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Introduction

• η and η′ decays are a rather old subject of study

• New revival of their multiple interests (both ex and th).

η → e+e− (Muon anomalous magnetic moment, comparison with
SM, BSM, U boson, Astrophysical interest, etc.)

Related to BR(π0 → e+e−) , KTeV

Invisible decays (DM, BSM, ...)

Discrete symmetries C, CP, CPT

Spontaneous chiral symmetry breaking of QCD
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Anomaly of QCD

Isospin breaking

SU(3) breaking

Gluonium content

Hadron-nucleon interactions

New types of matter: mesic nuclei (bound by strong forces)

Photoproduction of η. Baryonic resonances. . .

Vigorous experimental programs:

WASA-COSY, KLOE-2, BESIII, Crystal Ball/TAPS MAMI
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But . . . we are not going to study the η, η′ decays

Many recent LQCD simulations on η, η′ properties

• η, η′ masses: ETMC (2013), UKQCD(2012),
HSC(2011),RBC/UKQCD(2010)

• K mass squared, RBC/UKQCD(2013)

• Fπ, FK , RBC/UKQCD(2013)

• FK/Fπ, BMW(2010)

The η, η′ lattice simulations are analyzed in this work.
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ChPT and NC counting

In the chiral limit mu = md = ms = 0 the QCD Lagrangian is
invariant under UL(3)⊗ UR(3) symmetry.

SUL(3)⊗ SUR(3) → SUV (3) is Spontaneously Broken. Goldstone
bosons appear π, K , η

UV (1) ≡ UL+R Conserved Baryon Number.

UA(1) ≡ UL−R Neither Conserved nor Goldstone Boson.

Puzzle:

Goldstone mode: There should be an η1 with a mass <
√
3mπ

Weinberg PRD’75 but η is much heavier.
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The ninth axial singlet current has an anomalous divergence Adler

PR’69 Fujikawa PRD’80

J
µ (0)
5 = q̄γµγ5q

∂µJ
µ (0)
5 =

g2

16π2

1

Nc

Trc(GµνG̃
µν)

Large Nc QCD Nc → ∞, g2Nc → constant

’t Hooft NPB’74, Witten NPB’79

UL(NF )⊗ UR(NF ) → UL+R(NF )
Entire Nonet of Goldstone bosons
results.

Coleman, Witten PRL’80

Knecht, de Rafael PLB’98

The explicit breaking of chiral symmetry due to quark masses and
the UA(1) anomaly is treated perturbatively.
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Combined power expansion in the light quark masses and 1/Nc

This formalism is set up in
Di Vecchia, Veneziano NPB’80
Rosenzweig, Schechter, Trahern PRD’80

Witten Ann.Phys.’80

The Leading Order in 1/Nc and the Derivative Expansion was
worked out.

Herrera-Siklody, Latorre, Pascual, Taron NPB’97

Generalization of Gasser, Leutwyler Ann.Phys.’84, NPB’85 from
SUL(3)⊗ SUR(3) to UL(3)⊗ UR(3) at O(p4)

S.Z.Jiang, F.J.Ge, Q. Wang, PRD’14

UL(NF )⊗ UR(NF ) at O(p6)
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Combined chiral and 1/NC expansion
δ-expansion: p2 ∼ mq ∼ 1/Nc ∼ δ

Chiral loops start to contribute at NNLO

LO: O(δ0) = {O(NCp
2) , O(N0

Cp
0)}

L(δ0) = F 2

4 〈uµuµ〉+ F 2

4 〈χ+〉+ F 2M2
0

12

[
ln det u − ln det u†

]2

Φ =




1√
2
π0 + 1√

6
η8 +

1√
3
η0 π+ K+

π− −1√
2
π0 + 1√

6
η8 +

1√
3
η0 K 0

K− K̄ 0 −2√
6
η8 +

1√
3
η0




u =exp

(
iΦ√
2F

)
, uµ = iu†∂µUu

† , χ± = u†χu† ± uχ†u

Di Vecchia, Veneziano NPB’80 , Rosenzweig, Schechter, Trahern

PRD’80 , Witten Ann.Phys.’80
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NLO: O(δ) = {O(NCp
4) , O(N0

Cp
2)}

L(δ) =L5〈uµuµχ+〉+
1

2
L8〈χ+χ+ + χ−χ−〉+

F 2Λ1

12
∂µX∂µX

+
F 2Λ2

12
X 〈χ−〉 X = 2 log det u = i

√
6η0/F

Kaiser, Leutwyler, EPJC’00

NNLO: O(δ2) =
{
O(N−1

C p2) , O(N0
Cp

4) , O(Ncp
6)
}

L(δ2) =
F 2v

(2)
2

4
X 2〈χ+〉+ L4〈uµuµ〉〈χ+〉+ L6〈χ+〉〈χ+〉+ L7〈χ−〉〈χ−〉

+L18〈uµ〉〈uµχ+〉+ L25X 〈χ+χ−〉+ C12〈hµνhµνχ+〉+ C14〈uµuµχ+χ+〉
+C17〈uµχ+u

µχ+〉+ C19〈χ+χ+χ+〉+ C31〈χ−χ−χ+〉 .

Herrera-Siklody, Latorre, Pascual, Taron NPB’97; Bijnens, Colangelo,

Ecker, JHEP’99
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η-η′ Mixing
Technical Point. For calculating one-loop diagrams

δO(   )

δ−1O(     )

1) First diagonalize at LO: ηB , η
′
B → η̄, η̄′

(
η̄
η̄′

)
=

(
cθ −sθ
sθ cθ

)
·
(

η8
η0

)
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2) Mixing happens at NLO and higher orders.

• Up to NLO: Formalism in Jamin, Pich, JAO, NPB’00

LC =
1

2
∂µη̄

TK∂µη̄ − 1

2
η̄TMη̄ , KT = K , MT = M , η̄T = (η̄, η̄′) ,

η̄ =RZ1/2ηK , RTR = I , Z1/2 = diag(z1, z2)

First diagonalization:

Z1/2RKRTZ1/2 =I2 , M̂ = Z1/2RTMRZ1/2

L̄ =
1

2
∂µη

T
K ∂

µηK − 1

2
η̄TKM̂η̄K

Second diagonalization:

η =Oη̄K , OTM̂O = MD , O =

(
cos θ − sin θ
sin θ cos θ

)
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• Up to NNLO. Higher derivatives terms (HDT) prop. to C12:

LC =
1

2
∂µη

T
BK∂µηB − 1

2
ηTBMηB +

1

2
∂µ∂νη

T
B K̄2∂

µ∂νηB ,

K2 =

(
δ1 δ3
δ3 δ2

)

HDT are removed perturbatively up to NNLO:

η̄ → η̄ − δ1
2
�η̄ − δ2

2
�η̄′ , η̄′ → η̄′ − δ2

2
�η̄ − δ3

2
�η̄′
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L =
δ1
2
∂µ∂νη∂

µ∂νη +
δ2
2
∂µ∂νη

′∂µ∂νη′ + δ3 ∂µ∂νη∂
µ∂νη′

+
1 + δη

2
∂µη∂

µη +
1 + δη′

2
∂µη

′∂µη′ + δk ∂µη∂
µη′

−
m2

η + δm2
η

2
η η −

m2
η′ + δm2

η′

2
η′η′ − δm2 η η′ ,

(
η
η′

)
=

(
cos θδ − sin θδ
sin θδ cos θδ

)(
1 + δA δB
δB 1 + δC

)(
η
η′

)

All coefficients are calculated up to NNLO in δ-counting U(3)
ChPT
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• We also give the relation to the popular two-mixing angle
scheme:

(
η
η′

)
=

1

F

(
F8 cos θ8 −F0 sin θ0
F8 sin θ8 F0 cos θ0

)(
η8
η0

)
.

F 8
η = cos θ8F8 F 8

η′ = sin θ8F8
F 0
η = − sin θ0F0 F 0

η′ = cos θ0F0
〈0|Aa

µ|η(
′)〉 = ipµF

a

η(
′)

• FK and Fπ are also studied
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Some previous (partial) lower-order calculations:

LO in δ-expansion, Georgi, PRD’94

LO in p2 and NLO in 1/Nc , Peris, PLB’94.

NLO in p2, LO in 1/Nc , Gerard, Kou, PLB’05; Degrande, Gerard
JHEP’09; Mathieu, Vento PLB’10.

NLO in p2 and 1/Nc , Herrera-Siklody et al., PLB’98

One-loop calculation+resonance exchange (partial NNLO),
Z.H.Guo,Oller, PRD’11

FKS formalism, Feldmann,Kroll,Stech,PRD’98

etc
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Numerical Results

• Leading order:

One free parameter,
M0 = 836± 8 MeV

mη = 496.4± 1.3 , mη′ = 970± 6 MeV
θ = −18.9o ± 0.3o

m2
η =

M2
0

2
+m2

K −

√
M4

0 − 4M2
0∆

2

3 + 4∆4

2

m2
η′ =

M2
0

2
+m2

K +

√
M4

0 − 4M2
0∆

2

3 + 4∆4

2

sin θ =−




√

1 +

(
3M2

0 − 2∆2 +
√

9M4
0 − 12M2

0∆
2 + 36∆4

)2

32∆4




−1

∆ =m2
K −m2

π .
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η-η′ masses:

m
as
s/
G
ev

m 2/Gev2

 ETMC
 UKQCD
 RBC/UKQCD
 HSC
 EXP
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NLO and NNLO Fits

Fitted observables:

1 LQCD + experimental values:
mη, mη′ , mK , Fπ, FK , FK/Fπ

2 Phenomenological values: Y.H.Chen, Z.H.Guo, B.S.Zou,

PRD91,014010 F8, F0, θ8, θ0

• NLO Free parameters: L5, L8, Λ1, Λ2

m
as
s/
G
ev

m 2/Gev2 m 2/Gev2

m
K
2 /G

ev
2

 lattice
 NLOFit-B
 NNLOFit-B
 NLOFit-D

Figure: Left: mη and mη′ . Right: m2
K
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de
ca

y 
co

ns
ta

nt
/G

ev

m 2/Gev2

 lattice
 exp
 NLOFit-B
 NNLOFit-B

F K
/F

m 2/Gev2

Figure: Left: Fπ and FK . Right: FK/Fπ

NLOFit-A NLOFit-B

χ2/(d.o.f) 481.2/(76-5) 477.7/(76-6)

M0 (MeV) 835.7* 767.3±31.5±32.3

F (MeV) 92.1±0.2±0.6 92.1±0.2±0.6

103 × L5 1.45±0.02±0.30 1.47±0.02±0.29

103 × L8 1.00±0.07±0.10 1.08±0.05±0.04

Λ1 0.02±0.05±0.06 -0.09±0.08±0.02

Λ2 0.25±0.06±0.02 0.14±0.07±0.03

Input NLOFit-A NLOFit-B

F0 (MeV) 118.0 ±16.5 104.9±2.9±0.3 99.7±3.6±1.6

F8 (MeV) 133.7 ±11.1 113.2±0.3±4.4 113.5±0.3±4.2

θ0 (o) -11.0 ±3.0 -7.2±2.1±1.3 -10.6±2.4±0.1

θ8 (o) -26.7 ±5.4 -21.5±2.2±3.9 -25.4±2.6±2.3

ms/m̂ 27.5 ±3.0 22.6±0.8±0.6 21.9±0.6±1.2

Statistical+Systematic errors. Systematic errors are estimated by
using Fπ in ChPT expressions for each fit
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• NNLO Fits:

m2
K , Fπ, FK and FK/Fπ are not reproduced at NLO accurately

One-loop ChPT contributions start at NNLO

Eleven new free parameters: v
(2)
2 , L4, L6, L7, L18, L25, C12,

C14, C17, C19, C31

Constraints:
1 M0 = 836 MeV (LO value)

2 v
(2)
2 only enters in the combination

M2
0 + 6v

(2)
2 (2m2

K +m2
π) , v

(2)
2 → 0.

3 |Λ1| < 0.4 , |Λ2| < 0.7 (Natural-value estimates)
4 L18, L25 → 0 (They do not appear in SU(3) ChPT and only

affects η-η′ mixing)
5 Ci → αC th

i , with C th
i from Dyson-Schwinger calculations of S.

Z. Jiang, Y. Zhang, C. Li and Q. Wang in Phys. Rev. D 81,
014001 (2010) [Fit A], 1502.05087 [hep-ph] [Fit B]

Instead of 11 new free parameters → 4 new free parameter



Introduction ChPT and NC counting η-η′ Mixing Numerical Results Conclusions

NNLO-A NNLO-B

χ2/(d.o.f) 212.4/(76-9) 231.9/(76-9)

F (MeV) 81.7±1.5±5.3 80.8±1.6±6.1

103 × L5 0.60±0.11±0.52 0.45±0.12±0.78

103 × L8 0.25±0.07±0.31 0.30±0.06±0.30

Λ1 -0.003±0.060±0.093 -0.04±0.06±0.13

Λ2 0.08±0.11±0.20 0.14±0.10±0.40

103 × L4 -0.12±0.06±0.19 -0.09±0.06±0.23

103 × L6 -0.05±0.04±0.02 0.03±0.03±0.02

103 × L7 0.26±0.05±0.06 0.36±0.05±0.12

α -0.59±0.09±0.18 -0.76±0.08±0.44

Input NNLO-A NNLO-B

F0 (MeV) 118.0 ±16.5 108.0±1.5±3.6 109.1±1.3±5.9

F8 (MeV) 133.7 ±11.1 124.7±1.2±8.7 126.5±1.2±11.8

θ0 (Degree) -11.0 ±3.0 -6.8±1.1±2.6 -6.8±0.9±3.7

θ8 (Degree) -26.7 ±5.4 -26.8±1.1±0.2 -27.9±1.0±1.4

ms/m̂ 27.5 ±3.0 27.0±0.6±0.4 29.4±0.4±0.6

Fq (MeV) 106.0 ± 11.1* 92.8±1.1±1.2 92.7±1.0±1.0

Fs (MeV) 143.8 ± 16.5* 136.4±1.5±10.0 139.0±1.4±14.9

θq (o) 34.5 ± 5.4* 36.4±1.4±0.2 35.8±1.2±0.3

θs (o) 36.0 ± 4.2* 37.8±0.9±1.5 37.1±0.8±1.1
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• F is smaller at NNLO
• Chiral loops+O(p6) LECs −→ L5 and L8 are smaller than at
NLO and compatible with two-loop SU(3) ChPT determinations
• Vanishing of the scalar form factors in the large NC limit for
s → ∞ Jamin,Pich,JAO, NPB’02

L(5,8) =2L8 − L5

L(5,8) ≃0 → L8 ≃
1

2
L5

• Roca,JAO, EPJA’07 Scalar contributions to pseudoscalar masses

L(4,6) =2L6 − L4

L(5,8) + 6L(4,6) =0 → L(4,6) ≃ 0

L6 ≃
1

2
L4

Reflection of scalar-dynamics dominance
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Conclusions

O(δ2) δ-expansion U(3) ChPT is used to study η, η′ masses
and mixing

Fπ, FK and FK/Fπ are also reproduced together with m2
K

It provides rather accurate extrapolation of LQCD results in
mπ

In order to achieve this a full NNLO calculation is required

Determination of LECs with relatively small errors:

Λ1 =− 0.04± 0.06± 0.13

Λ2 =0.14± 0.10± 0.40

103 × L4 =− 0.09± 0.06± 0.23

103 × L6 =0.03± 0.03± 0.02

103 × L7 =0.36± 0.05± 0.12

This theory could be also accurate to study pseudoscalar
decays, and other processes involving η and η′.
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