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Introduction

Introduction

e 17 and 77’ decays are a rather old subject of study

e New revival of their multiple interests (both ex and th).

n — eTe~ (Muon anomalous magnetic moment, comparison with
SM, BSM, U boson, Astrophysical interest, etc.)

Related to BR(7% — eTe™) , KTeV

Invisible decays (DM, BSM, ...)
Discrete symmetries C, CP, CPT

Spontaneous chiral symmetry breaking of QCD
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Anomaly of QCD

Isospin breaking

SU(3) breaking

Gluonium content

Hadron-nucleon interactions

New types of matter: mesic nuclei (bound by strong forces)

Photoproduction of 7. Baryonic resonances. ..

Vigorous experimental programs:
WASA-COSY, KLOE-2, BESIII, Crystal Ball/TAPS MAMI
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But ...we are not going to study the 7, 1’ decays
Many recent LQCD simulations on 7, i’ properties

o 1, 1/ masses: ETMC (2013), UKQCD(2012),
HSC(2011),RBC/UKQCD(2010)

e K mass squared, RBC/UKQCD(2013)

o F., Fx, RBC/UKQCD(2013)

o Fx/Fyr, BMW(2010)

The n, i’ lattice simulations are analyzed in this work.
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ChPT and N¢ counting

In the chiral limit m, = mg = ms = 0 the QCD Lagrangian is
invariant under U;(3) ® Ug(3) symmetry.

SUL(3) ® SUR(3) — SUy(3) is Spontaneously Broken. Goldstone
bosons appear m, K, 1

Uv(1) = U +r Conserved Baryon Number.

Ua(1) = U, g Neither Conserved nor Goldstone Boson.

Puzzle:
Goldstone mode: There should be an 77 with a mass < \@m7r
Weinberg PRD'75 but 7 is much heavier.
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The ninth axial singlet current has an anomalous divergence Adler
PR'69 Fujikawa PRD'80

2O = Gy,75q
2
po) _ & 1 =~
Ol = 4 A Tre( G G™)

Large N. QCD N, — oo, g?N. — constant
't Hooft NPB'74, Witten NPB'79

UL(NF) ® Ur(Nf) = Ur+r(NF)
Entire Nonet of Goldstone bosons
results.

Coleman, Witten PRL'80
Knecht, de Rafael PLB'98

The explicit breaking of chiral symmetry due to quark masses and
the Ua(1) anomaly is treated perturbatively.
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Combined power expansion in the light quark masses and 1/N,

This formalism is set up in
Di Vecchia, Veneziano NPB’'80
Rosenzweig, Schechter, Trahern PRD’80

Witten Ann.Phys.'80
The Leading Order in 1/N, and the Derivative Expansion was
worked out.

Herrera-Siklody, Latorre, Pascual, Taron NPB’'97
Generalization of Gasser, Leutwyler Ann.Phys.'84, NPB'85 from
SUL(3) ® SUR(3) to UL(3) ® Ur(3) at O(p4)

S.Z.Jiang, F.J.Ge, Q. Wang, PRD’14
UL(NF) ® Ur(NF) at O(p6)
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Combined chiral and 1/N¢ expansion
S-expansion: p? ~ mg ~ 1/Ne ~ §

Chiral loops start to contribute at NNLO

LO: O(8°) = { : }
£ — (”u“u> L FTQ@H) 4 % [In det u — Indet uT]2
%Wo + %778 + %770 mt K"
o = T \_/1 0+\[778+\[770 K°
K~ KO

:7%778 + %ﬁo

io
_ — it Ut s = utyat £ uyt
u =ex , uy, = iu'd,Uu' =u'yu"+ux'u

Di Vecchia, Veneziano NPB'80 , Rosenzweig, Schechter, Trahern
PRD'80 , Witten Ann.Phys."80
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NLO: O(6) = { : }
1 F2A
L =Ls(u,utxy) + §L8<X+X+ +X-Xx-) + 1218#X8NX
F2A, .
7 X (=) X =2logdetu = iv6no/F

Kaiser, Leutwyler, EPJC'00

NNLO: 0(6?) = {

2,(2)
T X0 Lau ) 0 + Lol Y o) + Lr) )

+Lig{up) (U x+) + Las X {x+Xx=) + Cio{hu W x4) + Cua(uputx+x+)
+Cir{upx+ v x+) + Co{X+X+x+) + Gr{x-Xx-X+) -

£ _

Herrera-Siklody, Latorre, Pascual, Taron NPB'97; Bijnens, Colangelo,
Ecker, JHEP'99
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n-n" Mixing

Technical Point. For calculating one-loop diagrams

O

X 0O(8)
— 0o(™")

1) First diagonalize at LO: ng, ng — 7, 7'

(3)-(2 2)()
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2) Mixing happens at NLO and higher orders.
° Formalism in Jamin, Pich, JAO, NPB'00

Lo =30, KoM~ J1TMi, KT =K, MT =M, 7" =(0.7) .
7T=RZY2nk , RTR =1, 22 = diag(z1, )
First diagonalization:
ZVPREKRTZY2 =), | M= ZV2RT MRZY?
L =% kO K — %ﬁ;MﬁK

Second diagonalization:

e T - cosf) —sinf
n=0ik , O MO=Mp , O= <sin9 cos 6 >
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° . Higher derivatives terms (HDT) prop. to Ci:

1 1 1 _
Lc zga,m; Kotng — EngMnB + Ea,tayn; K20"0"ng |
(6 8
k2 _< d3 02 >

HDT are removed perturbatively up to NNLO:

_ — 51 _ 52 _/ —_/ ) 52 — 53 —/
Si- 2o - 20 S - 205- 20
n—mn > n > no, 0N n > n > n
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) 0o
L= a 8 oMot o' + —= 8 oM (9“8"7 + 03 (%&,ﬁ({)“a”ﬁ/
1 0= 1
+ 20, o 4 0 g 7O + 8 70T
mﬁ"— 5,7,3 m%’ + 6m3, I—y ’
— T = T = b T

n '\ _ [ cosfs —sinbs 1+6a 0B 7
n )\ sinfs cosf o 1+dc¢ 7

All coefficients are calculated up to NNLO in d-counting U(3)
ChPT



n-n’ Mixing

e We also give the relation to the popular two-mixing angle

scheme:
n o 1 Fg CcOos 68 —Fo sin 60 78
7]/ N F Fg sin 98 Fo Cos 90 7o '

8 _ 8 _ o
F, = costgFg FS = sinfgFg <0\AZ|"7(,)> _ iqu;(,)

Fg = —sin 90F0 F77' = COS@()FO

e Fi and F; are also studied
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Some previous (partial) lower-order calculations:
LO in d-expansion, Georgi, PRD'94
LO in p? and NLO in 1/N,, Peris, PLB'94.

NLO in p?, LO in 1/Nc, Gerard, Kou, PLB’05; Degrande, Gerard
JHEP'09; Mathieu, Vento PLB’10.

NLO in p? and 1/N,, Herrera-Siklody et al., PLB'98

One-loop calculation+resonance exchange (partial NNLO),
Z.H.Guo,Oller, PRD’'11

FKS formalism, Feldmann,Kroll,Stech,PRD'98

etc
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Numerical Results

One free parameter, my =496.4+ 1.3, my =970 £ 6 MeV

My = 836 + 8 MeV § = —18.9° +0.3°
M2 \/M“

2 0 —2
mﬁ —7 +

. M2 \/Mg =l CONYN
mﬁ/ = 2 +m mK + 2

—1

_ (3M2 — 202 + \/OMZ — 12MZAZ 1 36A%)°
sinf = — 1+ AL

_2
A =my —m5; .
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n-n’ masses:
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NLO and NNLO Fits

Fitted observables:

@ LQCD + experimental values:

mn, mn/, mg, Fﬂ, FK, FK/FTI'

© Phenomenological values: Y.H.Chen, Z.H.Guo, B.S.Zou,
PRD91,014010 Fg, Fg, Og, 0o

e NLO Free parameters: Ls, Lg, A1, \>

mass/Gev
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Figure: Left: F, and Fk. Right: Fx/F,

Statistical4+Systematic errors.

NLOFit-A NLOFit-B

x2/(d.o.f) 481.2/(76-5) 477.7/(76-6) Tnput NLOFit-A NLOFit-B
My (MeV) 835.7* 767.3+£31.5%32.3 Fo (MeV) | 118.0 £165 | 104.912.9+03 | 99.7£3.6%16
F (MeV) 92.1+0.24£0.6 92.1+0.2+0.6 Fg (MeV) | 133.7 £11.1 | 113.2403%44 | 1135+03%4.2
10% X Ls 1.4540.0240.30 | 1.4740.0240.29 9o (°) -11.0 £3.0 72F2.1F13 -10.6£2.4F0.1
10% x Lg 1.0040.0740.10 | 1.0840.0540.04 95 (°) -26.7 +£5.4 -215+2.2+3.9 | -25.4+2.6+2.3
A 0.02+£0.05+0.06 20.09+0.08+0.02 ms/m 27.5 £3.0 22.6+0.8+0.6 21.940.6+1.2
Ay 0.25£0.06£0.02 | 0.14+0.0740.03

Systematic errors are estimated by

using Fr in ChPT expressions for each fit
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e NNLO Fits:
e m%, Fr, Fx and Fi/F; are not reproduced at NLO accurately
@ One-loop ChPT contributions start at NNLO

(2

@ Eleven new free parameters: v, >, Lq, Lg, L7, Lig, Los, Cio,
Cig, Gi7, Gio, G31
@ Constraints:

My = 836 MeV (LO value)

v2(2) only enters in the combination

M2+ 6V 2m2 +m2) . v o

A1l < 0.4 , |Az] <0.7 (Natural-value estimates)

L1g, Lps — 0 (They do not appear in SU(3) ChPT and only
affects n-n’ mixing)

G — aCth, with C from Dyson-Schwinger calculations of S.
Z. Jiang, Y. Zhang, C. Li and Q. Wang in Phys. Rev. D 81,
014001 (2010) [Fit A], 1502.05087 [hep-ph] [Fit B]

@ Instead of 11 new free parameters — 4 new free parameter

© 60 OO



Numerical Results

NNLO-A NNLO-B
?/(d.of) 212.4/(76-9) 231.9/(76-9)
F (MeV) 81.7+1.545.3 80.8+1.646.1
103 x Ls 0.60+0.11+0.52 | 0.45+0.12+0.78
103 x Lg 0.25+0.07+0.31 | 0.30£0.060.30
AL ~0.003+0.060+0.093 | -0.04-£0.06+0.13
A 0.08+£0.11+0.20 | 0.14:0.10+0.40
103 x Ly -0.12£0.060.19 | -0.09+0.06£0.23
10 x Lg ~0.05+£0.040.02 | 0.0320.03+0.02
105 x Ly 0.26+0.050.06 | 0.36+0.05+0.12
o -0.59+0.09+0.18 | -0.76+0.08+0.44
Input NNLO-A NNLO-B
Fo (MeV) 118.0 +16.5 108.0+1.5+3.6 109.14+1.3+5.9
Fg (MeV) 133.7 £11.1 124.7+1.2+8.7 126.5+1.2+11.8
6y (Degree) -11.0 +£3.0 -6.8+1.1+2.6 -6.84+0.9+3.7
63 (Degree) -26.7 +£5.4 -26.84+1.14+0.2 -27.9+1.0+1.4
ms/m 27.5 £3.0 27.01+0.61+0.4 29.440.440.6
Fq (MeV) 106.0 + 11.1* 92.8+1.1+1.2 92.74+1.0+£1.0
Fs (MeV) 143.8 + 16.5* 136.441.5+10.0 139.0+1.44+14.9
05 ) 345 £ 5.4% 36414102 358+12103
Os (°) 36.0 £+ 4.2* 37.8+0.9+1.5 37.1+0.8+1.1
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e [ is smaller at NNLO

e Chiral loops+O(p®) LECs —> Ls and Lg are smaller than at
NLO and compatible with two-loop SU(3) ChPT determinations
e Vanishing of the scalar form factors in the large N¢ limit for
s — 00 Jamin,Pich,JAO, NPB’'02

Lis8) =2Lg — Ls
1
L(5,8) ~0 — Lg ~ §L5
e Roca,JAO, EPJA’07 Scalar contributions to pseudoscalar masses

Lag) =2L6 — La
L(578) + 61—(4,6) =0— L(4,6) ~0

Reflection of scalar-dynamics dominance
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Conclusions
@ (62) b-expansion U(3) ChPT is used to study 7, i’ masses
and mixing
o Fr, Fk and Fk/F; are also reproduced together with mf<
o It provides rather accurate extrapolation of LQCD results in
mﬂ'
@ In order to achieve this a full NNLO calculation is required
@ Determination of LECs with relatively small errors:

Ay =—0.04+0.06 +0.13
Ay =0.14 + 0.10 + 0.40
103 x Ly = — 0.09 £ 0.06 + 0.23
10% x Lg =0.03 + 0.03 4 0.02
10% x L7 =0.36 + 0.05 4 0.12

@ This theory could be also accurate to study pseudoscalar
decays, and other processes involving 7 and 7.
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