ψ(ω, q).
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SuperScaling

One can go one step forward and wonder if scaling of the second kind is
fulfilled as well. This would be the case if the universal function is
the same for different nuclear species. This would lead us to SuperScaling.

The idea is greatly appealing because of its simplicity and predictive
usefulness, but it is theoretically well-motivated because a simple model such
as RFG accomplishes all the requirements for superscaling 1 2.

Therefore, the final goal is to be able to write the nuclear inclusive cross
section for a given process (electron scattering as an example) as:

d2σ

dΩe dω
∼ F (ω, q)

(

d2σ

dΩe dω

)

single-nucleon

(1)

with F (ω, q) = f (ψ(ω, q)) being function of a single variable ψ, which is a

combination of the other two.

1W.M. Alberico et al, Phys. Rev. C 38, 1801 (1988)
2M.B. Barbaro et al, Nucl. Phys. A643, 137 (1998)
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Evidences for scaling and superscaling 3

Figure: Scaling function f (ψ′) for all
nuclei with A > 12 and all available
kinematics.

Figure: Scaling function f (ψ′) for
12C, 27Al, 56Fe and 197Au at the
same kinematics (q ≈ 1 GeV/c)

3Figures taken from reference T.W. Donnelly and I. Sick, Phys. Rev. C 60, 065502
(1999)
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Scaling in the Relativistic Fermi Gas

The double-differential inclusive (e, e′) cross section in the LAB frame can
be written as:

d2σ

dΩe dǫ′
= σM

{

(

Q2

q2

)2

RL(ω, |q|) +
[

1

2

∣

∣

∣

∣

Q2

q2

∣

∣

∣

∣

+ tan2
(

θe
2

)]

RT (ω, |q|)
}

(2)
where the longitudinal (L) and transverse responses (T) are given as
particular components of the hadron tensor in the frame in which q defines
the Z-axis,

RL(ω, |q|) = W 00, RT (ω, |q|) = W xx +W yy (3)

W µν =
3Nm2

N

4πk3F

∫

d3p

E (p)E (p + q)
θ(kF − |p|)θ(|p+ q| − kF )

× δ (ω − [E (p+ q)− E (p)]) rµν(P + Q,P) (4)
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Scaling in the Relativistic Fermi Gas

with rµν(P +Q,P) being the single-nucleon response tensor, which can be
expressed in a convenient and explicitly gauge-invariant fashion:

rµν(P + Q,P) =

(

−gµν +
QµQν

Q2

)

W1(τ)

+

(

Pµ − P ·Q
Q2

Qµ

)(

Pν − P · Q
Q2

Qν

)

W2(τ)

m2
N

(5)

and τ ≡ |Q2|
4m2

N

. In addition, if we wish to cast the results in terms of

dimensionless variables, we can define:

κ ≡ |q|
2mN

λ ≡ ω
2mN

}

→ τ = κ2 − λ2, (6)

η ≡ |p|
mN

, ǫ ≡ E (p)

mN

=
√

1 + η2

ηF ≡ kF
mN

, ǫF =
√

1 + η2F (7)
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Scaling in the Relativistic Fermi Gas

With these variables, the responses take the simple form:

RL =
3Nκ

4mNτη
3
F

(ǫF − Γ) θ(ǫF − Γ) {(1 + τ +∆)W2(τ)−W1(τ)}

RT =
3N

4mNκη
3
F

(ǫF − Γ) θ(ǫF − Γ) (2W1(τ) +W2(τ)∆) (8)

with ∆ and Γ given by

∆ ≡ τ

κ2

[

1

3

(

ǫ2F + ǫFΓ + Γ2
)

+ λ (ǫF + Γ) + λ2
]

− (1 + τ)

Γ ≡ max

[

(ǫF − 2λ) , γ− ≡ κ

√

1 +
1

τ
− λ

]

(9)
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Scaling in the Relativistic Fermi Gas

Figure: Behavior of γ− as a function of λ in two regimes: (a) Pauli-blocked region
(κ < ηF ) and non-Pauli-blocked region (κ > ηF ). It is also shown the line
Γ = ǫF − 2λ, which can be larger than γ− for small λ in the Pauli-blocked regime.
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Scaling in the Relativistic Fermi Gas

To map the factor (ǫF − Γ) of the response functions in a parabola in the
variable λ for constant κ, we can define a generalized dimensionless scaling
variable:

ψ ≡
√

γ− − 1

ǫF − 1

{

+1, if λ > λ0
−1, if λ 6 λ0

(10)

where λ0 ≡ 1
2

[√
1 + 4κ2 − 1

]

corresponds to the quasi-elastic peak.

With this definition, we can easily see that if Γ = γ− (which is always
correct for the non-Pauli-blocked region), then:

1− ψ2 = 1− γ− − 1

ǫF − 1
=
ǫF − γ−
ǫF − 1

(11)

Of course, this scaling variable4 could have been defined with Γ instead of
γ− as it was originally. And indeed this will be our choice besides the
change mN → m∗

N = 0.8mN , which we will justify later. We will call it the
Pauli-blocked scaling variable ψ∗.

4W.M. Alberico et al, Phys. Rev. C 38, 1801 (1988)
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Summary of scaling in the Relativistic Fermi Gas

Within the framework of the Relativistic Fermi Gas model and with
the aid of an adequate scaling variable ψ, we can write the
double-differential cross section as:

d2σ

dΩ dǫ′
=

N
4mNκ

σMott X (θ, τ, ψ; ηF )SRFG (ψ; ηF ) (12)

where SRFG (ψ; ηF ) =
3ξF
η3
F

(

1− ψ2
)

θ(1− ψ2) basically encodes the

dynamical content of the Relativistic Fermi Gas (Fermi motion and
Pauli blocking). This model, although simple, provides a picture of
the nuclear system and it is independent of the electroweak probe.

On the other hand, X (θ, τ, ψ; ηF ) contains the information on the
interaction of the electroweak probe (electrons, neutrinos...) with the
elementary constituents of the many-body system. And, furthermore,
this function possesses the correct limiting behavior one would wish in
the one-body problem, namely, the response of the single-nucleon to
the electroweak probe when N = 1 and ηF → 0.
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Walecka model QHD-I (Quantum Hadrodynamics)

The building blocks of this model are the nucleon doublet field

ψ =

(

ψp

ψn

)

and two neutral and isoscalar mesons, one of them is scalar

(σ) and the other one is vector (ωµ). The Lagrangian density for this
model is given by:

L = ψ̄ (iγµ∂µ −mN)ψ +
1

2

(

∂µσ∂
µσ −m2

σσ
2
)

− 1

4
FµνF

µν +
1

2
m2

ω ωµ ω
µ

− gωψ̄γ
µψ ωµ + gσψ̄ψ σ (13)

where Fµν ≡ ∂µων − ∂νωµ.
The field equations for this model can be obtained from the
Euler-Lagrange ones and these are:

(

∂µ∂µ +m2
σ

)

σ = gσ ψ̄ψ (14)

∂νF
νµ +m2

ω ω
µ = gω ψ̄γ

µψ (15)

[γµ (i∂µ − gω ωµ)− (mN − gσ σ)]ψ = 0 (16)
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Mean Field Theory (MFT) description of the model

If we consider the situation in which we have a system of B baryons in a
large box of volume V and we are in the rest frame of the matter, i.e, the
baryon current Bµ = (ρB ,B) = ψ̄γµψ has B = 0. If the baryon density
B/V increases, the sources increase as well; and if these are large enough,
one would expect to substitute the meson fields by their expectation
values:

σ → 〈σ〉 ≡ σ0, ωµ → 〈ωµ〉 ≡ (ω0, 0) (17)

Since we are restricting ourselves to stationary situation and uniform
system, σ0 and ω0 are constants completely independent of space and
time. And since the matter is at rest, the three-vector field ~ω = 0.
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Mean Field Theory (MFT) description of the model

We can substitute these meson fields on the Lagrangian density to obtain
the mean-field Lagrangian:

LMFT = ψ̄ (iγµ∂µ −mN)ψ− 1

2
m2

σ σ
2
0 +

1

2
m2

ω ω
2
0 − gω ψ̄γ

0ψ ω0 + gσ ψ̄ψ σ0

(18)
Only the fermion field has to be quantized, and we can particularize the
previous Dirac equation to our MFT problem:

[

iγµ∂µ − gω γ
0 ω0 − (mN − gσ σ0)

]

ψ(t, x) = 0 (19)

We can see here that the effect of the scalar field is a shift in the baryon
mass from mN to m∗

N ≡ mN − gσ σ0, and that of the vector field is a shift
in the energy spectrum.
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Mean Field Theory (MFT) description of the model

We can look for plane-wave solutions of the Dirac equation in this MFT
approximation:

ψ
(+)
kλ (t, x) = U(k, λ)e ik·x−iǫ+(k)t , ψ

(−)
kλ (t, x) = V (k, λ)e−ik·x−iǫ−(−k)t

(20)
Substituting these possible solutions in the Dirac equation, we can obtain
the corresponding Dirac equations in momentum representation:

[k · ~α+m∗
Nβ]U(k, λ) = [ǫ+(k) − gω ω0]U(k, λ) (21)

[−k · ~α+m∗
Nβ]V (k, λ) = [ǫ−(−k)− gω ω0]V (k, λ) (22)

with ~α = γ0~γ and β = γ0 being the usual Dirac matrices.
Eqs. (21) and (22) look like the free Dirac equation of a fermion of mass

m∗
N = mN − gσ σ0 with “energy” eigenvalues E ∗

±(k) =

{

ǫ+(k) − gω ω0

ǫ−(−k)− gω ω0
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Mean Field Theory (MFT) description of the model

Therefore, we can interpret U(k, λ) and V (k, λ) as free spinors of a
fermion of mass m∗

N obeying the Dirac equation with ”energy” eigenvalues

E ∗
±(k) = ±

√

k2 +m∗2
N . And it is this E ∗(k) which enters in the

normalization of the new spinors.
So we can write the hadron tensor as:

W µν =
V

(2π)3

∫

d3p
(m∗

N)
2

E ∗(p)E ∗(p+ q)
θ(kF − |p|)θ(|p+ q| − kF )

× δ (ω − [E ∗(p+ q)− E ∗(p)]) 2wµν
s.n.(p

′,p) (23)

where the single-nucleon tensor is given by:

wµν
s.n.(p

′,p) =
1

2

∑

s s′

Jµ∗(p′,p)Jν(p′,p) (24)

Here, Jµ∗ is the electroweak current matrix element between free positive
energy Dirac spinors with mass m∗

N .
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Mean Field Theory (MFT) description of the model

In the case of electron scattering, the electromagnetic current matrix
element is:

Jµs′ s(p
′,p) = ūs′(p

′)

[

F1(Q
2)γµ + i

F2(Q
2)

2mN

σµνQν

]

us(p) (25)

In the case of neutrino scattering, the weak charged current matrix
element has vector and axial-vector contributions:

JµW (p′,p) = V µ(p′,p)− Aµ(p′,p) (26)

V µ
s′ s(p

′,p) = ūs′(p
′)

[

FV
1 (Q2)γµ + i

FV
2 (Q2)

2mN

σµνQν

]

us(p) (27)

Aµ
s′ s(p

′,p) = ūs′(p
′)

[

GA(Q
2)γµγ5 +

GP(Q
2)

2mN

Qµγ5

]

us(p) (28)
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M
∗-scaling analysis

Following the lines of the scaling analysis for the relativistic Fermi Gas
with the scaling variable ψ, we can define an analogous one with the
replacement of mN by m∗

N everywhere in the formulas.

κ∗ ≡ |q|
2m∗

N

λ∗ ≡ ω
2m∗

N

}

→ τ∗ = κ∗2 − λ∗2, (29)

η∗ ≡ |p|
m∗

N

, ǫ∗ ≡ E ∗(p)

m∗
N

=
√

1 + η∗2

η∗F ≡ kF
m∗

N

, ǫ∗F =
√

1 + η∗2F (30)

And the nuclear response functions can be written in the factorized form:

RK = GK fRFG(ψ
∗) fRFG(ψ

∗) =
3

4

(

1− ψ∗2
)

θ(1− ψ∗2) (31)

GK = Λ
(

Z Up
K + N Un

K

)

with Λ =
ǫ∗F − 1

m∗
N κ

∗ η∗3F
(32)
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M
∗-scaling analysis

And UK (K = L,T ,T ′, ...) are the single nucleon response functions which
can be found, for instance, in Ref. J.E. Amaro et al, Phys. Rev. C71

(2005) 065501.
As we do not change the current operator, the only way for m∗

N to appear
is through the nucleon spinors when summing over spin polarizations. This
is equivalent to take the formulas for the single nucleon response functions
from the above reference as they stand there but defining all the kinematic
variables with respect to the effective mass instead of the free one mN ,
including the electric and magnetic form factors as well.
This implies that even although F1 and F2

mN
are not modified in the

medium, the electric (GE ) and magnetic (GM) Sach’s form factors are
modified in the medium. This is because the nucleon mass enters in their
definition in two places: in one of them the mass must be changed but not
in the other.
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This can be easily seen with the example of the electric form factor GE :

GE = F1 − τ F2 = F1 −mN τ

(

F2
mN

)

(33)

F2
mN

does not change, so we can redefine it in terms of a re-scaled form
factor F ∗

2 provided that they are related as follows:

F ∗
2 =

m∗
N

mN

F2 (34)

Therefore, eq. (33) can be rewritten as:

GE = F1 −mN τ

(

F ∗
2

m∗
N

)

= F ∗
1 − m∗

N

mN

τ∗ F ∗
2 6= F ∗

1 − τ∗ F ∗
2 ≡ G ∗

E (35)

where in the second step we have used that F1 is not modified (i.e,
F ∗
1 = F1), and the relation between τ∗ and τ , which goes inversely with

respect to their squared masses, namely:

τ∗

τ
=

m2
N

m∗2
N

(36)
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Results
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Figure: Top panel (a): M∗-scaling analysis of the

experimental data of 12C as a function of the scaling variable

ψ∗ for m∗

N = 0.8mN and comparison with the RFG parabola.

Bottom panel (b): RFG Monte Carlo simulation of QE data

with a Gaussian distribution of relativistic effective mass

quotient around M∗ =
m∗

N
mN

= 0.8 ± 0.1. The Fermi

momentum is kF = 225 MeV/c

fexp =

(

dσ
dΩ′ dǫ′

)

exp

σMott (vL GL + vT GT )
(37)
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Results
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Figure: Experimental data selection in terms of the scaling variable ψ∗, obtained
with different choices of the number m of points inside a circle of radius r = 0.1.
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Results
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Figure: Total QE neutrino cross section off 12C per neutron as a function of the neutrino

energy for different relativistic effective masses generated in a Monte Carlo simulation around

M∗ = 0.8± 0.1. The experimental points are from NOMAD and MiniBooNE. The axial dipole

mass is MA = 1 GeV.
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Concluding remarks

We have reanalyzed the inclusive (e, e ′) scattering data off 12C in terms of a
new scaling variable ψ∗ as a generalization of the Relativistic Fermi Gas
model to include scalar and vector interactions in a minimal way.

Scaling violations or departures from the expected RFG universal-shaped
parabola can be mimicked by the standard statistical fluctuations in the
determination of the relativistic effective mass, as seen in the Monte Carlo
simulation.

This uncertainty band which reflects the scaling deviations can be translated
into a theoretically predicted error band for other related reactions with
electroweak probes such as Charged Current neutrino reactions. And this
uncertainty band can help to reconcile different data sets from different
experiments that, in principle, seemed incompatible.

Furthermore, in this model gauge invariance and PCAC are automatically
fulfilled, so there is no need to restore them afterwards. Besides, there is no
need to worry about any ω-shift applied in previous studies to make the data
to scale better, and this phenomenological energy shift does not have a well
understood theoretical origin.
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